2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/drivers/gpu/drm/amd/amdgpu/cik_sdma.c
Christian König b7e4dad3e1 drm/amdgpu: remove old lockup detection infrastructure
It didn't worked to well anyway.

Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Chunming Zhou <david1.zhou@amd.com>
Reviewed-by: Junwei Zhang <Jerry.Zhang@amd.com>
2015-10-21 11:35:12 -04:00

1413 lines
39 KiB
C

/*
* Copyright 2013 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Alex Deucher
*/
#include <linux/firmware.h>
#include <drm/drmP.h>
#include "amdgpu.h"
#include "amdgpu_ucode.h"
#include "amdgpu_trace.h"
#include "cikd.h"
#include "cik.h"
#include "bif/bif_4_1_d.h"
#include "bif/bif_4_1_sh_mask.h"
#include "gca/gfx_7_2_d.h"
#include "gca/gfx_7_2_enum.h"
#include "gca/gfx_7_2_sh_mask.h"
#include "gmc/gmc_7_1_d.h"
#include "gmc/gmc_7_1_sh_mask.h"
#include "oss/oss_2_0_d.h"
#include "oss/oss_2_0_sh_mask.h"
static const u32 sdma_offsets[SDMA_MAX_INSTANCE] =
{
SDMA0_REGISTER_OFFSET,
SDMA1_REGISTER_OFFSET
};
static void cik_sdma_set_ring_funcs(struct amdgpu_device *adev);
static void cik_sdma_set_irq_funcs(struct amdgpu_device *adev);
static void cik_sdma_set_buffer_funcs(struct amdgpu_device *adev);
static void cik_sdma_set_vm_pte_funcs(struct amdgpu_device *adev);
MODULE_FIRMWARE("radeon/bonaire_sdma.bin");
MODULE_FIRMWARE("radeon/bonaire_sdma1.bin");
MODULE_FIRMWARE("radeon/hawaii_sdma.bin");
MODULE_FIRMWARE("radeon/hawaii_sdma1.bin");
MODULE_FIRMWARE("radeon/kaveri_sdma.bin");
MODULE_FIRMWARE("radeon/kaveri_sdma1.bin");
MODULE_FIRMWARE("radeon/kabini_sdma.bin");
MODULE_FIRMWARE("radeon/kabini_sdma1.bin");
MODULE_FIRMWARE("radeon/mullins_sdma.bin");
MODULE_FIRMWARE("radeon/mullins_sdma1.bin");
u32 amdgpu_cik_gpu_check_soft_reset(struct amdgpu_device *adev);
/*
* sDMA - System DMA
* Starting with CIK, the GPU has new asynchronous
* DMA engines. These engines are used for compute
* and gfx. There are two DMA engines (SDMA0, SDMA1)
* and each one supports 1 ring buffer used for gfx
* and 2 queues used for compute.
*
* The programming model is very similar to the CP
* (ring buffer, IBs, etc.), but sDMA has it's own
* packet format that is different from the PM4 format
* used by the CP. sDMA supports copying data, writing
* embedded data, solid fills, and a number of other
* things. It also has support for tiling/detiling of
* buffers.
*/
/**
* cik_sdma_init_microcode - load ucode images from disk
*
* @adev: amdgpu_device pointer
*
* Use the firmware interface to load the ucode images into
* the driver (not loaded into hw).
* Returns 0 on success, error on failure.
*/
static int cik_sdma_init_microcode(struct amdgpu_device *adev)
{
const char *chip_name;
char fw_name[30];
int err = 0, i;
DRM_DEBUG("\n");
switch (adev->asic_type) {
case CHIP_BONAIRE:
chip_name = "bonaire";
break;
case CHIP_HAWAII:
chip_name = "hawaii";
break;
case CHIP_KAVERI:
chip_name = "kaveri";
break;
case CHIP_KABINI:
chip_name = "kabini";
break;
case CHIP_MULLINS:
chip_name = "mullins";
break;
default: BUG();
}
for (i = 0; i < adev->sdma.num_instances; i++) {
if (i == 0)
snprintf(fw_name, sizeof(fw_name), "radeon/%s_sdma.bin", chip_name);
else
snprintf(fw_name, sizeof(fw_name), "radeon/%s_sdma1.bin", chip_name);
err = request_firmware(&adev->sdma.instance[i].fw, fw_name, adev->dev);
if (err)
goto out;
err = amdgpu_ucode_validate(adev->sdma.instance[i].fw);
}
out:
if (err) {
printk(KERN_ERR
"cik_sdma: Failed to load firmware \"%s\"\n",
fw_name);
for (i = 0; i < adev->sdma.num_instances; i++) {
release_firmware(adev->sdma.instance[i].fw);
adev->sdma.instance[i].fw = NULL;
}
}
return err;
}
/**
* cik_sdma_ring_get_rptr - get the current read pointer
*
* @ring: amdgpu ring pointer
*
* Get the current rptr from the hardware (CIK+).
*/
static uint32_t cik_sdma_ring_get_rptr(struct amdgpu_ring *ring)
{
u32 rptr;
rptr = ring->adev->wb.wb[ring->rptr_offs];
return (rptr & 0x3fffc) >> 2;
}
/**
* cik_sdma_ring_get_wptr - get the current write pointer
*
* @ring: amdgpu ring pointer
*
* Get the current wptr from the hardware (CIK+).
*/
static uint32_t cik_sdma_ring_get_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
return (RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me]) & 0x3fffc) >> 2;
}
/**
* cik_sdma_ring_set_wptr - commit the write pointer
*
* @ring: amdgpu ring pointer
*
* Write the wptr back to the hardware (CIK+).
