2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 02:24:21 +08:00
linux-next/drivers/hwmon/abituguru.c
Colin Ian King 16f7f3bccb hwmon: abituguru: make array probe_order static, makes object smaller
Don't populate the array probe_order on the stack but instead make it
static. Makes the object code smaller by 94 bytes.

Before:
   text	   data	    bss	    dec	    hex	filename
  41473	  13448	    320	  55241	   d7c9	drivers/hwmon/abituguru.o

After:
   text	   data	    bss	    dec	    hex	filename
  41315	  13512	    320	  55147	   d76b	drivers/hwmon/abituguru.o

(gcc version 9.2.1, amd64)

Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Hans de Goede <hdegoede@redhat.com>
Link: https://lore.kernel.org/r/20191006145231.24022-1-colin.king@canonical.com
Signed-off-by: Guenter Roeck <linux@roeck-us.net>
2019-11-06 14:37:19 -08:00

1638 lines
52 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* abituguru.c Copyright (c) 2005-2006 Hans de Goede <hdegoede@redhat.com>
*/
/*
* This driver supports the sensor part of the first and second revision of
* the custom Abit uGuru chip found on Abit uGuru motherboards. Note: because
* of lack of specs the CPU/RAM voltage & frequency control is not supported!
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/err.h>
#include <linux/delay.h>
#include <linux/platform_device.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
#include <linux/dmi.h>
#include <linux/io.h>
/* Banks */
#define ABIT_UGURU_ALARM_BANK 0x20 /* 1x 3 bytes */
#define ABIT_UGURU_SENSOR_BANK1 0x21 /* 16x volt and temp */
#define ABIT_UGURU_FAN_PWM 0x24 /* 3x 5 bytes */
#define ABIT_UGURU_SENSOR_BANK2 0x26 /* fans */
/* max nr of sensors in bank1, a bank1 sensor can be in, temp or nc */
#define ABIT_UGURU_MAX_BANK1_SENSORS 16
/*
* Warning if you increase one of the 2 MAX defines below to 10 or higher you
* should adjust the belonging _NAMES_LENGTH macro for the 2 digit number!
*/
/* max nr of sensors in bank2, currently mb's with max 6 fans are known */
#define ABIT_UGURU_MAX_BANK2_SENSORS 6
/* max nr of pwm outputs, currently mb's with max 5 pwm outputs are known */
#define ABIT_UGURU_MAX_PWMS 5
/* uGuru sensor bank 1 flags */ /* Alarm if: */
#define ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE 0x01 /* temp over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE 0x02 /* volt over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_ENABLE 0x04 /* volt under min */
#define ABIT_UGURU_TEMP_HIGH_ALARM_FLAG 0x10 /* temp is over warn */
#define ABIT_UGURU_VOLT_HIGH_ALARM_FLAG 0x20 /* volt is over max */
#define ABIT_UGURU_VOLT_LOW_ALARM_FLAG 0x40 /* volt is under min */
/* uGuru sensor bank 2 flags */ /* Alarm if: */
#define ABIT_UGURU_FAN_LOW_ALARM_ENABLE 0x01 /* fan under min */
/* uGuru sensor bank common flags */
#define ABIT_UGURU_BEEP_ENABLE 0x08 /* beep if alarm */
#define ABIT_UGURU_SHUTDOWN_ENABLE 0x80 /* shutdown if alarm */
/* uGuru fan PWM (speed control) flags */
#define ABIT_UGURU_FAN_PWM_ENABLE 0x80 /* enable speed control */
/* Values used for conversion */
#define ABIT_UGURU_FAN_MAX 15300 /* RPM */
/* Bank1 sensor types */
#define ABIT_UGURU_IN_SENSOR 0
#define ABIT_UGURU_TEMP_SENSOR 1
#define ABIT_UGURU_NC 2
/*
* In many cases we need to wait for the uGuru to reach a certain status, most
* of the time it will reach this status within 30 - 90 ISA reads, and thus we
* can best busy wait. This define gives the total amount of reads to try.
*/
#define ABIT_UGURU_WAIT_TIMEOUT 125
/*
* However sometimes older versions of the uGuru seem to be distracted and they
* do not respond for a long time. To handle this we sleep before each of the
* last ABIT_UGURU_WAIT_TIMEOUT_SLEEP tries.
*/
#define ABIT_UGURU_WAIT_TIMEOUT_SLEEP 5
/*
* Normally all expected status in abituguru_ready, are reported after the
* first read, but sometimes not and we need to poll.
*/
#define ABIT_UGURU_READY_TIMEOUT 5
/* Maximum 3 retries on timedout reads/writes, delay 200 ms before retrying */
#define ABIT_UGURU_MAX_RETRIES 3
#define ABIT_UGURU_RETRY_DELAY (HZ/5)
/* Maximum 2 timeouts in abituguru_update_device, iow 3 in a row is an error */
#define ABIT_UGURU_MAX_TIMEOUTS 2
/* utility macros */
#define ABIT_UGURU_NAME "abituguru"
#define ABIT_UGURU_DEBUG(level, format, arg...) \
do { \
if (level <= verbose) \
pr_debug(format , ## arg); \
} while (0)
/* Macros to help calculate the sysfs_names array length */
/*
* sum of strlen of: in??_input\0, in??_{min,max}\0, in??_{min,max}_alarm\0,
* in??_{min,max}_alarm_enable\0, in??_beep\0, in??_shutdown\0
*/
#define ABITUGURU_IN_NAMES_LENGTH (11 + 2 * 9 + 2 * 15 + 2 * 22 + 10 + 14)
/*
* sum of strlen of: temp??_input\0, temp??_max\0, temp??_crit\0,
* temp??_alarm\0, temp??_alarm_enable\0, temp??_beep\0, temp??_shutdown\0
*/
#define ABITUGURU_TEMP_NAMES_LENGTH (13 + 11 + 12 + 13 + 20 + 12 + 16)
/*
* sum of strlen of: fan?_input\0, fan?_min\0, fan?_alarm\0,
* fan?_alarm_enable\0, fan?_beep\0, fan?_shutdown\0
*/
#define ABITUGURU_FAN_NAMES_LENGTH (11 + 9 + 11 + 18 + 10 + 14)
/*
* sum of strlen of: pwm?_enable\0, pwm?_auto_channels_temp\0,
* pwm?_auto_point{1,2}_pwm\0, pwm?_auto_point{1,2}_temp\0
*/
#define ABITUGURU_PWM_NAMES_LENGTH (12 + 24 + 2 * 21 + 2 * 22)
/* IN_NAMES_LENGTH > TEMP_NAMES_LENGTH so assume all bank1 sensors are in */
#define ABITUGURU_SYSFS_NAMES_LENGTH ( \
ABIT_UGURU_MAX_BANK1_SENSORS * ABITUGURU_IN_NAMES_LENGTH + \
ABIT_UGURU_MAX_BANK2_SENSORS * ABITUGURU_FAN_NAMES_LENGTH + \
ABIT_UGURU_MAX_PWMS * ABITUGURU_PWM_NAMES_LENGTH)
/*
* All the macros below are named identical to the oguru and oguru2 programs
* reverse engineered by Olle Sandberg, hence the names might not be 100%
* logical. I could come up with better names, but I prefer keeping the names
* identical so that this driver can be compared with his work more easily.
