2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 05:04:04 +08:00
linux-next/include/linux/perf_event.h
Jiri Olsa b01c3a0010 perf: Move mmap page data_head offset assertion out of header
Having the build time assertion in header is making the perf
build fail on x86 with:

  ../../include/linux/perf_event.h:411:32: error: variably modified \
		‘__assert_mmap_data_head_offset’ at file scope [-Werror]

I'm moving the build time validation out of the header, because
I think it's better than to lessen the perf build warn/error
check.

Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Cc: acme@redhat.com
Cc: a.p.zijlstra@chello.nl
Cc: paulus@samba.org
Cc: cjashfor@linux.vnet.ibm.com
Cc: fweisbec@gmail.com
Link: http://lkml.kernel.org/r/1332513680-7870-1-git-send-email-jolsa@redhat.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2012-03-24 08:46:59 +01:00

1366 lines
36 KiB
C

/*
* Performance events:
*
* Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
* Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
* Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
*
* Data type definitions, declarations, prototypes.
*
* Started by: Thomas Gleixner and Ingo Molnar
*
* For licencing details see kernel-base/COPYING
*/
#ifndef _LINUX_PERF_EVENT_H
#define _LINUX_PERF_EVENT_H
#include <linux/types.h>
#include <linux/ioctl.h>
#include <asm/byteorder.h>
/*
* User-space ABI bits:
*/
/*
* attr.type
*/
enum perf_type_id {
PERF_TYPE_HARDWARE = 0,
PERF_TYPE_SOFTWARE = 1,
PERF_TYPE_TRACEPOINT = 2,
PERF_TYPE_HW_CACHE = 3,
PERF_TYPE_RAW = 4,
PERF_TYPE_BREAKPOINT = 5,
PERF_TYPE_MAX, /* non-ABI */
};
/*
* Generalized performance event event_id types, used by the
* attr.event_id parameter of the sys_perf_event_open()
* syscall:
*/
enum perf_hw_id {
/*
* Common hardware events, generalized by the kernel:
*/
PERF_COUNT_HW_CPU_CYCLES = 0,
PERF_COUNT_HW_INSTRUCTIONS = 1,
PERF_COUNT_HW_CACHE_REFERENCES = 2,
PERF_COUNT_HW_CACHE_MISSES = 3,
PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
PERF_COUNT_HW_BRANCH_MISSES = 5,
PERF_COUNT_HW_BUS_CYCLES = 6,
PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
PERF_COUNT_HW_REF_CPU_CYCLES = 9,
PERF_COUNT_HW_MAX, /* non-ABI */
};
/*
* Generalized hardware cache events:
*
* { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
* { read, write, prefetch } x
* { accesses, misses }
*/
enum perf_hw_cache_id {
PERF_COUNT_HW_CACHE_L1D = 0,
PERF_COUNT_HW_CACHE_L1I = 1,
PERF_COUNT_HW_CACHE_LL = 2,
PERF_COUNT_HW_CACHE_DTLB = 3,
PERF_COUNT_HW_CACHE_ITLB = 4,
PERF_COUNT_HW_CACHE_BPU = 5,
PERF_COUNT_HW_CACHE_NODE = 6,
PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
};
enum perf_hw_cache_op_id {
PERF_COUNT_HW_CACHE_OP_READ = 0,
PERF_COUNT_HW_CACHE_OP_WRITE = 1,
PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
};
enum perf_hw_cache_op_result_id {
PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
};
/*
* Special "software" events provided by the kernel, even if the hardware
* does not support performance events. These events measure various
* physical and sw events of the kernel (and allow the profiling of them as
* well):
*/
enum perf_sw_ids {
PERF_COUNT_SW_CPU_CLOCK = 0,
PERF_COUNT_SW_TASK_CLOCK = 1,
PERF_COUNT_SW_PAGE_FAULTS = 2,
PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
PERF_COUNT_SW_CPU_MIGRATIONS = 4,
PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
PERF_COUNT_SW_EMULATION_FAULTS = 8,
PERF_COUNT_SW_MAX, /* non-ABI */
};
/*
* Bits that can be set in attr.sample_type to request information
* in the overflow packets.
*/
enum perf_event_sample_format {
PERF_SAMPLE_IP = 1U << 0,
PERF_SAMPLE_TID = 1U << 1,
PERF_SAMPLE_TIME = 1U << 2,
PERF_SAMPLE_ADDR = 1U << 3,
PERF_SAMPLE_READ = 1U << 4,
PERF_SAMPLE_CALLCHAIN = 1U << 5,
PERF_SAMPLE_ID = 1U << 6,
PERF_SAMPLE_CPU = 1U << 7,
PERF_SAMPLE_PERIOD = 1U << 8,
PERF_SAMPLE_STREAM_ID = 1U << 9,
PERF_SAMPLE_RAW = 1U << 10,
PERF_SAMPLE_BRANCH_STACK = 1U << 11,
PERF_SAMPLE_MAX = 1U << 12, /* non-ABI */
};
/*
* values to program into branch_sample_type when PERF_SAMPLE_BRANCH is set
*
* If the user does not pass priv level information via branch_sample_type,
* the kernel uses the event's priv level. Branch and event priv levels do
* not have to match. Branch priv level is checked for permissions.