*/
static void cik_sdma_ring_set_wptr(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
u32 me = (ring == &adev->sdma.instance[0].ring) ? 0 : 1;
WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[me], (ring->wptr << 2) & 0x3fffc);
}
static void cik_sdma_ring_insert_nop(struct amdgpu_ring *ring, uint32_t count)
{
struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ring);
int i;
for (i = 0; i < count; i++)
if (sdma && sdma->burst_nop && (i == 0))
amdgpu_ring_write(ring, ring->nop |
SDMA_NOP_COUNT(count - 1));
else
amdgpu_ring_write(ring, ring->nop);
}
/**
* cik_sdma_ring_emit_ib - Schedule an IB on the DMA engine
*
* @ring: amdgpu ring pointer
* @ib: IB object to schedule
*
* Schedule an IB in the DMA ring (CIK).
*/
static void cik_sdma_ring_emit_ib(struct amdgpu_ring *ring,
struct amdgpu_ib *ib)
{
u32 extra_bits = (ib->vm ? ib->vm->ids[ring->idx].id : 0) & 0xf;
u32 next_rptr = ring->wptr + 5;
while ((next_rptr & 7) != 4)
next_rptr++;
next_rptr += 4;
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
amdgpu_ring_write(ring, ring->next_rptr_gpu_addr & 0xfffffffc);
amdgpu_ring_write(ring, upper_32_bits(ring->next_rptr_gpu_addr) & 0xffffffff);
amdgpu_ring_write(ring, 1); /* number of DWs to follow */
amdgpu_ring_write(ring, next_rptr);
/* IB packet must end on a 8 DW boundary */
cik_sdma_ring_insert_nop(ring, (12 - (ring->wptr & 7)) % 8);
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_INDIRECT_BUFFER, 0, extra_bits));
amdgpu_ring_write(ring, ib->gpu_addr & 0xffffffe0); /* base must be 32 byte aligned */
amdgpu_ring_write(ring, upper_32_bits(ib->gpu_addr) & 0xffffffff);
amdgpu_ring_write(ring, ib->length_dw);
}
/**
* cik_sdma_ring_emit_hdp_flush - emit an hdp flush on the DMA ring
*
* @ring: amdgpu ring pointer
*
* Emit an hdp flush packet on the requested DMA ring.
*/
static void cik_sdma_ring_emit_hdp_flush(struct amdgpu_ring *ring)
{
u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(1) |
SDMA_POLL_REG_MEM_EXTRA_FUNC(3)); /* == */
u32 ref_and_mask;
if (ring == &ring->adev->sdma.instance[0].ring)
ref_and_mask = GPU_HDP_FLUSH_DONE__SDMA0_MASK;
else
ref_and_mask = GPU_HDP_FLUSH_DONE__SDMA1_MASK;
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_DONE << 2);
amdgpu_ring_write(ring, mmGPU_HDP_FLUSH_REQ << 2);
amdgpu_ring_write(ring, ref_and_mask); /* reference */
amdgpu_ring_write(ring, ref_and_mask); /* mask */
amdgpu_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */
}
/**
* cik_sdma_ring_emit_fence - emit a fence on the DMA ring
*
* @ring: amdgpu ring pointer
* @fence: amdgpu fence object
*
* Add a DMA fence packet to the ring to write
* the fence seq number and DMA trap packet to generate
* an interrupt if needed (CIK).
*/
static void cik_sdma_ring_emit_fence(struct amdgpu_ring *ring, u64 addr, u64 seq,
unsigned flags)
{
bool write64bit = flags & AMDGPU_FENCE_FLAG_64BIT;
/* write the fence */
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, lower_32_bits(seq));
/* optionally write high bits as well */
if (write64bit) {
addr += 4;
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_FENCE, 0, 0));
amdgpu_ring_write(ring, lower_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(addr));
amdgpu_ring_write(ring, upper_32_bits(seq));
}
/* generate an interrupt */
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_TRAP, 0, 0));
}
/**
* cik_sdma_ring_emit_semaphore - emit a semaphore on the dma ring
*
* @ring: amdgpu_ring structure holding ring information
* @semaphore: amdgpu semaphore object
* @emit_wait: wait or signal semaphore
*
* Add a DMA semaphore packet to the ring wait on or signal
* other rings (CIK).
*/
static bool cik_sdma_ring_emit_semaphore(struct amdgpu_ring *ring,
struct amdgpu_semaphore *semaphore,
bool emit_wait)
{
u64 addr = semaphore->gpu_addr;
u32 extra_bits = emit_wait ? 0 : SDMA_SEMAPHORE_EXTRA_S;
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SEMAPHORE, 0, extra_bits));
amdgpu_ring_write(ring, addr & 0xfffffff8);
amdgpu_ring_write(ring, upper_32_bits(addr) & 0xffffffff);
return true;
}
/**
* cik_sdma_gfx_stop - stop the gfx async dma engines
*
* @adev: amdgpu_device pointer
*
* Stop the gfx async dma ring buffers (CIK).
*/
static void cik_sdma_gfx_stop(struct amdgpu_device *adev)
{
struct amdgpu_ring *sdma0 = &adev->sdma.instance[0].ring;
struct amdgpu_ring *sdma1 = &adev->sdma.instance[1].ring;
u32 rb_cntl;
int i;
if ((adev->mman.buffer_funcs_ring == sdma0) ||
(adev->mman.buffer_funcs_ring == sdma1))
amdgpu_ttm_set_active_vram_size(adev, adev->mc.visible_vram_size);
for (i = 0; i < adev->sdma.num_instances; i++) {
rb_cntl = RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]);
rb_cntl &= ~SDMA0_GFX_RB_CNTL__RB_ENABLE_MASK;
WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], 0);
}
sdma0->ready = false;
sdma1->ready = false;
}
/**
* cik_sdma_rlc_stop - stop the compute async dma engines
*
* @adev: amdgpu_device pointer
*
* Stop the compute async dma queues (CIK).