*/
/* Two i/o-ports are used by uGuru */
#define ABIT_UGURU_BASE 0x00E0
/* Used to tell uGuru what to read and to read the actual data */
#define ABIT_UGURU_CMD 0x00
/* Mostly used to check if uGuru is busy */
#define ABIT_UGURU_DATA 0x04
#define ABIT_UGURU_REGION_LENGTH 5
/* uGuru status' */
#define ABIT_UGURU_STATUS_WRITE 0x00 /* Ready to be written */
#define ABIT_UGURU_STATUS_READ 0x01 /* Ready to be read */
#define ABIT_UGURU_STATUS_INPUT 0x08 /* More input */
#define ABIT_UGURU_STATUS_READY 0x09 /* Ready to be written */
/* Constants */
/* in (Volt) sensors go up to 3494 mV, temp to 255000 millidegrees Celsius */
static const int abituguru_bank1_max_value[2] = { 3494, 255000 };
/*
* Min / Max allowed values for sensor2 (fan) alarm threshold, these values
* correspond to 300-3000 RPM
*/
static const u8 abituguru_bank2_min_threshold = 5;
static const u8 abituguru_bank2_max_threshold = 50;
/*
* Register 0 is a bitfield, 1 and 2 are pwm settings (255 = 100%), 3 and 4
* are temperature trip points.
*/
static const int abituguru_pwm_settings_multiplier[5] = { 0, 1, 1, 1000, 1000 };
/*
* Min / Max allowed values for pwm_settings. Note: pwm1 (CPU fan) is a
* special case the minimum allowed pwm% setting for this is 30% (77) on
* some MB's this special case is handled in the code!
*/
static const u8 abituguru_pwm_min[5] = { 0, 170, 170, 25, 25 };
static const u8 abituguru_pwm_max[5] = { 0, 255, 255, 75, 75 };
/* Insmod parameters */
static bool force;
module_param(force, bool, 0);
MODULE_PARM_DESC(force, "Set to one to force detection.");
static int bank1_types[ABIT_UGURU_MAX_BANK1_SENSORS] = { -1, -1, -1, -1, -1,
-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 };
module_param_array(bank1_types, int, NULL, 0);
MODULE_PARM_DESC(bank1_types, "Bank1 sensortype autodetection override:\n"
" -1 autodetect\n"
" 0 volt sensor\n"
" 1 temp sensor\n"
" 2 not connected");
static int fan_sensors;
module_param(fan_sensors, int, 0);
MODULE_PARM_DESC(fan_sensors, "Number of fan sensors on the uGuru "
"(0 = autodetect)");
static int pwms;
module_param(pwms, int, 0);
MODULE_PARM_DESC(pwms, "Number of PWMs on the uGuru "
"(0 = autodetect)");
/* Default verbose is 2, since this driver is still in the testing phase */
static int verbose = 2;
module_param(verbose, int, 0644);
MODULE_PARM_DESC(verbose, "How verbose should the driver be? (0-3):\n"
" 0 normal output\n"
" 1 + verbose error reporting\n"
" 2 + sensors type probing info\n"
" 3 + retryable error reporting");
/*
* For the Abit uGuru, we need to keep some data in memory.
* The structure is dynamically allocated, at the same time when a new
* abituguru device is allocated.
*/
struct abituguru_data {
struct device *hwmon_dev; /* hwmon registered device */
struct mutex update_lock; /* protect access to data and uGuru */
unsigned long last_updated; /* In jiffies */
unsigned short addr; /* uguru base address */
char uguru_ready; /* is the uguru in ready state? */
unsigned char update_timeouts; /*
* number of update timeouts since last
* successful update
*/
/*
* The sysfs attr and their names are generated automatically, for bank1
* we cannot use a predefined array because we don't know beforehand
* of a sensor is a volt or a temp sensor, for bank2 and the pwms its
* easier todo things the same way. For in sensors we have 9 (temp 7)
* sysfs entries per sensor, for bank2 and pwms 6.
*/
struct sensor_device_attribute_2 sysfs_attr[
ABIT_UGURU_MAX_BANK1_SENSORS * 9 +
ABIT_UGURU_MAX_BANK2_SENSORS * 6 + ABIT_UGURU_MAX_PWMS * 6];
/* Buffer to store the dynamically generated sysfs names */
char sysfs_names[ABITUGURU_SYSFS_NAMES_LENGTH];
/* Bank 1 data */
/* number of and addresses of [0] in, [1] temp sensors */
u8 bank1_sensors[2];
u8 bank1_address[2][ABIT_UGURU_MAX_BANK1_SENSORS];
u8 bank1_value[ABIT_UGURU_MAX_BANK1_SENSORS];
/*
* This array holds 3 entries per sensor for the bank 1 sensor settings
* (flags, min, max for voltage / flags, warn, shutdown for temp).
*/
u8 bank1_settings[ABIT_UGURU_MAX_BANK1_SENSORS][3];
/*
* Maximum value for each sensor used for scaling in mV/millidegrees
* Celsius.
*/
int bank1_max_value[ABIT_UGURU_MAX_BANK1_SENSORS];
/* Bank 2 data, ABIT_UGURU_MAX_BANK2_SENSORS entries for bank2 */
u8 bank2_sensors; /* actual number of bank2 sensors found */
u8 bank2_value[ABIT_UGURU_MAX_BANK2_SENSORS];
u8 bank2_settings[ABIT_UGURU_MAX_BANK2_SENSORS][2]; /* flags, min */
/* Alarms 2 bytes for bank1, 1 byte for bank2 */
u8 alarms[3];
/* Fan PWM (speed control) 5 bytes per PWM */
u8 pwms; /* actual number of pwms found */
u8 pwm_settings[ABIT_UGURU_MAX_PWMS][5];
};
static const char *never_happen = "This should never happen.";
static const char *report_this =
"Please report this to the abituguru maintainer (see MAINTAINERS)";
/* wait till the uguru is in the specified state */
static int abituguru_wait(struct abituguru_data *data, u8 state)
{
int timeout = ABIT_UGURU_WAIT_TIMEOUT;
while (inb_p(data->addr + ABIT_UGURU_DATA) != state) {
timeout--;
if (timeout == 0)
return -EBUSY;
/*
* sleep a bit before our last few tries, see the comment on
* this where ABIT_UGURU_WAIT_TIMEOUT_SLEEP is defined.