*
* The branch types can be combined, however BRANCH_ANY covers all types
* of branches and therefore it supersedes all the other types.
*/
enum perf_branch_sample_type {
PERF_SAMPLE_BRANCH_USER = 1U << 0, /* user branches */
PERF_SAMPLE_BRANCH_KERNEL = 1U << 1, /* kernel branches */
PERF_SAMPLE_BRANCH_HV = 1U << 2, /* hypervisor branches */
PERF_SAMPLE_BRANCH_ANY = 1U << 3, /* any branch types */
PERF_SAMPLE_BRANCH_ANY_CALL = 1U << 4, /* any call branch */
PERF_SAMPLE_BRANCH_ANY_RETURN = 1U << 5, /* any return branch */
PERF_SAMPLE_BRANCH_IND_CALL = 1U << 6, /* indirect calls */
PERF_SAMPLE_BRANCH_MAX = 1U << 7, /* non-ABI */
};
#define PERF_SAMPLE_BRANCH_PLM_ALL \
(PERF_SAMPLE_BRANCH_USER|\
PERF_SAMPLE_BRANCH_KERNEL|\
PERF_SAMPLE_BRANCH_HV)
/*
* The format of the data returned by read() on a perf event fd,
* as specified by attr.read_format:
*
* struct read_format {
* { u64 value;
* { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
* { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
* { u64 id; } && PERF_FORMAT_ID
* } && !PERF_FORMAT_GROUP
*
* { u64 nr;
* { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
* { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
* { u64 value;
* { u64 id; } && PERF_FORMAT_ID
* } cntr[nr];
* } && PERF_FORMAT_GROUP
* };
*/
enum perf_event_read_format {
PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
PERF_FORMAT_ID = 1U << 2,
PERF_FORMAT_GROUP = 1U << 3,
PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
};
#define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
#define PERF_ATTR_SIZE_VER1 72 /* add: config2 */
#define PERF_ATTR_SIZE_VER2 80 /* add: branch_sample_type */
/*
* Hardware event_id to monitor via a performance monitoring event:
*/
struct perf_event_attr {
/*
* Major type: hardware/software/tracepoint/etc.
*/
__u32 type;
/*
* Size of the attr structure, for fwd/bwd compat.
*/
__u32 size;
/*
* Type specific configuration information.
*/
__u64 config;
union {
__u64 sample_period;
__u64 sample_freq;
};
__u64 sample_type;
__u64 read_format;
__u64 disabled : 1, /* off by default */
inherit : 1, /* children inherit it */
pinned : 1, /* must always be on PMU */
exclusive : 1, /* only group on PMU */
exclude_user : 1, /* don't count user */
exclude_kernel : 1, /* ditto kernel */
exclude_hv : 1, /* ditto hypervisor */
exclude_idle : 1, /* don't count when idle */
mmap : 1, /* include mmap data */
comm : 1, /* include comm data */
freq : 1, /* use freq, not period */
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
task : 1, /* trace fork/exit */
watermark : 1, /* wakeup_watermark */
/*
* precise_ip:
*
* 0 - SAMPLE_IP can have arbitrary skid
* 1 - SAMPLE_IP must have constant skid
* 2 - SAMPLE_IP requested to have 0 skid
* 3 - SAMPLE_IP must have 0 skid
*
* See also PERF_RECORD_MISC_EXACT_IP
*/
precise_ip : 2, /* skid constraint */
mmap_data : 1, /* non-exec mmap data */
sample_id_all : 1, /* sample_type all events */
exclude_host : 1, /* don't count in host */
exclude_guest : 1, /* don't count in guest */
__reserved_1 : 43;
union {
__u32 wakeup_events; /* wakeup every n events */
__u32 wakeup_watermark; /* bytes before wakeup */
};
__u32 bp_type;
union {
__u64 bp_addr;
__u64 config1; /* extension of config */
};
union {
__u64 bp_len;
__u64 config2; /* extension of config1 */
};
__u64 branch_sample_type; /* enum branch_sample_type */
};
/*
* Ioctls that can be done on a perf event fd:
*/
#define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
#define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
#define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
#define PERF_EVENT_IOC_RESET _IO ('$', 3)
#define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
#define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
#define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
enum perf_event_ioc_flags {
PERF_IOC_FLAG_GROUP = 1U << 0,
};
/*
* Structure of the page that can be mapped via mmap
*/
struct perf_event_mmap_page {
__u32 version; /* version number of this structure */
__u32 compat_version; /* lowest version this is compat with */
/*
* Bits needed to read the hw events in user-space.