*/
static void cik_sdma_rlc_stop(struct amdgpu_device *adev)
{
/* XXX todo */
}
/**
* cik_sdma_enable - stop the async dma engines
*
* @adev: amdgpu_device pointer
* @enable: enable/disable the DMA MEs.
*
* Halt or unhalt the async dma engines (CIK).
*/
static void cik_sdma_enable(struct amdgpu_device *adev, bool enable)
{
u32 me_cntl;
int i;
if (enable == false) {
cik_sdma_gfx_stop(adev);
cik_sdma_rlc_stop(adev);
}
for (i = 0; i < adev->sdma.num_instances; i++) {
me_cntl = RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]);
if (enable)
me_cntl &= ~SDMA0_F32_CNTL__HALT_MASK;
else
me_cntl |= SDMA0_F32_CNTL__HALT_MASK;
WREG32(mmSDMA0_F32_CNTL + sdma_offsets[i], me_cntl);
}
}
/**
* cik_sdma_gfx_resume - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
*
* Set up the gfx DMA ring buffers and enable them (CIK).
* Returns 0 for success, error for failure.
*/
static int cik_sdma_gfx_resume(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring;
u32 rb_cntl, ib_cntl;
u32 rb_bufsz;
u32 wb_offset;
int i, j, r;
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
wb_offset = (ring->rptr_offs * 4);
mutex_lock(&adev->srbm_mutex);
for (j = 0; j < 16; j++) {
cik_srbm_select(adev, 0, 0, 0, j);
/* SDMA GFX */
WREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i], 0);
WREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i], 0);
/* XXX SDMA RLC - todo */
}
cik_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
WREG32(mmSDMA0_SEM_INCOMPLETE_TIMER_CNTL + sdma_offsets[i], 0);
WREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i], 0);
/* Set ring buffer size in dwords */
rb_bufsz = order_base_2(ring->ring_size / 4);
rb_cntl = rb_bufsz << 1;
#ifdef __BIG_ENDIAN
rb_cntl |= SDMA0_GFX_RB_CNTL__RB_SWAP_ENABLE_MASK |
SDMA0_GFX_RB_CNTL__RPTR_WRITEBACK_SWAP_ENABLE_MASK;
#endif
WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i], rb_cntl);
/* Initialize the ring buffer's read and write pointers */
WREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i], 0);
WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], 0);
/* set the wb address whether it's enabled or not */
WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i],
upper_32_bits(adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFF);
WREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i],
((adev->wb.gpu_addr + wb_offset) & 0xFFFFFFFC));
rb_cntl |= SDMA0_GFX_RB_CNTL__RPTR_WRITEBACK_ENABLE_MASK;
WREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i], ring->gpu_addr >> 8);
WREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i], ring->gpu_addr >> 40);
ring->wptr = 0;
WREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i], ring->wptr << 2);
/* enable DMA RB */
WREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i],
rb_cntl | SDMA0_GFX_RB_CNTL__RB_ENABLE_MASK);
ib_cntl = SDMA0_GFX_IB_CNTL__IB_ENABLE_MASK;
#ifdef __BIG_ENDIAN
ib_cntl |= SDMA0_GFX_IB_CNTL__IB_SWAP_ENABLE_MASK;
#endif
/* enable DMA IBs */
WREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i], ib_cntl);
ring->ready = true;
r = amdgpu_ring_test_ring(ring);
if (r) {
ring->ready = false;
return r;
}
if (adev->mman.buffer_funcs_ring == ring)
amdgpu_ttm_set_active_vram_size(adev, adev->mc.real_vram_size);
}
return 0;
}
/**
* cik_sdma_rlc_resume - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
*
* Set up the compute DMA queues and enable them (CIK).
* Returns 0 for success, error for failure.
*/
static int cik_sdma_rlc_resume(struct amdgpu_device *adev)
{
/* XXX todo */
return 0;
}
/**
* cik_sdma_load_microcode - load the sDMA ME ucode
*
* @adev: amdgpu_device pointer
*
* Loads the sDMA0/1 ucode.
* Returns 0 for success, -EINVAL if the ucode is not available.
*/
static int cik_sdma_load_microcode(struct amdgpu_device *adev)
{
const struct sdma_firmware_header_v1_0 *hdr;
const __le32 *fw_data;
u32 fw_size;
int i, j;
/* halt the MEs */
cik_sdma_enable(adev, false);
for (i = 0; i < adev->sdma.num_instances; i++) {
if (!adev->sdma.instance[i].fw)
return -EINVAL;
hdr = (const struct sdma_firmware_header_v1_0 *)adev->sdma.instance[i].fw->data;
amdgpu_ucode_print_sdma_hdr(&hdr->header);
fw_size = le32_to_cpu(hdr->header.ucode_size_bytes) / 4;
adev->sdma.instance[i].fw_version = le32_to_cpu(hdr->header.ucode_version);
adev->sdma.instance[i].feature_version = le32_to_cpu(hdr->ucode_feature_version);
if (adev->sdma.instance[i].feature_version >= 20)
adev->sdma.instance[i].burst_nop = true;
fw_data = (const __le32 *)
(adev->sdma.instance[i].fw->data + le32_to_cpu(hdr->header.ucode_array_offset_bytes));
WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], 0);
for (j = 0; j < fw_size; j++)
WREG32(mmSDMA0_UCODE_DATA + sdma_offsets[i], le32_to_cpup(fw_data++));
WREG32(mmSDMA0_UCODE_ADDR + sdma_offsets[i], adev->sdma.instance[i].fw_version);
}
return 0;
}
/**
* cik_sdma_start - setup and start the async dma engines
*
* @adev: amdgpu_device pointer
*
* Set up the DMA engines and enable them (CIK).
