2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 11:04:00 +08:00
linux-next/drivers/dma-buf/reservation.c
Christian König b88fa004e8 dma-buf: fix reservation_object_wait_timeout_rcu to wait correctly v2
With hardware resets in mind it is possible that all shared fences are
signaled, but the exlusive isn't. Fix waiting for everything in this situation.

v2: make sure we always wait for the exclusive fence

Acked-by: Sumit Semwal <sumit.semwal@linaro.org>
Signed-off-by: Christian König <christian.koenig@amd.com>
Reviewed-by: Alex Deucher <alexander.deucher@amd.com>
Reviewed-by: Chunming Zhou <david1.zhou@amd.com>
Signed-off-by: Alex Deucher <alexander.deucher@amd.com>
Link: https://patchwork.freedesktop.org/patch/msgid/1502384509-10465-3-git-send-email-alexander.deucher@amd.com
2017-08-14 13:01:25 -04:00

580 lines
14 KiB
C

/*
* Copyright (C) 2012-2014 Canonical Ltd (Maarten Lankhorst)
*
* Based on bo.c which bears the following copyright notice,
* but is dual licensed:
*
* Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#include <linux/reservation.h>
#include <linux/export.h>
/**
* DOC: Reservation Object Overview
*
* The reservation object provides a mechanism to manage shared and
* exclusive fences associated with a buffer. A reservation object
* can have attached one exclusive fence (normally associated with
* write operations) or N shared fences (read operations). The RCU
* mechanism is used to protect read access to fences from locked
* write-side updates.
*/
DEFINE_WW_CLASS(reservation_ww_class);
EXPORT_SYMBOL(reservation_ww_class);
struct lock_class_key reservation_seqcount_class;
EXPORT_SYMBOL(reservation_seqcount_class);
const char reservation_seqcount_string[] = "reservation_seqcount";
EXPORT_SYMBOL(reservation_seqcount_string);
/**
* reservation_object_reserve_shared - Reserve space to add a shared
* fence to a reservation_object.
* @obj: reservation object
*
* Should be called before reservation_object_add_shared_fence(). Must
* be called with obj->lock held.
*
* RETURNS
* Zero for success, or -errno
*/
int reservation_object_reserve_shared(struct reservation_object *obj)
{
struct reservation_object_list *fobj, *old;
u32 max;
old = reservation_object_get_list(obj);
if (old && old->shared_max) {
if (old->shared_count < old->shared_max) {
/* perform an in-place update */
kfree(obj->staged);
obj->staged = NULL;
return 0;
} else
max = old->shared_max * 2;
} else
max = 4;
/*
* resize obj->staged or allocate if it doesn't exist,
* noop if already correct size
*/
fobj = krealloc(obj->staged, offsetof(typeof(*fobj), shared[max]),
GFP_KERNEL);
if (!fobj)
return -ENOMEM;
obj->staged = fobj;
fobj->shared_max = max;
return 0;
}
EXPORT_SYMBOL(reservation_object_reserve_shared);
static void
reservation_object_add_shared_inplace(struct reservation_object *obj,
struct reservation_object_list *fobj,
struct dma_fence *fence)
{
u32 i;
dma_fence_get(fence);
preempt_disable();
write_seqcount_begin(&obj->seq);
for (i = 0; i < fobj->shared_count; ++i) {
struct dma_fence *old_fence;
old_fence = rcu_dereference_protected(fobj->shared[i],
reservation_object_held(obj));
if (old_fence->context == fence->context) {
/* memory barrier is added by write_seqcount_begin */
RCU_INIT_POINTER(fobj->shared[i], fence);
write_seqcount_end(&obj->seq);
preempt_enable();
dma_fence_put(old_fence);
return;
}
}
/*
* memory barrier is added by write_seqcount_begin,
* fobj->shared_count is protected by this lock too
*/
RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence);
fobj->shared_count++;
write_seqcount_end(&obj->seq);
preempt_enable();
}
static void
reservation_object_add_shared_replace(struct reservation_object *obj,
struct reservation_object_list *old,
struct reservation_object_list *fobj,
struct dma_fence *fence)
{
unsigned i;
struct dma_fence *old_fence = NULL;
dma_fence_get(fence);
if (!old) {
RCU_INIT_POINTER(fobj->shared[0], fence);
fobj->shared_count = 1;
goto done;
}
/*
* no need to bump fence refcounts, rcu_read access
* requires the use of kref_get_unless_zero, and the
* references from the old struct are carried over to
* the new.