*
* u32 seq, time_mult, time_shift, idx, width;
* u64 count, enabled, running;
* u64 cyc, time_offset;
* s64 pmc = 0;
*
* do {
* seq = pc->lock;
* barrier()
*
* enabled = pc->time_enabled;
* running = pc->time_running;
*
* if (pc->cap_usr_time && enabled != running) {
* cyc = rdtsc();
* time_offset = pc->time_offset;
* time_mult = pc->time_mult;
* time_shift = pc->time_shift;
* }
*
* idx = pc->index;
* count = pc->offset;
* if (pc->cap_usr_rdpmc && idx) {
* width = pc->pmc_width;
* pmc = rdpmc(idx - 1);
* }
*
* barrier();
* } while (pc->lock != seq);
*
* NOTE: for obvious reason this only works on self-monitoring
* processes.
*/
__u32 lock; /* seqlock for synchronization */
__u32 index; /* hardware event identifier */
__s64 offset; /* add to hardware event value */
__u64 time_enabled; /* time event active */
__u64 time_running; /* time event on cpu */
union {
__u64 capabilities;
__u64 cap_usr_time : 1,
cap_usr_rdpmc : 1,
cap_____res : 62;
};
/*
* If cap_usr_rdpmc this field provides the bit-width of the value
* read using the rdpmc() or equivalent instruction. This can be used
* to sign extend the result like:
*
* pmc <<= 64 - width;
* pmc >>= 64 - width; // signed shift right
* count += pmc;
*/
__u16 pmc_width;
/*
* If cap_usr_time the below fields can be used to compute the time
* delta since time_enabled (in ns) using rdtsc or similar.
*
* u64 quot, rem;
* u64 delta;
*
* quot = (cyc >> time_shift);
* rem = cyc & ((1 << time_shift) - 1);
* delta = time_offset + quot * time_mult +
* ((rem * time_mult) >> time_shift);
*
* Where time_offset,time_mult,time_shift and cyc are read in the
* seqcount loop described above. This delta can then be added to
* enabled and possible running (if idx), improving the scaling:
*
* enabled += delta;
* if (idx)
* running += delta;
*
* quot = count / running;
* rem = count % running;
* count = quot * enabled + (rem * enabled) / running;
*/
__u16 time_shift;
__u32 time_mult;
__u64 time_offset;
/*
* Hole for extension of the self monitor capabilities
*/
__u64 __reserved[120]; /* align to 1k */
/*
* Control data for the mmap() data buffer.
*
* User-space reading the @data_head value should issue an rmb(), on
* SMP capable platforms, after reading this value -- see
* perf_event_wakeup().
*
* When the mapping is PROT_WRITE the @data_tail value should be
* written by userspace to reflect the last read data. In this case
* the kernel will not over-write unread data.
*/
__u64 data_head; /* head in the data section */
__u64 data_tail; /* user-space written tail */
};
#define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
#define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
#define PERF_RECORD_MISC_KERNEL (1 << 0)
#define PERF_RECORD_MISC_USER (2 << 0)
#define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
#define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
#define PERF_RECORD_MISC_GUEST_USER (5 << 0)
/*
* Indicates that the content of PERF_SAMPLE_IP points to
* the actual instruction that triggered the event. See also
* perf_event_attr::precise_ip.
*/
#define PERF_RECORD_MISC_EXACT_IP (1 << 14)
/*
* Reserve the last bit to indicate some extended misc field
*/
#define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
struct perf_event_header {
__u32 type;
__u16 misc;
__u16 size;
};
enum perf_event_type {
/*
* If perf_event_attr.sample_id_all is set then all event types will
* have the sample_type selected fields related to where/when
* (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
* described in PERF_RECORD_SAMPLE below, it will be stashed just after
* the perf_event_header and the fields already present for the existing
* fields, i.e. at the end of the payload. That way a newer perf.data
* file will be supported by older perf tools, with these new optional
* fields being ignored.