* Returns 0 for success, error for failure.
*/
static int cik_sdma_start(struct amdgpu_device *adev)
{
int r;
r = cik_sdma_load_microcode(adev);
if (r)
return r;
/* unhalt the MEs */
cik_sdma_enable(adev, true);
/* start the gfx rings and rlc compute queues */
r = cik_sdma_gfx_resume(adev);
if (r)
return r;
r = cik_sdma_rlc_resume(adev);
if (r)
return r;
return 0;
}
/**
* cik_sdma_ring_test_ring - simple async dma engine test
*
* @ring: amdgpu_ring structure holding ring information
*
* Test the DMA engine by writing using it to write an
* value to memory. (CIK).
* Returns 0 for success, error for failure.
*/
static int cik_sdma_ring_test_ring(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
unsigned i;
unsigned index;
int r;
u32 tmp;
u64 gpu_addr;
r = amdgpu_wb_get(adev, &index);
if (r) {
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
return r;
}
gpu_addr = adev->wb.gpu_addr + (index * 4);
tmp = 0xCAFEDEAD;
adev->wb.wb[index] = cpu_to_le32(tmp);
r = amdgpu_ring_lock(ring, 5);
if (r) {
DRM_ERROR("amdgpu: dma failed to lock ring %d (%d).\n", ring->idx, r);
amdgpu_wb_free(adev, index);
return r;
}
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0));
amdgpu_ring_write(ring, lower_32_bits(gpu_addr));
amdgpu_ring_write(ring, upper_32_bits(gpu_addr));
amdgpu_ring_write(ring, 1); /* number of DWs to follow */
amdgpu_ring_write(ring, 0xDEADBEEF);
amdgpu_ring_unlock_commit(ring);
for (i = 0; i < adev->usec_timeout; i++) {
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i < adev->usec_timeout) {
DRM_INFO("ring test on %d succeeded in %d usecs\n", ring->idx, i);
} else {
DRM_ERROR("amdgpu: ring %d test failed (0x%08X)\n",
ring->idx, tmp);
r = -EINVAL;
}
amdgpu_wb_free(adev, index);
return r;
}
/**
* cik_sdma_ring_test_ib - test an IB on the DMA engine
*
* @ring: amdgpu_ring structure holding ring information
*
* Test a simple IB in the DMA ring (CIK).
* Returns 0 on success, error on failure.
*/
static int cik_sdma_ring_test_ib(struct amdgpu_ring *ring)
{
struct amdgpu_device *adev = ring->adev;
struct amdgpu_ib ib;
struct fence *f = NULL;
unsigned i;
unsigned index;
int r;
u32 tmp = 0;
u64 gpu_addr;
r = amdgpu_wb_get(adev, &index);
if (r) {
dev_err(adev->dev, "(%d) failed to allocate wb slot\n", r);
return r;
}
gpu_addr = adev->wb.gpu_addr + (index * 4);
tmp = 0xCAFEDEAD;
adev->wb.wb[index] = cpu_to_le32(tmp);
memset(&ib, 0, sizeof(ib));
r = amdgpu_ib_get(ring, NULL, 256, &ib);
if (r) {
DRM_ERROR("amdgpu: failed to get ib (%d).\n", r);
goto err0;
}
ib.ptr[0] = SDMA_PACKET(SDMA_OPCODE_WRITE, SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
ib.ptr[1] = lower_32_bits(gpu_addr);
ib.ptr[2] = upper_32_bits(gpu_addr);
ib.ptr[3] = 1;
ib.ptr[4] = 0xDEADBEEF;
ib.length_dw = 5;
r = amdgpu_sched_ib_submit_kernel_helper(adev, ring, &ib, 1, NULL,
AMDGPU_FENCE_OWNER_UNDEFINED,
&f);
if (r)
goto err1;
r = fence_wait(f, false);
if (r) {
DRM_ERROR("amdgpu: fence wait failed (%d).\n", r);
goto err1;
}
for (i = 0; i < adev->usec_timeout; i++) {
tmp = le32_to_cpu(adev->wb.wb[index]);
if (tmp == 0xDEADBEEF)
break;
DRM_UDELAY(1);
}
if (i < adev->usec_timeout) {
DRM_INFO("ib test on ring %d succeeded in %u usecs\n",
ring->idx, i);
goto err1;
} else {
DRM_ERROR("amdgpu: ib test failed (0x%08X)\n", tmp);
r = -EINVAL;
}
err1:
fence_put(f);
amdgpu_ib_free(adev, &ib);
err0:
amdgpu_wb_free(adev, index);
return r;
}
/**
* cik_sdma_vm_copy_pages - update PTEs by copying them from the GART
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @src: src addr to copy from
* @count: number of page entries to update
*
* Update PTEs by copying them from the GART using sDMA (CIK).
*/
static void cik_sdma_vm_copy_pte(struct amdgpu_ib *ib,
uint64_t pe, uint64_t src,
unsigned count)
{
while (count) {
unsigned bytes = count * 8;
if (bytes > 0x1FFFF8)
bytes = 0x1FFFF8;
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY,
SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
ib->ptr[ib->length_dw++] = bytes;
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
ib->ptr[ib->length_dw++] = lower_32_bits(src);
ib->ptr[ib->length_dw++] = upper_32_bits(src);
ib->ptr[ib->length_dw++] = lower_32_bits(pe);
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
pe += bytes;
src += bytes;
count -= bytes / 8;
}
}
/**
* cik_sdma_vm_write_pages - update PTEs by writing them manually
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: access flags
*
* Update PTEs by writing them manually using sDMA (CIK).