*/
if (timeout <= ABIT_UGURU_WAIT_TIMEOUT_SLEEP)
msleep(0);
}
return 0;
}
/* Put the uguru in ready for input state */
static int abituguru_ready(struct abituguru_data *data)
{
int timeout = ABIT_UGURU_READY_TIMEOUT;
if (data->uguru_ready)
return 0;
/* Reset? / Prepare for next read/write cycle */
outb(0x00, data->addr + ABIT_UGURU_DATA);
/* Wait till the uguru is ready */
if (abituguru_wait(data, ABIT_UGURU_STATUS_READY)) {
ABIT_UGURU_DEBUG(1,
"timeout exceeded waiting for ready state\n");
return -EIO;
}
/* Cmd port MUST be read now and should contain 0xAC */
while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
timeout--;
if (timeout == 0) {
ABIT_UGURU_DEBUG(1,
"CMD reg does not hold 0xAC after ready command\n");
return -EIO;
}
msleep(0);
}
/*
* After this the ABIT_UGURU_DATA port should contain
* ABIT_UGURU_STATUS_INPUT
*/
timeout = ABIT_UGURU_READY_TIMEOUT;
while (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT) {
timeout--;
if (timeout == 0) {
ABIT_UGURU_DEBUG(1,
"state != more input after ready command\n");
return -EIO;
}
msleep(0);
}
data->uguru_ready = 1;
return 0;
}
/*
* Send the bank and then sensor address to the uGuru for the next read/write
* cycle. This function gets called as the first part of a read/write by
* abituguru_read and abituguru_write. This function should never be
* called by any other function.
*/
static int abituguru_send_address(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, int retries)
{
/*
* assume the caller does error handling itself if it has not requested
* any retries, and thus be quiet.
*/
int report_errors = retries;
for (;;) {
/*
* Make sure the uguru is ready and then send the bank address,
* after this the uguru is no longer "ready".
*/
if (abituguru_ready(data) != 0)
return -EIO;
outb(bank_addr, data->addr + ABIT_UGURU_DATA);
data->uguru_ready = 0;
/*
* Wait till the uguru is ABIT_UGURU_STATUS_INPUT state again
* and send the sensor addr
*/
if (abituguru_wait(data, ABIT_UGURU_STATUS_INPUT)) {
if (retries) {
ABIT_UGURU_DEBUG(3, "timeout exceeded "
"waiting for more input state, %d "
"tries remaining\n", retries);
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(ABIT_UGURU_RETRY_DELAY);
retries--;
continue;
}
if (report_errors)
ABIT_UGURU_DEBUG(1, "timeout exceeded "
"waiting for more input state "
"(bank: %d)\n", (int)bank_addr);
return -EBUSY;
}
outb(sensor_addr, data->addr + ABIT_UGURU_CMD);
return 0;
}
}
/*
* Read count bytes from sensor sensor_addr in bank bank_addr and store the
* result in buf, retry the send address part of the read retries times.
*/
static int abituguru_read(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, u8 *buf, int count, int retries)
{
int i;
/* Send the address */
i = abituguru_send_address(data, bank_addr, sensor_addr, retries);
if (i)
return i;
/* And read the data */
for (i = 0; i < count; i++) {
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
ABIT_UGURU_DEBUG(retries ? 1 : 3,
"timeout exceeded waiting for "
"read state (bank: %d, sensor: %d)\n",
(int)bank_addr, (int)sensor_addr);
break;
}
buf[i] = inb(data->addr + ABIT_UGURU_CMD);
}
/* Last put the chip back in ready state */
abituguru_ready(data);
return i;
}
/*
* Write count bytes from buf to sensor sensor_addr in bank bank_addr, the send
* address part of the write is always retried ABIT_UGURU_MAX_RETRIES times.
*/
static int abituguru_write(struct abituguru_data *data,
u8 bank_addr, u8 sensor_addr, u8 *buf, int count)
{
/*
* We use the ready timeout as we have to wait for 0xAC just like the
* ready function
*/
int i, timeout = ABIT_UGURU_READY_TIMEOUT;
/* Send the address */
i = abituguru_send_address(data, bank_addr, sensor_addr,
ABIT_UGURU_MAX_RETRIES);
if (i)
return i;
/* And write the data */
for (i = 0; i < count; i++) {
if (abituguru_wait(data, ABIT_UGURU_STATUS_WRITE)) {
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for "
"write state (bank: %d, sensor: %d)\n",
(int)bank_addr, (int)sensor_addr);
break;
}
outb(buf[i], data->addr + ABIT_UGURU_CMD);
}
/*
* Now we need to wait till the chip is ready to be read again,
* so that we can read 0xAC as confirmation that our write has
* succeeded.
*/
if (abituguru_wait(data, ABIT_UGURU_STATUS_READ)) {
ABIT_UGURU_DEBUG(1, "timeout exceeded waiting for read state "
"after write (bank: %d, sensor: %d)\n", (int)bank_addr,
(int)sensor_addr);
return -EIO;
}
/* Cmd port MUST be read now and should contain 0xAC */
while (inb_p(data->addr + ABIT_UGURU_CMD) != 0xAC) {
timeout--;
if (timeout == 0) {
ABIT_UGURU_DEBUG(1, "CMD reg does not hold 0xAC after "
"write (bank: %d, sensor: %d)\n",
(int)bank_addr, (int)sensor_addr);
return -EIO;
}
msleep(0);
}
/* Last put the chip back in ready state */
abituguru_ready(data);
return i;
}
/*
* Detect sensor type. Temp and Volt sensors are enabled with
* different masks and will ignore enable masks not meant for them.
* This enables us to test what kind of sensor we're dealing with.
* By setting the alarm thresholds so that we will always get an
* alarm for sensor type X and then enabling the sensor as sensor type
* X, if we then get an alarm it is a sensor of type X.
*/
static int
abituguru_detect_bank1_sensor_type(struct abituguru_data *data,
u8 sensor_addr)
{
u8 val, test_flag, buf[3];
int i, ret = -ENODEV; /* error is the most common used retval :| */
/* If overriden by the user return the user selected type */
if (bank1_types[sensor_addr] >= ABIT_UGURU_IN_SENSOR &&
bank1_types[sensor_addr] <= ABIT_UGURU_NC) {
ABIT_UGURU_DEBUG(2, "assuming sensor type %d for bank1 sensor "
"%d because of \"bank1_types\" module param\n",
bank1_types[sensor_addr], (int)sensor_addr);
return bank1_types[sensor_addr];
}
/* First read the sensor and the current settings */
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, sensor_addr, &val,
1, ABIT_UGURU_MAX_RETRIES) != 1)
return -ENODEV;
/* Test val is sane / usable for sensor type detection. */
if ((val < 10u) || (val > 250u)) {
pr_warn("bank1-sensor: %d reading (%d) too close to limits, "
"unable to determine sensor type, skipping sensor\n",
(int)sensor_addr, (int)val);
/*
* assume no sensor is there for sensors for which we can't
* determine the sensor type because their reading is too close
* to their limits, this usually means no sensor is there.