*
* The MMAP events record the PROT_EXEC mappings so that we can
* correlate userspace IPs to code. They have the following structure:
*
* struct {
* struct perf_event_header header;
*
* u32 pid, tid;
* u64 addr;
* u64 len;
* u64 pgoff;
* char filename[];
* };
*/
PERF_RECORD_MMAP = 1,
/*
* struct {
* struct perf_event_header header;
* u64 id;
* u64 lost;
* };
*/
PERF_RECORD_LOST = 2,
/*
* struct {
* struct perf_event_header header;
*
* u32 pid, tid;
* char comm[];
* };
*/
PERF_RECORD_COMM = 3,
/*
* struct {
* struct perf_event_header header;
* u32 pid, ppid;
* u32 tid, ptid;
* u64 time;
* };
*/
PERF_RECORD_EXIT = 4,
/*
* struct {
* struct perf_event_header header;
* u64 time;
* u64 id;
* u64 stream_id;
* };
*/
PERF_RECORD_THROTTLE = 5,
PERF_RECORD_UNTHROTTLE = 6,
/*
* struct {
* struct perf_event_header header;
* u32 pid, ppid;
* u32 tid, ptid;
* u64 time;
* };
*/
PERF_RECORD_FORK = 7,
/*
* struct {
* struct perf_event_header header;
* u32 pid, tid;
*
* struct read_format values;
* };
*/
PERF_RECORD_READ = 8,
/*
* struct {
* struct perf_event_header header;
*
* { u64 ip; } && PERF_SAMPLE_IP
* { u32 pid, tid; } && PERF_SAMPLE_TID
* { u64 time; } && PERF_SAMPLE_TIME
* { u64 addr; } && PERF_SAMPLE_ADDR
* { u64 id; } && PERF_SAMPLE_ID
* { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
* { u32 cpu, res; } && PERF_SAMPLE_CPU
* { u64 period; } && PERF_SAMPLE_PERIOD
*
* { struct read_format values; } && PERF_SAMPLE_READ
*
* { u64 nr,
* u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
*
* #
* # The RAW record below is opaque data wrt the ABI
* #
* # That is, the ABI doesn't make any promises wrt to
* # the stability of its content, it may vary depending
* # on event, hardware, kernel version and phase of
* # the moon.
* #
* # In other words, PERF_SAMPLE_RAW contents are not an ABI.
* #
*
* { u32 size;
* char data[size];}&& PERF_SAMPLE_RAW
*
* { u64 from, to, flags } lbr[nr];} && PERF_SAMPLE_BRANCH_STACK
* };
*/
PERF_RECORD_SAMPLE = 9,
PERF_RECORD_MAX, /* non-ABI */
};
enum perf_callchain_context {
PERF_CONTEXT_HV = (__u64)-32,
PERF_CONTEXT_KERNEL = (__u64)-128,
PERF_CONTEXT_USER = (__u64)-512,
PERF_CONTEXT_GUEST = (__u64)-2048,
PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
PERF_CONTEXT_GUEST_USER = (__u64)-2560,
PERF_CONTEXT_MAX = (__u64)-4095,
};
#define PERF_FLAG_FD_NO_GROUP (1U << 0)
#define PERF_FLAG_FD_OUTPUT (1U << 1)
#define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
#ifdef __KERNEL__
/*
* Kernel-internal data types and definitions:
*/
#ifdef CONFIG_PERF_EVENTS
# include <linux/cgroup.h>
# include <asm/perf_event.h>
# include <asm/local64.h>
#endif
struct perf_guest_info_callbacks {
int (*is_in_guest)(void);
int (*is_user_mode)(void);
unsigned long (*get_guest_ip)(void);
};
#ifdef CONFIG_HAVE_HW_BREAKPOINT
#include <asm/hw_breakpoint.h>
#endif
#include <linux/list.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <linux/rcupdate.h>
#include <linux/spinlock.h>
#include <linux/hrtimer.h>
#include <linux/fs.h>
#include <linux/pid_namespace.h>
#include <linux/workqueue.h>
#include <linux/ftrace.h>
#include <linux/cpu.h>
#include <linux/irq_work.h>
#include <linux/static_key.h>
#include <linux/atomic.h>
#include <linux/sysfs.h>
#include <asm/local.h>
#define PERF_MAX_STACK_DEPTH 255
struct perf_callchain_entry {
__u64 nr;
__u64 ip[PERF_MAX_STACK_DEPTH];
};
struct perf_raw_record {
u32 size;
void *data;
};
/*
* single taken branch record layout:
*
* from: source instruction (may not always be a branch insn)
* to: branch target
* mispred: branch target was mispredicted
* predicted: branch target was predicted
*
* support for mispred, predicted is optional. In case it
* is not supported mispred = predicted = 0.
*/
struct perf_branch_entry {
__u64 from;
__u64 to;
__u64 mispred:1, /* target mispredicted */
predicted:1,/* target predicted */
reserved:62;
};
/*
* branch stack layout:
* nr: number of taken branches stored in entries[]
*
* Note that nr can vary from sample to sample
* branches (to, from) are stored from most recent
* to least recent, i.e., entries[0] contains the most
* recent branch.