*/
static void cik_sdma_vm_write_pte(struct amdgpu_ib *ib,
uint64_t pe,
uint64_t addr, unsigned count,
uint32_t incr, uint32_t flags)
{
uint64_t value;
unsigned ndw;
while (count) {
ndw = count * 2;
if (ndw > 0xFFFFE)
ndw = 0xFFFFE;
/* for non-physically contiguous pages (system) */
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_WRITE,
SDMA_WRITE_SUB_OPCODE_LINEAR, 0);
ib->ptr[ib->length_dw++] = pe;
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
ib->ptr[ib->length_dw++] = ndw;
for (; ndw > 0; ndw -= 2, --count, pe += 8) {
if (flags & AMDGPU_PTE_SYSTEM) {
value = amdgpu_vm_map_gart(ib->ring->adev, addr);
value &= 0xFFFFFFFFFFFFF000ULL;
} else if (flags & AMDGPU_PTE_VALID) {
value = addr;
} else {
value = 0;
}
addr += incr;
value |= flags;
ib->ptr[ib->length_dw++] = value;
ib->ptr[ib->length_dw++] = upper_32_bits(value);
}
}
}
/**
* cik_sdma_vm_set_pages - update the page tables using sDMA
*
* @ib: indirect buffer to fill with commands
* @pe: addr of the page entry
* @addr: dst addr to write into pe
* @count: number of page entries to update
* @incr: increase next addr by incr bytes
* @flags: access flags
*
* Update the page tables using sDMA (CIK).
*/
static void cik_sdma_vm_set_pte_pde(struct amdgpu_ib *ib,
uint64_t pe,
uint64_t addr, unsigned count,
uint32_t incr, uint32_t flags)
{
uint64_t value;
unsigned ndw;
while (count) {
ndw = count;
if (ndw > 0x7FFFF)
ndw = 0x7FFFF;
if (flags & AMDGPU_PTE_VALID)
value = addr;
else
value = 0;
/* for physically contiguous pages (vram) */
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_GENERATE_PTE_PDE, 0, 0);
ib->ptr[ib->length_dw++] = pe; /* dst addr */
ib->ptr[ib->length_dw++] = upper_32_bits(pe);
ib->ptr[ib->length_dw++] = flags; /* mask */
ib->ptr[ib->length_dw++] = 0;
ib->ptr[ib->length_dw++] = value; /* value */
ib->ptr[ib->length_dw++] = upper_32_bits(value);
ib->ptr[ib->length_dw++] = incr; /* increment size */
ib->ptr[ib->length_dw++] = 0;
ib->ptr[ib->length_dw++] = ndw; /* number of entries */
pe += ndw * 8;
addr += ndw * incr;
count -= ndw;
}
}
/**
* cik_sdma_vm_pad_ib - pad the IB to the required number of dw
*
* @ib: indirect buffer to fill with padding
*
*/
static void cik_sdma_vm_pad_ib(struct amdgpu_ib *ib)
{
struct amdgpu_sdma_instance *sdma = amdgpu_get_sdma_instance(ib->ring);
u32 pad_count;
int i;
pad_count = (8 - (ib->length_dw & 0x7)) % 8;
for (i = 0; i < pad_count; i++)
if (sdma && sdma->burst_nop && (i == 0))
ib->ptr[ib->length_dw++] =
SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0) |
SDMA_NOP_COUNT(pad_count - 1);
else
ib->ptr[ib->length_dw++] =
SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0);
}
/**
* cik_sdma_ring_emit_vm_flush - cik vm flush using sDMA
*
* @ring: amdgpu_ring pointer
* @vm: amdgpu_vm pointer
*
* Update the page table base and flush the VM TLB
* using sDMA (CIK).