*/
return ABIT_UGURU_NC;
}
ABIT_UGURU_DEBUG(2, "testing bank1 sensor %d\n", (int)sensor_addr);
/*
* Volt sensor test, enable volt low alarm, set min value ridiculously
* high, or vica versa if the reading is very high. If its a volt
* sensor this should always give us an alarm.
*/
if (val <= 240u) {
buf[0] = ABIT_UGURU_VOLT_LOW_ALARM_ENABLE;
buf[1] = 245;
buf[2] = 250;
test_flag = ABIT_UGURU_VOLT_LOW_ALARM_FLAG;
} else {
buf[0] = ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE;
buf[1] = 5;
buf[2] = 10;
test_flag = ABIT_UGURU_VOLT_HIGH_ALARM_FLAG;
}
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
/*
* Now we need 20 ms to give the uguru time to read the sensors
* and raise a voltage alarm
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/50);
/* Check for alarm and check the alarm is a volt low alarm. */
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
sensor_addr, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[0] & test_flag) {
ABIT_UGURU_DEBUG(2, " found volt sensor\n");
ret = ABIT_UGURU_IN_SENSOR;
goto abituguru_detect_bank1_sensor_type_exit;
} else
ABIT_UGURU_DEBUG(2, " alarm raised during volt "
"sensor test, but volt range flag not set\n");
} else
ABIT_UGURU_DEBUG(2, " alarm not raised during volt sensor "
"test\n");
/*
* Temp sensor test, enable sensor as a temp sensor, set beep value
* ridiculously low (but not too low, otherwise uguru ignores it).
* If its a temp sensor this should always give us an alarm.
*/
buf[0] = ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE;
buf[1] = 5;
buf[2] = 10;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2, sensor_addr,
buf, 3) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
/*
* Now we need 50 ms to give the uguru time to read the sensors
* and raise a temp alarm
*/
set_current_state(TASK_UNINTERRUPTIBLE);
schedule_timeout(HZ/20);
/* Check for alarm and check the alarm is a temp high alarm. */
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[sensor_addr/8] & (0x01 << (sensor_addr % 8))) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
sensor_addr, buf, 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_detect_bank1_sensor_type_exit;
if (buf[0] & ABIT_UGURU_TEMP_HIGH_ALARM_FLAG) {
ABIT_UGURU_DEBUG(2, " found temp sensor\n");
ret = ABIT_UGURU_TEMP_SENSOR;
goto abituguru_detect_bank1_sensor_type_exit;
} else
ABIT_UGURU_DEBUG(2, " alarm raised during temp "
"sensor test, but temp high flag not set\n");
} else
ABIT_UGURU_DEBUG(2, " alarm not raised during temp sensor "
"test\n");
ret = ABIT_UGURU_NC;
abituguru_detect_bank1_sensor_type_exit:
/*
* Restore original settings, failing here is really BAD, it has been
* reported that some BIOS-es hang when entering the uGuru menu with
* invalid settings present in the uGuru, so we try this 3 times.
*/
for (i = 0; i < 3; i++)
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
sensor_addr, data->bank1_settings[sensor_addr],
3) == 3)
break;
if (i == 3) {
pr_err("Fatal error could not restore original settings. %s %s\n",
never_happen, report_this);
return -ENODEV;
}
return ret;
}
/*
* These functions try to find out how many sensors there are in bank2 and how
* many pwms there are. The purpose of this is to make sure that we don't give
* the user the possibility to change settings for non-existent sensors / pwm.
* The uGuru will happily read / write whatever memory happens to be after the
* memory storing the PWM settings when reading/writing to a PWM which is not
* there. Notice even if we detect a PWM which doesn't exist we normally won't
* write to it, unless the user tries to change the settings.
*
* Although the uGuru allows reading (settings) from non existing bank2
* sensors, my version of the uGuru does seem to stop writing to them, the
* write function above aborts in this case with:
* "CMD reg does not hold 0xAC after write"
*
* Notice these 2 tests are non destructive iow read-only tests, otherwise
* they would defeat their purpose. Although for the bank2_sensors detection a
* read/write test would be feasible because of the reaction above, I've
* however opted to stay on the safe side.
*/
static void
abituguru_detect_no_bank2_sensors(struct abituguru_data *data)
{
int i;
if (fan_sensors > 0 && fan_sensors <= ABIT_UGURU_MAX_BANK2_SENSORS) {
data->bank2_sensors = fan_sensors;
ABIT_UGURU_DEBUG(2, "assuming %d fan sensors because of "
"\"fan_sensors\" module param\n",
(int)data->bank2_sensors);
return;
}
ABIT_UGURU_DEBUG(2, "detecting number of fan sensors\n");
for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
/*
* 0x89 are the known used bits:
* -0x80 enable shutdown
* -0x08 enable beep
* -0x01 enable alarm
* All other bits should be 0, but on some motherboards
* 0x40 (bit 6) is also high for some of the fans??