*/
struct perf_branch_stack {
__u64 nr;
struct perf_branch_entry entries[0];
};
struct task_struct;
/*
* extra PMU register associated with an event
*/
struct hw_perf_event_extra {
u64 config; /* register value */
unsigned int reg; /* register address or index */
int alloc; /* extra register already allocated */
int idx; /* index in shared_regs->regs[] */
};
/**
* struct hw_perf_event - performance event hardware details:
*/
struct hw_perf_event {
#ifdef CONFIG_PERF_EVENTS
union {
struct { /* hardware */
u64 config;
u64 last_tag;
unsigned long config_base;
unsigned long event_base;
int idx;
int last_cpu;
struct hw_perf_event_extra extra_reg;
struct hw_perf_event_extra branch_reg;
};
struct { /* software */
struct hrtimer hrtimer;
};
#ifdef CONFIG_HAVE_HW_BREAKPOINT
struct { /* breakpoint */
struct arch_hw_breakpoint info;
struct list_head bp_list;
/*
* Crufty hack to avoid the chicken and egg
* problem hw_breakpoint has with context
* creation and event initalization.
*/
struct task_struct *bp_target;
};
#endif
};
int state;
local64_t prev_count;
u64 sample_period;
u64 last_period;
local64_t period_left;
u64 interrupts_seq;
u64 interrupts;
u64 freq_time_stamp;
u64 freq_count_stamp;
#endif
};
/*
* hw_perf_event::state flags
*/
#define PERF_HES_STOPPED 0x01 /* the counter is stopped */
#define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
#define PERF_HES_ARCH 0x04
struct perf_event;
/*
* Common implementation detail of pmu::{start,commit,cancel}_txn
*/
#define PERF_EVENT_TXN 0x1
/**
* struct pmu - generic performance monitoring unit
*/
struct pmu {
struct list_head entry;
struct device *dev;
const struct attribute_group **attr_groups;
char *name;
int type;
int * __percpu pmu_disable_count;
struct perf_cpu_context * __percpu pmu_cpu_context;
int task_ctx_nr;
/*
* Fully disable/enable this PMU, can be used to protect from the PMI
* as well as for lazy/batch writing of the MSRs.
*/
void (*pmu_enable) (struct pmu *pmu); /* optional */
void (*pmu_disable) (struct pmu *pmu); /* optional */
/*
* Try and initialize the event for this PMU.
* Should return -ENOENT when the @event doesn't match this PMU.
*/
int (*event_init) (struct perf_event *event);
#define PERF_EF_START 0x01 /* start the counter when adding */
#define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
#define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
/*
* Adds/Removes a counter to/from the PMU, can be done inside
* a transaction, see the ->*_txn() methods.
*/
int (*add) (struct perf_event *event, int flags);
void (*del) (struct perf_event *event, int flags);
/*
* Starts/Stops a counter present on the PMU. The PMI handler
* should stop the counter when perf_event_overflow() returns
* !0. ->start() will be used to continue.
*/
void (*start) (struct perf_event *event, int flags);
void (*stop) (struct perf_event *event, int flags);
/*
* Updates the counter value of the event.
*/
void (*read) (struct perf_event *event);
/*
* Group events scheduling is treated as a transaction, add
* group events as a whole and perform one schedulability test.
* If the test fails, roll back the whole group
*
* Start the transaction, after this ->add() doesn't need to
* do schedulability tests.
*/
void (*start_txn) (struct pmu *pmu); /* optional */
/*
* If ->start_txn() disabled the ->add() schedulability test
* then ->commit_txn() is required to perform one. On success
* the transaction is closed. On error the transaction is kept
* open until ->cancel_txn() is called.
*/
int (*commit_txn) (struct pmu *pmu); /* optional */
/*
* Will cancel the transaction, assumes ->del() is called
* for each successful ->add() during the transaction.
*/
void (*cancel_txn) (struct pmu *pmu); /* optional */
/*
* Will return the value for perf_event_mmap_page::index for this event,
* if no implementation is provided it will default to: event->hw.idx + 1.
*/
int (*event_idx) (struct perf_event *event); /*optional */
/*
* flush branch stack on context-switches (needed in cpu-wide mode)
*/
void (*flush_branch_stack) (void);
};
/**
* enum perf_event_active_state - the states of a event
*/
enum perf_event_active_state {
PERF_EVENT_STATE_ERROR = -2,
PERF_EVENT_STATE_OFF = -1,
PERF_EVENT_STATE_INACTIVE = 0,
PERF_EVENT_STATE_ACTIVE = 1,
};
struct file;
struct perf_sample_data;
typedef void (*perf_overflow_handler_t)(struct perf_event *,
struct perf_sample_data *,
struct pt_regs *regs);
enum perf_group_flag {
PERF_GROUP_SOFTWARE = 0x1,
};
#define SWEVENT_HLIST_BITS 8
#define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
struct swevent_hlist {
struct hlist_head heads[SWEVENT_HLIST_SIZE];
struct rcu_head rcu_head;
};
#define PERF_ATTACH_CONTEXT 0x01
#define PERF_ATTACH_GROUP 0x02
#define PERF_ATTACH_TASK 0x04
#ifdef CONFIG_CGROUP_PERF
/*
* perf_cgroup_info keeps track of time_enabled for a cgroup.