*/
fobj->shared_count = old->shared_count;
for (i = 0; i < old->shared_count; ++i) {
struct dma_fence *check;
check = rcu_dereference_protected(old->shared[i],
reservation_object_held(obj));
if (!old_fence && check->context == fence->context) {
old_fence = check;
RCU_INIT_POINTER(fobj->shared[i], fence);
} else
RCU_INIT_POINTER(fobj->shared[i], check);
}
if (!old_fence) {
RCU_INIT_POINTER(fobj->shared[fobj->shared_count], fence);
fobj->shared_count++;
}
done:
preempt_disable();
write_seqcount_begin(&obj->seq);
/*
* RCU_INIT_POINTER can be used here,
* seqcount provides the necessary barriers
*/
RCU_INIT_POINTER(obj->fence, fobj);
write_seqcount_end(&obj->seq);
preempt_enable();
if (old)
kfree_rcu(old, rcu);
dma_fence_put(old_fence);
}
/**
* reservation_object_add_shared_fence - Add a fence to a shared slot
* @obj: the reservation object
* @fence: the shared fence to add
*
* Add a fence to a shared slot, obj->lock must be held, and
* reservation_object_reserve_shared() has been called.
*/
void reservation_object_add_shared_fence(struct reservation_object *obj,
struct dma_fence *fence)
{
struct reservation_object_list *old, *fobj = obj->staged;
old = reservation_object_get_list(obj);
obj->staged = NULL;
if (!fobj) {
BUG_ON(old->shared_count >= old->shared_max);
reservation_object_add_shared_inplace(obj, old, fence);
} else
reservation_object_add_shared_replace(obj, old, fobj, fence);
}
EXPORT_SYMBOL(reservation_object_add_shared_fence);
/**
* reservation_object_add_excl_fence - Add an exclusive fence.
* @obj: the reservation object
* @fence: the shared fence to add
*
* Add a fence to the exclusive slot. The obj->lock must be held.
*/
void reservation_object_add_excl_fence(struct reservation_object *obj,
struct dma_fence *fence)
{
struct dma_fence *old_fence = reservation_object_get_excl(obj);
struct reservation_object_list *old;
u32 i = 0;
old = reservation_object_get_list(obj);
if (old)
i = old->shared_count;
if (fence)
dma_fence_get(fence);
preempt_disable();
write_seqcount_begin(&obj->seq);
/* write_seqcount_begin provides the necessary memory barrier */
RCU_INIT_POINTER(obj->fence_excl, fence);
if (old)
old->shared_count = 0;
write_seqcount_end(&obj->seq);
preempt_enable();
/* inplace update, no shared fences */
while (i--)
dma_fence_put(rcu_dereference_protected(old->shared[i],
reservation_object_held(obj)));
dma_fence_put(old_fence);
}
EXPORT_SYMBOL(reservation_object_add_excl_fence);
/**
* reservation_object_copy_fences - Copy all fences from src to dst.
* @dst: the destination reservation object
* @src: the source reservation object
*
* Copy all fences from src to dst. Both src->lock as well as dst-lock must be
* held.
*/
int reservation_object_copy_fences(struct reservation_object *dst,
struct reservation_object *src)
{
struct reservation_object_list *src_list, *dst_list;
struct dma_fence *old, *new;
size_t size;
unsigned i;
src_list = reservation_object_get_list(src);
if (src_list) {
size = offsetof(typeof(*src_list),
shared[src_list->shared_count]);
dst_list = kmalloc(size, GFP_KERNEL);
if (!dst_list)
return -ENOMEM;
dst_list->shared_count = src_list->shared_count;
dst_list->shared_max = src_list->shared_count;
for (i = 0; i < src_list->shared_count; ++i)
dst_list->shared[i] =
dma_fence_get(src_list->shared[i]);
} else {
dst_list = NULL;
}
kfree(dst->staged);
dst->staged = NULL;
src_list = reservation_object_get_list(dst);
old = reservation_object_get_excl(dst);
new = reservation_object_get_excl(src);
dma_fence_get(new);
preempt_disable();
write_seqcount_begin(&dst->seq);
/* write_seqcount_begin provides the necessary memory barrier */
RCU_INIT_POINTER(dst->fence_excl, new);
RCU_INIT_POINTER(dst->fence, dst_list);
write_seqcount_end(&dst->seq);
preempt_enable();
if (src_list)
kfree_rcu(src_list, rcu);
dma_fence_put(old);
return 0;
}
EXPORT_SYMBOL(reservation_object_copy_fences);
/**
* reservation_object_get_fences_rcu - Get an object's shared and exclusive
* fences without update side lock held
* @obj: the reservation object
* @pfence_excl: the returned exclusive fence (or NULL)
* @pshared_count: the number of shared fences returned
* @pshared: the array of shared fence ptrs returned (array is krealloc'd to
* the required size, and must be freed by caller)
*
* RETURNS
* Zero or -errno
*/
int reservation_object_get_fences_rcu(struct reservation_object *obj,
struct dma_fence **pfence_excl,
unsigned *pshared_count,
struct dma_fence ***pshared)
{
struct dma_fence **shared = NULL;
struct dma_fence *fence_excl;
unsigned int shared_count;
int ret = 1;
do {
struct reservation_object_list *fobj;
unsigned seq;
unsigned int i;
shared_count = i = 0;
rcu_read_lock();
seq = read_seqcount_begin(&obj->seq);
fence_excl = rcu_dereference(obj->fence_excl);
if (fence_excl && !dma_fence_get_rcu(fence_excl))
goto unlock;
fobj = rcu_dereference(obj->fence);
if (fobj) {
struct dma_fence **nshared;
size_t sz = sizeof(*shared) * fobj->shared_max;
nshared = krealloc(shared, sz,
GFP_NOWAIT | __GFP_NOWARN);
if (!nshared) {
rcu_read_unlock();
nshared = krealloc(shared, sz, GFP_KERNEL);
if (nshared) {
shared = nshared;
continue;
}
ret = -ENOMEM;
break;
}
shared = nshared;
shared_count = fobj->shared_count;
for (i = 0; i < shared_count; ++i) {
shared[i] = rcu_dereference(fobj->shared[i]);
if (!dma_fence_get_rcu(shared[i]))
break;
}
}
if (i != shared_count || read_seqcount_retry(&obj->seq, seq)) {
while (i--)
dma_fence_put(shared[i]);
dma_fence_put(fence_excl);
goto unlock;
}
ret = 0;
unlock:
rcu_read_unlock();
} while (ret);
if (!shared_count) {
kfree(shared);
shared = NULL;
}
*pshared_count = shared_count;
*pshared = shared;
*pfence_excl = fence_excl;
return ret;
}
EXPORT_SYMBOL_GPL(reservation_object_get_fences_rcu);
/**
* reservation_object_wait_timeout_rcu - Wait on reservation's objects
* shared and/or exclusive fences.