*/
if (data->bank2_settings[i][0] & ~0xC9) {
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
"to be a fan sensor: settings[0] = %02X\n",
i, (unsigned int)data->bank2_settings[i][0]);
break;
}
/* check if the threshold is within the allowed range */
if (data->bank2_settings[i][1] <
abituguru_bank2_min_threshold) {
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
"to be a fan sensor: the threshold (%d) is "
"below the minimum (%d)\n", i,
(int)data->bank2_settings[i][1],
(int)abituguru_bank2_min_threshold);
break;
}
if (data->bank2_settings[i][1] >
abituguru_bank2_max_threshold) {
ABIT_UGURU_DEBUG(2, " bank2 sensor %d does not seem "
"to be a fan sensor: the threshold (%d) is "
"above the maximum (%d)\n", i,
(int)data->bank2_settings[i][1],
(int)abituguru_bank2_max_threshold);
break;
}
}
data->bank2_sensors = i;
ABIT_UGURU_DEBUG(2, " found: %d fan sensors\n",
(int)data->bank2_sensors);
}
static void
abituguru_detect_no_pwms(struct abituguru_data *data)
{
int i, j;
if (pwms > 0 && pwms <= ABIT_UGURU_MAX_PWMS) {
data->pwms = pwms;
ABIT_UGURU_DEBUG(2, "assuming %d PWM outputs because of "
"\"pwms\" module param\n", (int)data->pwms);
return;
}
ABIT_UGURU_DEBUG(2, "detecting number of PWM outputs\n");
for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
/*
* 0x80 is the enable bit and the low
* nibble is which temp sensor to use,
* the other bits should be 0
*/
if (data->pwm_settings[i][0] & ~0x8F) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: settings[0] = %02X\n",
i, (unsigned int)data->pwm_settings[i][0]);
break;
}
/*
* the low nibble must correspond to one of the temp sensors
* we've found
*/
for (j = 0; j < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR];
j++) {
if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][j] ==
(data->pwm_settings[i][0] & 0x0F))
break;
}
if (j == data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: %d is not a valid temp "
"sensor address\n", i,
data->pwm_settings[i][0] & 0x0F);
break;
}
/* check if all other settings are within the allowed range */
for (j = 1; j < 5; j++) {
u8 min;
/* special case pwm1 min pwm% */
if ((i == 0) && ((j == 1) || (j == 2)))
min = 77;
else
min = abituguru_pwm_min[j];
if (data->pwm_settings[i][j] < min) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does "
"not seem to be a pwm channel: "
"setting %d (%d) is below the minimum "
"value (%d)\n", i, j,
(int)data->pwm_settings[i][j],
(int)min);
goto abituguru_detect_no_pwms_exit;
}
if (data->pwm_settings[i][j] > abituguru_pwm_max[j]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does "
"not seem to be a pwm channel: "
"setting %d (%d) is above the maximum "
"value (%d)\n", i, j,
(int)data->pwm_settings[i][j],
(int)abituguru_pwm_max[j]);
goto abituguru_detect_no_pwms_exit;
}
}
/* check that min temp < max temp and min pwm < max pwm */
if (data->pwm_settings[i][1] >= data->pwm_settings[i][2]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: min pwm (%d) >= "
"max pwm (%d)\n", i,
(int)data->pwm_settings[i][1],
(int)data->pwm_settings[i][2]);
break;
}
if (data->pwm_settings[i][3] >= data->pwm_settings[i][4]) {
ABIT_UGURU_DEBUG(2, " pwm channel %d does not seem "
"to be a pwm channel: min temp (%d) >= "
"max temp (%d)\n", i,
(int)data->pwm_settings[i][3],
(int)data->pwm_settings[i][4]);
break;
}
}
abituguru_detect_no_pwms_exit:
data->pwms = i;
ABIT_UGURU_DEBUG(2, " found: %d PWM outputs\n", (int)data->pwms);
}
/*
* Following are the sysfs callback functions. These functions expect:
* sensor_device_attribute_2->index: sensor address/offset in the bank
* sensor_device_attribute_2->nr: register offset, bitmask or NA.
*/
static struct abituguru_data *abituguru_update_device(struct device *dev);
static ssize_t show_bank1_value(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
return sprintf(buf, "%d\n", (data->bank1_value[attr->index] *
data->bank1_max_value[attr->index] + 128) / 255);
}
static ssize_t show_bank1_setting(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
(data->bank1_settings[attr->index][attr->nr] *
data->bank1_max_value[attr->index] + 128) / 255);
}
static ssize_t show_bank2_value(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
return sprintf(buf, "%d\n", (data->bank2_value[attr->index] *
ABIT_UGURU_FAN_MAX + 128) / 255);
}
static ssize_t show_bank2_setting(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n",
(data->bank2_settings[attr->index][attr->nr] *
ABIT_UGURU_FAN_MAX + 128) / 255);
}
static ssize_t store_bank1_setting(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
ret = count;
val = (val * 255 + data->bank1_max_value[attr->index] / 2) /
data->bank1_max_value[attr->index];
if (val > 255)
return -EINVAL;
mutex_lock(&data->update_lock);
if (data->bank1_settings[attr->index][attr->nr] != val) {
u8 orig_val = data->bank1_settings[attr->index][attr->nr];
data->bank1_settings[attr->index][attr->nr] = val;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK1 + 2,
attr->index, data->bank1_settings[attr->index],
3) <= attr->nr) {
data->bank1_settings[attr->index][attr->nr] = orig_val;
ret = -EIO;
}
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t store_bank2_setting(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
ret = count;
val = (val * 255 + ABIT_UGURU_FAN_MAX / 2) / ABIT_UGURU_FAN_MAX;
/* this check can be done before taking the lock */
if (val < abituguru_bank2_min_threshold ||
val > abituguru_bank2_max_threshold)
return -EINVAL;
mutex_lock(&data->update_lock);
if (data->bank2_settings[attr->index][attr->nr] != val) {
u8 orig_val = data->bank2_settings[attr->index][attr->nr];
data->bank2_settings[attr->index][attr->nr] = val;
if (abituguru_write(data, ABIT_UGURU_SENSOR_BANK2 + 2,
attr->index, data->bank2_settings[attr->index],
2) <= attr->nr) {
data->bank2_settings[attr->index][attr->nr] = orig_val;
ret = -EIO;
}
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t show_bank1_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
/*
* See if the alarm bit for this sensor is set, and if the
* alarm matches the type of alarm we're looking for (for volt
* it can be either low or high). The type is stored in a few
* readonly bits in the settings part of the relevant sensor.
* The bitmask of the type is passed to us in attr->nr.