* This is a per-cpu dynamically allocated data structure.
*/
struct perf_cgroup_info {
u64 time;
u64 timestamp;
};
struct perf_cgroup {
struct cgroup_subsys_state css;
struct perf_cgroup_info *info; /* timing info, one per cpu */
};
#endif
struct ring_buffer;
/**
* struct perf_event - performance event kernel representation:
*/
struct perf_event {
#ifdef CONFIG_PERF_EVENTS
struct list_head group_entry;
struct list_head event_entry;
struct list_head sibling_list;
struct hlist_node hlist_entry;
int nr_siblings;
int group_flags;
struct perf_event *group_leader;
struct pmu *pmu;
enum perf_event_active_state state;
unsigned int attach_state;
local64_t count;
atomic64_t child_count;
/*
* These are the total time in nanoseconds that the event
* has been enabled (i.e. eligible to run, and the task has
* been scheduled in, if this is a per-task event)
* and running (scheduled onto the CPU), respectively.
*
* They are computed from tstamp_enabled, tstamp_running and
* tstamp_stopped when the event is in INACTIVE or ACTIVE state.
*/
u64 total_time_enabled;
u64 total_time_running;
/*
* These are timestamps used for computing total_time_enabled
* and total_time_running when the event is in INACTIVE or
* ACTIVE state, measured in nanoseconds from an arbitrary point
* in time.
* tstamp_enabled: the notional time when the event was enabled
* tstamp_running: the notional time when the event was scheduled on
* tstamp_stopped: in INACTIVE state, the notional time when the
* event was scheduled off.
*/
u64 tstamp_enabled;
u64 tstamp_running;
u64 tstamp_stopped;
/*
* timestamp shadows the actual context timing but it can
* be safely used in NMI interrupt context. It reflects the
* context time as it was when the event was last scheduled in.
*
* ctx_time already accounts for ctx->timestamp. Therefore to
* compute ctx_time for a sample, simply add perf_clock().
*/
u64 shadow_ctx_time;
struct perf_event_attr attr;
u16 header_size;
u16 id_header_size;
u16 read_size;
struct hw_perf_event hw;
struct perf_event_context *ctx;
struct file *filp;
/*
* These accumulate total time (in nanoseconds) that children
* events have been enabled and running, respectively.
*/
atomic64_t child_total_time_enabled;
atomic64_t child_total_time_running;
/*
* Protect attach/detach and child_list:
*/
struct mutex child_mutex;
struct list_head child_list;
struct perf_event *parent;
int oncpu;
int cpu;
struct list_head owner_entry;
struct task_struct *owner;
/* mmap bits */
struct mutex mmap_mutex;
atomic_t mmap_count;
int mmap_locked;
struct user_struct *mmap_user;
struct ring_buffer *rb;
struct list_head rb_entry;
/* poll related */
wait_queue_head_t waitq;
struct fasync_struct *fasync;
/* delayed work for NMIs and such */
int pending_wakeup;
int pending_kill;
int pending_disable;
struct irq_work pending;
atomic_t event_limit;
void (*destroy)(struct perf_event *);
struct rcu_head rcu_head;
struct pid_namespace *ns;
u64 id;
perf_overflow_handler_t overflow_handler;
void *overflow_handler_context;
#ifdef CONFIG_EVENT_TRACING
struct ftrace_event_call *tp_event;
struct event_filter *filter;
#ifdef CONFIG_FUNCTION_TRACER
struct ftrace_ops ftrace_ops;
#endif
#endif
#ifdef CONFIG_CGROUP_PERF
struct perf_cgroup *cgrp; /* cgroup event is attach to */
int cgrp_defer_enabled;
#endif
#endif /* CONFIG_PERF_EVENTS */
};
enum perf_event_context_type {
task_context,
cpu_context,
};
/**
* struct perf_event_context - event context structure
*
* Used as a container for task events and CPU events as well:
*/
struct perf_event_context {
struct pmu *pmu;
enum perf_event_context_type type;
/*
* Protect the states of the events in the list,
* nr_active, and the list:
*/
raw_spinlock_t lock;
/*
* Protect the list of events. Locking either mutex or lock
* is sufficient to ensure the list doesn't change; to change
* the list you need to lock both the mutex and the spinlock.
*/
struct mutex mutex;
struct list_head pinned_groups;
struct list_head flexible_groups;
struct list_head event_list;
int nr_events;
int nr_active;
int is_active;
int nr_stat;
int nr_freq;
int rotate_disable;
atomic_t refcount;
struct task_struct *task;
/*
* Context clock, runs when context enabled.