* @obj: the reservation object
* @wait_all: if true, wait on all fences, else wait on just exclusive fence
* @intr: if true, do interruptible wait
* @timeout: timeout value in jiffies or zero to return immediately
*
* RETURNS
* Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or
* greater than zer on success.
*/
long reservation_object_wait_timeout_rcu(struct reservation_object *obj,
bool wait_all, bool intr,
unsigned long timeout)
{
struct dma_fence *fence;
unsigned seq, shared_count, i = 0;
long ret = timeout ? timeout : 1;
retry:
shared_count = 0;
seq = read_seqcount_begin(&obj->seq);
rcu_read_lock();
fence = rcu_dereference(obj->fence_excl);
if (fence && !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
if (!dma_fence_get_rcu(fence))
goto unlock_retry;
if (dma_fence_is_signaled(fence)) {
dma_fence_put(fence);
fence = NULL;
}
} else {
fence = NULL;
}
if (!fence && wait_all) {
struct reservation_object_list *fobj =
rcu_dereference(obj->fence);
if (fobj)
shared_count = fobj->shared_count;
for (i = 0; i < shared_count; ++i) {
struct dma_fence *lfence = rcu_dereference(fobj->shared[i]);
if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
&lfence->flags))
continue;
if (!dma_fence_get_rcu(lfence))
goto unlock_retry;
if (dma_fence_is_signaled(lfence)) {
dma_fence_put(lfence);
continue;
}
fence = lfence;
break;
}
}
rcu_read_unlock();
if (fence) {
if (read_seqcount_retry(&obj->seq, seq)) {
dma_fence_put(fence);
goto retry;
}
ret = dma_fence_wait_timeout(fence, intr, ret);
dma_fence_put(fence);
if (ret > 0 && wait_all && (i + 1 < shared_count))
goto retry;
}
return ret;
unlock_retry:
rcu_read_unlock();
goto retry;
}
EXPORT_SYMBOL_GPL(reservation_object_wait_timeout_rcu);
static inline int
reservation_object_test_signaled_single(struct dma_fence *passed_fence)
{
struct dma_fence *fence, *lfence = passed_fence;
int ret = 1;
if (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &lfence->flags)) {
fence = dma_fence_get_rcu(lfence);
if (!fence)
return -1;
ret = !!dma_fence_is_signaled(fence);
dma_fence_put(fence);
}
return ret;
}
/**
* reservation_object_test_signaled_rcu - Test if a reservation object's
* fences have been signaled.
* @obj: the reservation object
* @test_all: if true, test all fences, otherwise only test the exclusive
* fence
*
* RETURNS
* true if all fences signaled, else false
*/
bool reservation_object_test_signaled_rcu(struct reservation_object *obj,
bool test_all)
{
unsigned seq, shared_count;
int ret;
rcu_read_lock();
retry:
ret = true;
shared_count = 0;
seq = read_seqcount_begin(&obj->seq);
if (test_all) {
unsigned i;
struct reservation_object_list *fobj =
rcu_dereference(obj->fence);
if (fobj)
shared_count = fobj->shared_count;
for (i = 0; i < shared_count; ++i) {
struct dma_fence *fence = rcu_dereference(fobj->shared[i]);
ret = reservation_object_test_signaled_single(fence);
if (ret < 0)
goto retry;
else if (!ret)
break;
}
if (read_seqcount_retry(&obj->seq, seq))
goto retry;
}
if (!shared_count) {
struct dma_fence *fence_excl = rcu_dereference(obj->fence_excl);
if (fence_excl) {
ret = reservation_object_test_signaled_single(
fence_excl);
if (ret < 0)
goto retry;
if (read_seqcount_retry(&obj->seq, seq))
goto retry;
}
}
rcu_read_unlock();
return ret;
}
EXPORT_SYMBOL_GPL(reservation_object_test_signaled_rcu);