*/
if ((data->alarms[attr->index / 8] & (0x01 << (attr->index % 8))) &&
(data->bank1_settings[attr->index][0] & attr->nr))
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_bank2_alarm(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = abituguru_update_device(dev);
if (!data)
return -EIO;
if (data->alarms[2] & (0x01 << attr->index))
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_bank1_mask(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
if (data->bank1_settings[attr->index][0] & attr->nr)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t show_bank2_mask(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
if (data->bank2_settings[attr->index][0] & attr->nr)
return sprintf(buf, "1\n");
else
return sprintf(buf, "0\n");
}
static ssize_t store_bank1_mask(struct device *dev,
struct device_attribute *devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
ssize_t ret;
u8 orig_val;
unsigned long mask;
ret = kstrtoul(buf, 10, &mask);
if (ret)
return ret;
ret = count;
mutex_lock(&data->update_lock);
orig_val = data->bank1_settings[attr->index][0];
if (mask)
data->bank1_settings[attr->index][0] |= attr->nr;
else
data->bank1_settings[attr->index][0] &= ~attr->nr;
if ((data->bank1_settings[attr->index][0] != orig_val) &&
(abituguru_write(data,
ABIT_UGURU_SENSOR_BANK1 + 2, attr->index,
data->bank1_settings[attr->index], 3) < 1)) {
data->bank1_settings[attr->index][0] = orig_val;
ret = -EIO;
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t store_bank2_mask(struct device *dev,
struct device_attribute *devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
ssize_t ret;
u8 orig_val;
unsigned long mask;
ret = kstrtoul(buf, 10, &mask);
if (ret)
return ret;
ret = count;
mutex_lock(&data->update_lock);
orig_val = data->bank2_settings[attr->index][0];
if (mask)
data->bank2_settings[attr->index][0] |= attr->nr;
else
data->bank2_settings[attr->index][0] &= ~attr->nr;
if ((data->bank2_settings[attr->index][0] != orig_val) &&
(abituguru_write(data,
ABIT_UGURU_SENSOR_BANK2 + 2, attr->index,
data->bank2_settings[attr->index], 2) < 1)) {
data->bank2_settings[attr->index][0] = orig_val;
ret = -EIO;
}
mutex_unlock(&data->update_lock);
return ret;
}
/* Fan PWM (speed control) */
static ssize_t show_pwm_setting(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
return sprintf(buf, "%d\n", data->pwm_settings[attr->index][attr->nr] *
abituguru_pwm_settings_multiplier[attr->nr]);
}
static ssize_t store_pwm_setting(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
u8 min;
unsigned long val;
ssize_t ret;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
ret = count;
val = (val + abituguru_pwm_settings_multiplier[attr->nr] / 2) /
abituguru_pwm_settings_multiplier[attr->nr];
/* special case pwm1 min pwm% */
if ((attr->index == 0) && ((attr->nr == 1) || (attr->nr == 2)))
min = 77;
else
min = abituguru_pwm_min[attr->nr];
/* this check can be done before taking the lock */
if (val < min || val > abituguru_pwm_max[attr->nr])
return -EINVAL;
mutex_lock(&data->update_lock);
/* this check needs to be done after taking the lock */
if ((attr->nr & 1) &&
(val >= data->pwm_settings[attr->index][attr->nr + 1]))
ret = -EINVAL;
else if (!(attr->nr & 1) &&
(val <= data->pwm_settings[attr->index][attr->nr - 1]))
ret = -EINVAL;
else if (data->pwm_settings[attr->index][attr->nr] != val) {
u8 orig_val = data->pwm_settings[attr->index][attr->nr];
data->pwm_settings[attr->index][attr->nr] = val;
if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
attr->index, data->pwm_settings[attr->index],
5) <= attr->nr) {
data->pwm_settings[attr->index][attr->nr] =
orig_val;
ret = -EIO;
}
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t show_pwm_sensor(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
int i;
/*
* We need to walk to the temp sensor addresses to find what
* the userspace id of the configured temp sensor is.
*/
for (i = 0; i < data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR]; i++)
if (data->bank1_address[ABIT_UGURU_TEMP_SENSOR][i] ==
(data->pwm_settings[attr->index][0] & 0x0F))
return sprintf(buf, "%d\n", i+1);
return -ENXIO;
}
static ssize_t store_pwm_sensor(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
ssize_t ret;
unsigned long val;
u8 orig_val;
u8 address;
ret = kstrtoul(buf, 10, &val);
if (ret)
return ret;
if (val == 0 || val > data->bank1_sensors[ABIT_UGURU_TEMP_SENSOR])
return -EINVAL;
val -= 1;
ret = count;
mutex_lock(&data->update_lock);
orig_val = data->pwm_settings[attr->index][0];
address = data->bank1_address[ABIT_UGURU_TEMP_SENSOR][val];
data->pwm_settings[attr->index][0] &= 0xF0;
data->pwm_settings[attr->index][0] |= address;
if (data->pwm_settings[attr->index][0] != orig_val) {
if (abituguru_write(data, ABIT_UGURU_FAN_PWM + 1, attr->index,
data->pwm_settings[attr->index], 5) < 1) {
data->pwm_settings[attr->index][0] = orig_val;
ret = -EIO;
}
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t show_pwm_enable(struct device *dev,
struct device_attribute *devattr, char *buf)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
int res = 0;
if (data->pwm_settings[attr->index][0] & ABIT_UGURU_FAN_PWM_ENABLE)
res = 2;
return sprintf(buf, "%d\n", res);
}
static ssize_t store_pwm_enable(struct device *dev, struct device_attribute
*devattr, const char *buf, size_t count)
{
struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
struct abituguru_data *data = dev_get_drvdata(dev);
u8 orig_val;
ssize_t ret;
unsigned long user_val;
ret = kstrtoul(buf, 10, &user_val);
if (ret)
return ret;
ret = count;
mutex_lock(&data->update_lock);
orig_val = data->pwm_settings[attr->index][0];
switch (user_val) {
case 0:
data->pwm_settings[attr->index][0] &=
~ABIT_UGURU_FAN_PWM_ENABLE;
break;
case 2:
data->pwm_settings[attr->index][0] |= ABIT_UGURU_FAN_PWM_ENABLE;
break;
default:
ret = -EINVAL;
}
if ((data->pwm_settings[attr->index][0] != orig_val) &&
(abituguru_write(data, ABIT_UGURU_FAN_PWM + 1,
attr->index, data->pwm_settings[attr->index],
5) < 1)) {
data->pwm_settings[attr->index][0] = orig_val;