*/
u64 time;
u64 timestamp;
/*
* These fields let us detect when two contexts have both
* been cloned (inherited) from a common ancestor.
*/
struct perf_event_context *parent_ctx;
u64 parent_gen;
u64 generation;
int pin_count;
int nr_cgroups; /* cgroup evts */
int nr_branch_stack; /* branch_stack evt */
struct rcu_head rcu_head;
};
/*
* Number of contexts where an event can trigger:
* task, softirq, hardirq, nmi.
*/
#define PERF_NR_CONTEXTS 4
/**
* struct perf_event_cpu_context - per cpu event context structure
*/
struct perf_cpu_context {
struct perf_event_context ctx;
struct perf_event_context *task_ctx;
int active_oncpu;
int exclusive;
struct list_head rotation_list;
int jiffies_interval;
struct pmu *active_pmu;
struct perf_cgroup *cgrp;
};
struct perf_output_handle {
struct perf_event *event;
struct ring_buffer *rb;
unsigned long wakeup;
unsigned long size;
void *addr;
int page;
};
#ifdef CONFIG_PERF_EVENTS
extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
extern void perf_pmu_unregister(struct pmu *pmu);
extern int perf_num_counters(void);
extern const char *perf_pmu_name(void);
extern void __perf_event_task_sched_in(struct task_struct *prev,
struct task_struct *task);
extern void __perf_event_task_sched_out(struct task_struct *prev,
struct task_struct *next);
extern int perf_event_init_task(struct task_struct *child);
extern void perf_event_exit_task(struct task_struct *child);
extern void perf_event_free_task(struct task_struct *task);
extern void perf_event_delayed_put(struct task_struct *task);
extern void perf_event_print_debug(void);
extern void perf_pmu_disable(struct pmu *pmu);
extern void perf_pmu_enable(struct pmu *pmu);
extern int perf_event_task_disable(void);
extern int perf_event_task_enable(void);
extern int perf_event_refresh(struct perf_event *event, int refresh);
extern void perf_event_update_userpage(struct perf_event *event);
extern int perf_event_release_kernel(struct perf_event *event);
extern struct perf_event *
perf_event_create_kernel_counter(struct perf_event_attr *attr,
int cpu,
struct task_struct *task,
perf_overflow_handler_t callback,
void *context);
extern u64 perf_event_read_value(struct perf_event *event,
u64 *enabled, u64 *running);
struct perf_sample_data {
u64 type;
u64 ip;
struct {
u32 pid;
u32 tid;
} tid_entry;
u64 time;
u64 addr;
u64 id;
u64 stream_id;
struct {
u32 cpu;
u32 reserved;
} cpu_entry;
u64 period;
struct perf_callchain_entry *callchain;
struct perf_raw_record *raw;
struct perf_branch_stack *br_stack;
};
static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
{
data->addr = addr;
data->raw = NULL;
data->br_stack = NULL;
}
extern void perf_output_sample(struct perf_output_handle *handle,
struct perf_event_header *header,
struct perf_sample_data *data,
struct perf_event *event);
extern void perf_prepare_sample(struct perf_event_header *header,
struct perf_sample_data *data,
struct perf_event *event,
struct pt_regs *regs);
extern int perf_event_overflow(struct perf_event *event,
struct perf_sample_data *data,
struct pt_regs *regs);
static inline bool is_sampling_event(struct perf_event *event)
{
return event->attr.sample_period != 0;
}
/*
* Return 1 for a software event, 0 for a hardware event
*/
static inline int is_software_event(struct perf_event *event)
{
return event->pmu->task_ctx_nr == perf_sw_context;
}
extern struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
#ifndef perf_arch_fetch_caller_regs
static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
#endif
/*
* Take a snapshot of the regs. Skip ip and frame pointer to
* the nth caller. We only need a few of the regs:
* - ip for PERF_SAMPLE_IP
* - cs for user_mode() tests
* - bp for callchains
* - eflags, for future purposes, just in case
*/
static inline void perf_fetch_caller_regs(struct pt_regs *regs)
{
memset(regs, 0, sizeof(*regs));
perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
}
static __always_inline void
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
{
struct pt_regs hot_regs;
if (static_key_false(&perf_swevent_enabled[event_id])) {
if (!regs) {
perf_fetch_caller_regs(&hot_regs);
regs = &hot_regs;
}
__perf_sw_event(event_id, nr, regs, addr);
}
}
extern struct static_key_deferred perf_sched_events;
static inline void perf_event_task_sched_in(struct task_struct *prev,
struct task_struct *task)
{
if (static_key_false(&perf_sched_events.key))
__perf_event_task_sched_in(prev, task);
}
static inline void perf_event_task_sched_out(struct task_struct *prev,
struct task_struct *next)
{
perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
if (static_key_false(&perf_sched_events.key))
__perf_event_task_sched_out(prev, next);
}
extern void perf_event_mmap(struct vm_area_struct *vma);