*/
static void cik_sdma_ring_emit_vm_flush(struct amdgpu_ring *ring,
unsigned vm_id, uint64_t pd_addr)
{
u32 extra_bits = (SDMA_POLL_REG_MEM_EXTRA_OP(0) |
SDMA_POLL_REG_MEM_EXTRA_FUNC(0)); /* always */
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
if (vm_id < 8) {
amdgpu_ring_write(ring, (mmVM_CONTEXT0_PAGE_TABLE_BASE_ADDR + vm_id));
} else {
amdgpu_ring_write(ring, (mmVM_CONTEXT8_PAGE_TABLE_BASE_ADDR + vm_id - 8));
}
amdgpu_ring_write(ring, pd_addr >> 12);
/* flush TLB */
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_SRBM_WRITE, 0, 0xf000));
amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST);
amdgpu_ring_write(ring, 1 << vm_id);
amdgpu_ring_write(ring, SDMA_PACKET(SDMA_OPCODE_POLL_REG_MEM, 0, extra_bits));
amdgpu_ring_write(ring, mmVM_INVALIDATE_REQUEST << 2);
amdgpu_ring_write(ring, 0);
amdgpu_ring_write(ring, 0); /* reference */
amdgpu_ring_write(ring, 0); /* mask */
amdgpu_ring_write(ring, (0xfff << 16) | 10); /* retry count, poll interval */
}
static void cik_enable_sdma_mgcg(struct amdgpu_device *adev,
bool enable)
{
u32 orig, data;
if (enable && (adev->cg_flags & AMDGPU_CG_SUPPORT_SDMA_MGCG)) {
WREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, 0x00000100);
WREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, 0x00000100);
} else {
orig = data = RREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET);
data |= 0xff000000;
if (data != orig)
WREG32(mmSDMA0_CLK_CTRL + SDMA0_REGISTER_OFFSET, data);
orig = data = RREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET);
data |= 0xff000000;
if (data != orig)
WREG32(mmSDMA0_CLK_CTRL + SDMA1_REGISTER_OFFSET, data);
}
}
static void cik_enable_sdma_mgls(struct amdgpu_device *adev,
bool enable)
{
u32 orig, data;
if (enable && (adev->cg_flags & AMDGPU_CG_SUPPORT_SDMA_LS)) {
orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET);
data |= 0x100;
if (orig != data)
WREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data);
orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET);
data |= 0x100;
if (orig != data)
WREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data);
} else {
orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET);
data &= ~0x100;
if (orig != data)
WREG32(mmSDMA0_POWER_CNTL + SDMA0_REGISTER_OFFSET, data);
orig = data = RREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET);
data &= ~0x100;
if (orig != data)
WREG32(mmSDMA0_POWER_CNTL + SDMA1_REGISTER_OFFSET, data);
}
}
static int cik_sdma_early_init(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
adev->sdma.num_instances = SDMA_MAX_INSTANCE;
cik_sdma_set_ring_funcs(adev);
cik_sdma_set_irq_funcs(adev);
cik_sdma_set_buffer_funcs(adev);
cik_sdma_set_vm_pte_funcs(adev);
return 0;
}
static int cik_sdma_sw_init(void *handle)
{
struct amdgpu_ring *ring;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int r, i;
r = cik_sdma_init_microcode(adev);
if (r) {
DRM_ERROR("Failed to load sdma firmware!\n");
return r;
}
/* SDMA trap event */
r = amdgpu_irq_add_id(adev, 224, &adev->sdma.trap_irq);
if (r)
return r;
/* SDMA Privileged inst */
r = amdgpu_irq_add_id(adev, 241, &adev->sdma.illegal_inst_irq);
if (r)
return r;
/* SDMA Privileged inst */
r = amdgpu_irq_add_id(adev, 247, &adev->sdma.illegal_inst_irq);
if (r)
return r;
for (i = 0; i < adev->sdma.num_instances; i++) {
ring = &adev->sdma.instance[i].ring;
ring->ring_obj = NULL;
sprintf(ring->name, "sdma%d", i);
r = amdgpu_ring_init(adev, ring, 256 * 1024,
SDMA_PACKET(SDMA_OPCODE_NOP, 0, 0), 0xf,
&adev->sdma.trap_irq,
(i == 0) ?
AMDGPU_SDMA_IRQ_TRAP0 : AMDGPU_SDMA_IRQ_TRAP1,
AMDGPU_RING_TYPE_SDMA);
if (r)
return r;
}
return r;
}
static int cik_sdma_sw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
int i;
for (i = 0; i < adev->sdma.num_instances; i++)
amdgpu_ring_fini(&adev->sdma.instance[i].ring);
return 0;
}
static int cik_sdma_hw_init(void *handle)
{
int r;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
r = cik_sdma_start(adev);
if (r)
return r;
return r;
}
static int cik_sdma_hw_fini(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
cik_sdma_enable(adev, false);
return 0;
}
static int cik_sdma_suspend(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cik_sdma_hw_fini(adev);
}
static int cik_sdma_resume(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
return cik_sdma_hw_init(adev);
}
static bool cik_sdma_is_idle(void *handle)
{
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS2);
if (tmp & (SRBM_STATUS2__SDMA_BUSY_MASK |
SRBM_STATUS2__SDMA1_BUSY_MASK))
return false;
return true;
}
static int cik_sdma_wait_for_idle(void *handle)
{
unsigned i;
u32 tmp;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
for (i = 0; i < adev->usec_timeout; i++) {
tmp = RREG32(mmSRBM_STATUS2) & (SRBM_STATUS2__SDMA_BUSY_MASK |
SRBM_STATUS2__SDMA1_BUSY_MASK);
if (!tmp)
return 0;
udelay(1);
}
return -ETIMEDOUT;
}