ret = -EIO;
}
mutex_unlock(&data->update_lock);
return ret;
}
static ssize_t show_name(struct device *dev,
struct device_attribute *devattr, char *buf)
{
return sprintf(buf, "%s\n", ABIT_UGURU_NAME);
}
/* Sysfs attr templates, the real entries are generated automatically. */
static const
struct sensor_device_attribute_2 abituguru_sysfs_bank1_templ[2][9] = {
{
SENSOR_ATTR_2(in%d_input, 0444, show_bank1_value, NULL, 0, 0),
SENSOR_ATTR_2(in%d_min, 0644, show_bank1_setting,
store_bank1_setting, 1, 0),
SENSOR_ATTR_2(in%d_min_alarm, 0444, show_bank1_alarm, NULL,
ABIT_UGURU_VOLT_LOW_ALARM_FLAG, 0),
SENSOR_ATTR_2(in%d_max, 0644, show_bank1_setting,
store_bank1_setting, 2, 0),
SENSOR_ATTR_2(in%d_max_alarm, 0444, show_bank1_alarm, NULL,
ABIT_UGURU_VOLT_HIGH_ALARM_FLAG, 0),
SENSOR_ATTR_2(in%d_beep, 0644, show_bank1_mask,
store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
SENSOR_ATTR_2(in%d_shutdown, 0644, show_bank1_mask,
store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
SENSOR_ATTR_2(in%d_min_alarm_enable, 0644, show_bank1_mask,
store_bank1_mask, ABIT_UGURU_VOLT_LOW_ALARM_ENABLE, 0),
SENSOR_ATTR_2(in%d_max_alarm_enable, 0644, show_bank1_mask,
store_bank1_mask, ABIT_UGURU_VOLT_HIGH_ALARM_ENABLE, 0),
}, {
SENSOR_ATTR_2(temp%d_input, 0444, show_bank1_value, NULL, 0, 0),
SENSOR_ATTR_2(temp%d_alarm, 0444, show_bank1_alarm, NULL,
ABIT_UGURU_TEMP_HIGH_ALARM_FLAG, 0),
SENSOR_ATTR_2(temp%d_max, 0644, show_bank1_setting,
store_bank1_setting, 1, 0),
SENSOR_ATTR_2(temp%d_crit, 0644, show_bank1_setting,
store_bank1_setting, 2, 0),
SENSOR_ATTR_2(temp%d_beep, 0644, show_bank1_mask,
store_bank1_mask, ABIT_UGURU_BEEP_ENABLE, 0),
SENSOR_ATTR_2(temp%d_shutdown, 0644, show_bank1_mask,
store_bank1_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
SENSOR_ATTR_2(temp%d_alarm_enable, 0644, show_bank1_mask,
store_bank1_mask, ABIT_UGURU_TEMP_HIGH_ALARM_ENABLE, 0),
}
};
static const struct sensor_device_attribute_2 abituguru_sysfs_fan_templ[6] = {
SENSOR_ATTR_2(fan%d_input, 0444, show_bank2_value, NULL, 0, 0),
SENSOR_ATTR_2(fan%d_alarm, 0444, show_bank2_alarm, NULL, 0, 0),
SENSOR_ATTR_2(fan%d_min, 0644, show_bank2_setting,
store_bank2_setting, 1, 0),
SENSOR_ATTR_2(fan%d_beep, 0644, show_bank2_mask,
store_bank2_mask, ABIT_UGURU_BEEP_ENABLE, 0),
SENSOR_ATTR_2(fan%d_shutdown, 0644, show_bank2_mask,
store_bank2_mask, ABIT_UGURU_SHUTDOWN_ENABLE, 0),
SENSOR_ATTR_2(fan%d_alarm_enable, 0644, show_bank2_mask,
store_bank2_mask, ABIT_UGURU_FAN_LOW_ALARM_ENABLE, 0),
};
static const struct sensor_device_attribute_2 abituguru_sysfs_pwm_templ[6] = {
SENSOR_ATTR_2(pwm%d_enable, 0644, show_pwm_enable,
store_pwm_enable, 0, 0),
SENSOR_ATTR_2(pwm%d_auto_channels_temp, 0644, show_pwm_sensor,
store_pwm_sensor, 0, 0),
SENSOR_ATTR_2(pwm%d_auto_point1_pwm, 0644, show_pwm_setting,
store_pwm_setting, 1, 0),
SENSOR_ATTR_2(pwm%d_auto_point2_pwm, 0644, show_pwm_setting,
store_pwm_setting, 2, 0),
SENSOR_ATTR_2(pwm%d_auto_point1_temp, 0644, show_pwm_setting,
store_pwm_setting, 3, 0),
SENSOR_ATTR_2(pwm%d_auto_point2_temp, 0644, show_pwm_setting,
store_pwm_setting, 4, 0),
};
static struct sensor_device_attribute_2 abituguru_sysfs_attr[] = {
SENSOR_ATTR_2(name, 0444, show_name, NULL, 0, 0),
};
static int abituguru_probe(struct platform_device *pdev)
{
struct abituguru_data *data;
int i, j, used, sysfs_names_free, sysfs_attr_i, res = -ENODEV;
char *sysfs_filename;
/*
* El weirdo probe order, to keep the sysfs order identical to the
* BIOS and window-appliction listing order.
*/
static const u8 probe_order[ABIT_UGURU_MAX_BANK1_SENSORS] = {
0x00, 0x01, 0x03, 0x04, 0x0A, 0x08, 0x0E, 0x02,
0x09, 0x06, 0x05, 0x0B, 0x0F, 0x0D, 0x07, 0x0C };
data = devm_kzalloc(&pdev->dev, sizeof(struct abituguru_data),
GFP_KERNEL);
if (!data)
return -ENOMEM;
data->addr = platform_get_resource(pdev, IORESOURCE_IO, 0)->start;
mutex_init(&data->update_lock);
platform_set_drvdata(pdev, data);
/* See if the uGuru is ready */
if (inb_p(data->addr + ABIT_UGURU_DATA) == ABIT_UGURU_STATUS_INPUT)
data->uguru_ready = 1;
/*
* Completely read the uGuru this has 2 purposes:
* - testread / see if one really is there.
* - make an in memory copy of all the uguru settings for future use.
*/
if (abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
data->alarms, 3, ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_probe_error;
for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1, i,
&data->bank1_value[i], 1,
ABIT_UGURU_MAX_RETRIES) != 1)
goto abituguru_probe_error;
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK1+1, i,
data->bank1_settings[i], 3,
ABIT_UGURU_MAX_RETRIES) != 3)
goto abituguru_probe_error;
}
/*
* Note: We don't know how many bank2 sensors / pwms there really are,
* but in order to "detect" this we need to read the maximum amount
* anyways. If we read sensors/pwms not there we'll just read crap
* this can't hurt. We need the detection because we don't want
* unwanted writes, which will hurt!
*/
for (i = 0; i < ABIT_UGURU_MAX_BANK2_SENSORS; i++) {
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
&data->bank2_value[i], 1,
ABIT_UGURU_MAX_RETRIES) != 1)
goto abituguru_probe_error;
if (abituguru_read(data, ABIT_UGURU_SENSOR_BANK2+1, i,
data->bank2_settings[i], 2,
ABIT_UGURU_MAX_RETRIES) != 2)
goto abituguru_probe_error;
}
for (i = 0; i < ABIT_UGURU_MAX_PWMS; i++) {
if (abituguru_read(data, ABIT_UGURU_FAN_PWM, i,
data->pwm_settings[i], 5,
ABIT_UGURU_MAX_RETRIES) != 5)
goto abituguru_probe_error;
}
data->last_updated = jiffies;
/* Detect sensor types and fill the sysfs attr for bank1 */
sysfs_attr_i = 0;
sysfs_filename = data->sysfs_names;
sysfs_names_free = ABITUGURU_SYSFS_NAMES_LENGTH;
for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
res = abituguru_detect_bank1_sensor_type(data, probe_order[i]);
if (res < 0)
goto abituguru_probe_error;
if (res == ABIT_UGURU_NC)
continue;
/* res 1 (temp) sensors have 7 sysfs entries, 0 (in) 9 */
for (j = 0; j < (res ? 7 : 9); j++) {
used = snprintf(sysfs_filename, sysfs_names_free,
abituguru_sysfs_bank1_templ[res][j].dev_attr.