extern struct perf_guest_info_callbacks *perf_guest_cbs;
extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
extern void perf_event_comm(struct task_struct *tsk);
extern void perf_event_fork(struct task_struct *tsk);
/* Callchains */
DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
{
if (entry->nr < PERF_MAX_STACK_DEPTH)
entry->ip[entry->nr++] = ip;
}
extern int sysctl_perf_event_paranoid;
extern int sysctl_perf_event_mlock;
extern int sysctl_perf_event_sample_rate;
extern int perf_proc_update_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *lenp,
loff_t *ppos);
static inline bool perf_paranoid_tracepoint_raw(void)
{
return sysctl_perf_event_paranoid > -1;
}
static inline bool perf_paranoid_cpu(void)
{
return sysctl_perf_event_paranoid > 0;
}
static inline bool perf_paranoid_kernel(void)
{
return sysctl_perf_event_paranoid > 1;
}
extern void perf_event_init(void);
extern void perf_tp_event(u64 addr, u64 count, void *record,
int entry_size, struct pt_regs *regs,
struct hlist_head *head, int rctx);
extern void perf_bp_event(struct perf_event *event, void *data);
#ifndef perf_misc_flags
# define perf_misc_flags(regs) \
(user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
# define perf_instruction_pointer(regs) instruction_pointer(regs)
#endif
static inline bool has_branch_stack(struct perf_event *event)
{
return event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK;
}
extern int perf_output_begin(struct perf_output_handle *handle,
struct perf_event *event, unsigned int size);
extern void perf_output_end(struct perf_output_handle *handle);
extern void perf_output_copy(struct perf_output_handle *handle,
const void *buf, unsigned int len);
extern int perf_swevent_get_recursion_context(void);
extern void perf_swevent_put_recursion_context(int rctx);
extern void perf_event_enable(struct perf_event *event);
extern void perf_event_disable(struct perf_event *event);
extern void perf_event_task_tick(void);
#else
static inline void
perf_event_task_sched_in(struct task_struct *prev,
struct task_struct *task) { }
static inline void
perf_event_task_sched_out(struct task_struct *prev,
struct task_struct *next) { }
static inline int perf_event_init_task(struct task_struct *child) { return 0; }
static inline void perf_event_exit_task(struct task_struct *child) { }
static inline void perf_event_free_task(struct task_struct *task) { }
static inline void perf_event_delayed_put(struct task_struct *task) { }
static inline void perf_event_print_debug(void) { }
static inline int perf_event_task_disable(void) { return -EINVAL; }
static inline int perf_event_task_enable(void) { return -EINVAL; }
static inline int perf_event_refresh(struct perf_event *event, int refresh)
{
return -EINVAL;
}
static inline void
perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
static inline void
perf_bp_event(struct perf_event *event, void *data) { }
static inline int perf_register_guest_info_callbacks
(struct perf_guest_info_callbacks *callbacks) { return 0; }
static inline int perf_unregister_guest_info_callbacks
(struct perf_guest_info_callbacks *callbacks) { return 0; }
static inline void perf_event_mmap(struct vm_area_struct *vma) { }
static inline void perf_event_comm(struct task_struct *tsk) { }
static inline void perf_event_fork(struct task_struct *tsk) { }
static inline void perf_event_init(void) { }
static inline int perf_swevent_get_recursion_context(void) { return -1; }
static inline void perf_swevent_put_recursion_context(int rctx) { }
static inline void perf_event_enable(struct perf_event *event) { }
static inline void perf_event_disable(struct perf_event *event) { }
static inline void perf_event_task_tick(void) { }
#endif
#define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
/*
* This has to have a higher priority than migration_notifier in sched.c.
*/
#define perf_cpu_notifier(fn) \
do { \
static struct notifier_block fn##_nb __cpuinitdata = \
{ .notifier_call = fn, .priority = CPU_PRI_PERF }; \
fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
(void *)(unsigned long)smp_processor_id()); \
fn(&fn##_nb, (unsigned long)CPU_STARTING, \
(void *)(unsigned long)smp_processor_id()); \
fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
(void *)(unsigned long)smp_processor_id()); \
register_cpu_notifier(&fn##_nb); \
} while (0)
#define PMU_FORMAT_ATTR(_name, _format) \
static ssize_t \
_name##_show(struct device *dev, \
struct device_attribute *attr, \
char *page) \
{ \
BUILD_BUG_ON(sizeof(_format) >= PAGE_SIZE); \
return sprintf(page, _format "\n"); \
} \
\
static struct device_attribute format_attr_##_name = __ATTR_RO(_name)
#endif /* __KERNEL__ */
#endif /* _LINUX_PERF_EVENT_H */