static void cik_sdma_print_status(void *handle)
{
int i, j;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
dev_info(adev->dev, "CIK SDMA registers\n");
dev_info(adev->dev, " SRBM_STATUS2=0x%08X\n",
RREG32(mmSRBM_STATUS2));
for (i = 0; i < adev->sdma.num_instances; i++) {
dev_info(adev->dev, " SDMA%d_STATUS_REG=0x%08X\n",
i, RREG32(mmSDMA0_STATUS_REG + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_ME_CNTL=0x%08X\n",
i, RREG32(mmSDMA0_F32_CNTL + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_CNTL=0x%08X\n",
i, RREG32(mmSDMA0_CNTL + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_SEM_INCOMPLETE_TIMER_CNTL=0x%08X\n",
i, RREG32(mmSDMA0_SEM_INCOMPLETE_TIMER_CNTL + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_SEM_WAIT_FAIL_TIMER_CNTL=0x%08X\n",
i, RREG32(mmSDMA0_SEM_WAIT_FAIL_TIMER_CNTL + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_IB_CNTL=0x%08X\n",
i, RREG32(mmSDMA0_GFX_IB_CNTL + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_RB_CNTL=0x%08X\n",
i, RREG32(mmSDMA0_GFX_RB_CNTL + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR=0x%08X\n",
i, RREG32(mmSDMA0_GFX_RB_RPTR + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_RB_WPTR=0x%08X\n",
i, RREG32(mmSDMA0_GFX_RB_WPTR + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_HI=0x%08X\n",
i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_HI + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_RB_RPTR_ADDR_LO=0x%08X\n",
i, RREG32(mmSDMA0_GFX_RB_RPTR_ADDR_LO + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_RB_BASE=0x%08X\n",
i, RREG32(mmSDMA0_GFX_RB_BASE + sdma_offsets[i]));
dev_info(adev->dev, " SDMA%d_GFX_RB_BASE_HI=0x%08X\n",
i, RREG32(mmSDMA0_GFX_RB_BASE_HI + sdma_offsets[i]));
mutex_lock(&adev->srbm_mutex);
for (j = 0; j < 16; j++) {
cik_srbm_select(adev, 0, 0, 0, j);
dev_info(adev->dev, " VM %d:\n", j);
dev_info(adev->dev, " SDMA0_GFX_VIRTUAL_ADDR=0x%08X\n",
RREG32(mmSDMA0_GFX_VIRTUAL_ADDR + sdma_offsets[i]));
dev_info(adev->dev, " SDMA0_GFX_APE1_CNTL=0x%08X\n",
RREG32(mmSDMA0_GFX_APE1_CNTL + sdma_offsets[i]));
}
cik_srbm_select(adev, 0, 0, 0, 0);
mutex_unlock(&adev->srbm_mutex);
}
}
static int cik_sdma_soft_reset(void *handle)
{
u32 srbm_soft_reset = 0;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
u32 tmp = RREG32(mmSRBM_STATUS2);
if (tmp & SRBM_STATUS2__SDMA_BUSY_MASK) {
/* sdma0 */
tmp = RREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET);
tmp |= SDMA0_F32_CNTL__HALT_MASK;
WREG32(mmSDMA0_F32_CNTL + SDMA0_REGISTER_OFFSET, tmp);
srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA_MASK;
}
if (tmp & SRBM_STATUS2__SDMA1_BUSY_MASK) {
/* sdma1 */
tmp = RREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET);
tmp |= SDMA0_F32_CNTL__HALT_MASK;
WREG32(mmSDMA0_F32_CNTL + SDMA1_REGISTER_OFFSET, tmp);
srbm_soft_reset |= SRBM_SOFT_RESET__SOFT_RESET_SDMA1_MASK;
}
if (srbm_soft_reset) {
cik_sdma_print_status((void *)adev);
tmp = RREG32(mmSRBM_SOFT_RESET);
tmp |= srbm_soft_reset;
dev_info(adev->dev, "SRBM_SOFT_RESET=0x%08X\n", tmp);
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
udelay(50);
tmp &= ~srbm_soft_reset;
WREG32(mmSRBM_SOFT_RESET, tmp);
tmp = RREG32(mmSRBM_SOFT_RESET);
/* Wait a little for things to settle down */
udelay(50);
cik_sdma_print_status((void *)adev);
}
return 0;
}
static int cik_sdma_set_trap_irq_state(struct amdgpu_device *adev,
struct amdgpu_irq_src *src,
unsigned type,
enum amdgpu_interrupt_state state)
{
u32 sdma_cntl;
switch (type) {
case AMDGPU_SDMA_IRQ_TRAP0:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
sdma_cntl &= ~SDMA0_CNTL__TRAP_ENABLE_MASK;
WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET);
sdma_cntl |= SDMA0_CNTL__TRAP_ENABLE_MASK;
WREG32(mmSDMA0_CNTL + SDMA0_REGISTER_OFFSET, sdma_cntl);
break;
default:
break;
}
break;
case AMDGPU_SDMA_IRQ_TRAP1:
switch (state) {
case AMDGPU_IRQ_STATE_DISABLE:
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
sdma_cntl &= ~SDMA0_CNTL__TRAP_ENABLE_MASK;
WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
break;
case AMDGPU_IRQ_STATE_ENABLE:
sdma_cntl = RREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET);
sdma_cntl |= SDMA0_CNTL__TRAP_ENABLE_MASK;
WREG32(mmSDMA0_CNTL + SDMA1_REGISTER_OFFSET, sdma_cntl);
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
static int cik_sdma_process_trap_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
u8 instance_id, queue_id;
instance_id = (entry->ring_id & 0x3) >> 0;
queue_id = (entry->ring_id & 0xc) >> 2;
DRM_DEBUG("IH: SDMA trap\n");
switch (instance_id) {
case 0:
switch (queue_id) {
case 0:
amdgpu_fence_process(&adev->sdma.instance[0].ring);
break;
case 1:
/* XXX compute */
break;
case 2:
/* XXX compute */
break;
}
break;
case 1:
switch (queue_id) {
case 0:
amdgpu_fence_process(&adev->sdma.instance[1].ring);
break;
case 1:
/* XXX compute */
break;
case 2:
/* XXX compute */
break;
}
break;
}
return 0;
}
static int cik_sdma_process_illegal_inst_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
DRM_ERROR("Illegal instruction in SDMA command stream\n");
schedule_work(&adev->reset_work);
return 0;
}
static int cik_sdma_set_clockgating_state(void *handle,
enum amd_clockgating_state state)
{
bool gate = false;
struct amdgpu_device *adev = (struct amdgpu_device *)handle;
if (state == AMD_CG_STATE_GATE)
gate = true;
cik_enable_sdma_mgcg(adev, gate);
cik_enable_sdma_mgls(adev, gate);
return 0;
}
static int cik_sdma_set_powergating_state(void *handle,
enum amd_powergating_state state)
{
return 0;
}
const struct amd_ip_funcs cik_sdma_ip_funcs = {
.early_init = cik_sdma_early_init,
.late_init = NULL,
.sw_init = cik_sdma_sw_init,
.sw_fini = cik_sdma_sw_fini,
.hw_init = cik_sdma_hw_init,
.hw_fini = cik_sdma_hw_fini,
.suspend = cik_sdma_suspend,
.resume = cik_sdma_resume,
.is_idle = cik_sdma_is_idle,
.wait_for_idle = cik_sdma_wait_for_idle,
.soft_reset = cik_sdma_soft_reset,
.print_status = cik_sdma_print_status,
.set_clockgating_state = cik_sdma_set_clockgating_state,
.set_powergating_state = cik_sdma_set_powergating_state,
};
static const struct amdgpu_ring_funcs cik_sdma_ring_funcs = {
.get_rptr = cik_sdma_ring_get_rptr,
.get_wptr = cik_sdma_ring_get_wptr,
.set_wptr = cik_sdma_ring_set_wptr,
.parse_cs = NULL,
.emit_ib = cik_sdma_ring_emit_ib,
.emit_fence = cik_sdma_ring_emit_fence,
.emit_semaphore = cik_sdma_ring_emit_semaphore,
.emit_vm_flush = cik_sdma_ring_emit_vm_flush,
.emit_hdp_flush = cik_sdma_ring_emit_hdp_flush,
.test_ring = cik_sdma_ring_test_ring,
.test_ib = cik_sdma_ring_test_ib,
.insert_nop = cik_sdma_ring_insert_nop,
};
static void cik_sdma_set_ring_funcs(struct amdgpu_device *adev)
{
int i;
for (i = 0; i < adev->sdma.num_instances; i++)
adev->sdma.instance[i].ring.funcs = &cik_sdma_ring_funcs;
}
static const struct amdgpu_irq_src_funcs cik_sdma_trap_irq_funcs = {
.set = cik_sdma_set_trap_irq_state,
.process = cik_sdma_process_trap_irq,
};
static const struct amdgpu_irq_src_funcs cik_sdma_illegal_inst_irq_funcs = {
.process = cik_sdma_process_illegal_inst_irq,
};
static void cik_sdma_set_irq_funcs(struct amdgpu_device *adev)
{
adev->sdma.trap_irq.num_types = AMDGPU_SDMA_IRQ_LAST;
adev->sdma.trap_irq.funcs = &cik_sdma_trap_irq_funcs;
adev->sdma.illegal_inst_irq.funcs = &cik_sdma_illegal_inst_irq_funcs;
}
/**
* cik_sdma_emit_copy_buffer - copy buffer using the sDMA engine
*
* @ring: amdgpu_ring structure holding ring information
* @src_offset: src GPU address
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
*
* Copy GPU buffers using the DMA engine (CIK).
* Used by the amdgpu ttm implementation to move pages if
* registered as the asic copy callback.
*/
static void cik_sdma_emit_copy_buffer(struct amdgpu_ib *ib,
uint64_t src_offset,
uint64_t dst_offset,
uint32_t byte_count)
{
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_COPY, SDMA_COPY_SUB_OPCODE_LINEAR, 0);
ib->ptr[ib->length_dw++] = byte_count;
ib->ptr[ib->length_dw++] = 0; /* src/dst endian swap */
ib->ptr[ib->length_dw++] = lower_32_bits(src_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(src_offset);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
}
/**
* cik_sdma_emit_fill_buffer - fill buffer using the sDMA engine
*
* @ring: amdgpu_ring structure holding ring information
* @src_data: value to write to buffer
* @dst_offset: dst GPU address
* @byte_count: number of bytes to xfer
*
* Fill GPU buffers using the DMA engine (CIK).
*/
static void cik_sdma_emit_fill_buffer(struct amdgpu_ib *ib,
uint32_t src_data,
uint64_t dst_offset,
uint32_t byte_count)
{
ib->ptr[ib->length_dw++] = SDMA_PACKET(SDMA_OPCODE_CONSTANT_FILL, 0, 0);
ib->ptr[ib->length_dw++] = lower_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = upper_32_bits(dst_offset);
ib->ptr[ib->length_dw++] = src_data;
ib->ptr[ib->length_dw++] = byte_count;
}
static const struct amdgpu_buffer_funcs cik_sdma_buffer_funcs = {
.copy_max_bytes = 0x1fffff,
.copy_num_dw = 7,
.emit_copy_buffer = cik_sdma_emit_copy_buffer,
.fill_max_bytes = 0x1fffff,
.fill_num_dw = 5,
.emit_fill_buffer = cik_sdma_emit_fill_buffer,
};
static void cik_sdma_set_buffer_funcs(struct amdgpu_device *adev)
{
if (adev->mman.buffer_funcs == NULL) {
adev->mman.buffer_funcs = &cik_sdma_buffer_funcs;
adev->mman.buffer_funcs_ring = &adev->sdma.instance[0].ring;
}
}
static const struct amdgpu_vm_pte_funcs cik_sdma_vm_pte_funcs = {
.copy_pte = cik_sdma_vm_copy_pte,
.write_pte = cik_sdma_vm_write_pte,
.set_pte_pde = cik_sdma_vm_set_pte_pde,
.pad_ib = cik_sdma_vm_pad_ib,
};
static void cik_sdma_set_vm_pte_funcs(struct amdgpu_device *adev)
{
if (adev->vm_manager.vm_pte_funcs == NULL) {
adev->vm_manager.vm_pte_funcs = &cik_sdma_vm_pte_funcs;
adev->vm_manager.vm_pte_funcs_ring = &adev->sdma.instance[0].ring;
adev->vm_manager.vm_pte_funcs_ring->is_pte_ring = true;
}
}