attr.name, data->bank1_sensors[res] + res)
+ 1;
data->sysfs_attr[sysfs_attr_i] =
abituguru_sysfs_bank1_templ[res][j];
data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
sysfs_filename;
data->sysfs_attr[sysfs_attr_i].index = probe_order[i];
sysfs_filename += used;
sysfs_names_free -= used;
sysfs_attr_i++;
}
data->bank1_max_value[probe_order[i]] =
abituguru_bank1_max_value[res];
data->bank1_address[res][data->bank1_sensors[res]] =
probe_order[i];
data->bank1_sensors[res]++;
}
/* Detect number of sensors and fill the sysfs attr for bank2 (fans) */
abituguru_detect_no_bank2_sensors(data);
for (i = 0; i < data->bank2_sensors; i++) {
for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_fan_templ); j++) {
used = snprintf(sysfs_filename, sysfs_names_free,
abituguru_sysfs_fan_templ[j].dev_attr.attr.name,
i + 1) + 1;
data->sysfs_attr[sysfs_attr_i] =
abituguru_sysfs_fan_templ[j];
data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
sysfs_filename;
data->sysfs_attr[sysfs_attr_i].index = i;
sysfs_filename += used;
sysfs_names_free -= used;
sysfs_attr_i++;
}
}
/* Detect number of sensors and fill the sysfs attr for pwms */
abituguru_detect_no_pwms(data);
for (i = 0; i < data->pwms; i++) {
for (j = 0; j < ARRAY_SIZE(abituguru_sysfs_pwm_templ); j++) {
used = snprintf(sysfs_filename, sysfs_names_free,
abituguru_sysfs_pwm_templ[j].dev_attr.attr.name,
i + 1) + 1;
data->sysfs_attr[sysfs_attr_i] =
abituguru_sysfs_pwm_templ[j];
data->sysfs_attr[sysfs_attr_i].dev_attr.attr.name =
sysfs_filename;
data->sysfs_attr[sysfs_attr_i].index = i;
sysfs_filename += used;
sysfs_names_free -= used;
sysfs_attr_i++;
}
}
/* Fail safe check, this should never happen! */
if (sysfs_names_free < 0) {
pr_err("Fatal error ran out of space for sysfs attr names. %s %s",
never_happen, report_this);
res = -ENAMETOOLONG;
goto abituguru_probe_error;
}
pr_info("found Abit uGuru\n");
/* Register sysfs hooks */
for (i = 0; i < sysfs_attr_i; i++) {
res = device_create_file(&pdev->dev,
&data->sysfs_attr[i].dev_attr);
if (res)
goto abituguru_probe_error;
}
for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++) {
res = device_create_file(&pdev->dev,
&abituguru_sysfs_attr[i].dev_attr);
if (res)
goto abituguru_probe_error;
}
data->hwmon_dev = hwmon_device_register(&pdev->dev);
if (!IS_ERR(data->hwmon_dev))
return 0; /* success */
res = PTR_ERR(data->hwmon_dev);
abituguru_probe_error:
for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
device_remove_file(&pdev->dev,
&abituguru_sysfs_attr[i].dev_attr);
return res;
}
static int abituguru_remove(struct platform_device *pdev)
{
int i;
struct abituguru_data *data = platform_get_drvdata(pdev);
hwmon_device_unregister(data->hwmon_dev);
for (i = 0; data->sysfs_attr[i].dev_attr.attr.name; i++)
device_remove_file(&pdev->dev, &data->sysfs_attr[i].dev_attr);
for (i = 0; i < ARRAY_SIZE(abituguru_sysfs_attr); i++)
device_remove_file(&pdev->dev,
&abituguru_sysfs_attr[i].dev_attr);
return 0;
}
static struct abituguru_data *abituguru_update_device(struct device *dev)
{
int i, err;
struct abituguru_data *data = dev_get_drvdata(dev);
/* fake a complete successful read if no update necessary. */
char success = 1;
mutex_lock(&data->update_lock);
if (time_after(jiffies, data->last_updated + HZ)) {
success = 0;
err = abituguru_read(data, ABIT_UGURU_ALARM_BANK, 0,
data->alarms, 3, 0);
if (err != 3)
goto LEAVE_UPDATE;
for (i = 0; i < ABIT_UGURU_MAX_BANK1_SENSORS; i++) {
err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1,
i, &data->bank1_value[i], 1, 0);
if (err != 1)
goto LEAVE_UPDATE;
err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK1 + 1,
i, data->bank1_settings[i], 3, 0);
if (err != 3)
goto LEAVE_UPDATE;
}
for (i = 0; i < data->bank2_sensors; i++) {
err = abituguru_read(data, ABIT_UGURU_SENSOR_BANK2, i,
&data->bank2_value[i], 1, 0);
if (err != 1)
goto LEAVE_UPDATE;
}
/* success! */
success = 1;
data->update_timeouts = 0;
LEAVE_UPDATE:
/* handle timeout condition */
if (!success && (err == -EBUSY || err >= 0)) {
/* No overflow please */
if (data->update_timeouts < 255u)
data->update_timeouts++;
if (data->update_timeouts <= ABIT_UGURU_MAX_TIMEOUTS) {
ABIT_UGURU_DEBUG(3, "timeout exceeded, will "
"try again next update\n");
/* Just a timeout, fake a successful read */
success = 1;
} else
ABIT_UGURU_DEBUG(1, "timeout exceeded %d "
"times waiting for more input state\n",
(int)data->update_timeouts);
}
/* On success set last_updated */
if (success)
data->last_updated = jiffies;
}
mutex_unlock(&data->update_lock);
if (success)
return data;
else
return NULL;
}
#ifdef CONFIG_PM_SLEEP
static int abituguru_suspend(struct device *dev)
{
struct abituguru_data *data = dev_get_drvdata(dev);
/*
* make sure all communications with the uguru are done and no new
* ones are started
*/
mutex_lock(&data->update_lock);
return 0;
}
static int abituguru_resume(struct device *dev)
{
struct abituguru_data *data = dev_get_drvdata(dev);
/* See if the uGuru is still ready */
if (inb_p(data->addr + ABIT_UGURU_DATA) != ABIT_UGURU_STATUS_INPUT)
data->uguru_ready = 0;
mutex_unlock(&data->update_lock);
return 0;
}
static SIMPLE_DEV_PM_OPS(abituguru_pm, abituguru_suspend, abituguru_resume);
#define ABIT_UGURU_PM (&abituguru_pm)
#else
#define ABIT_UGURU_PM NULL
#endif /* CONFIG_PM */
static struct platform_driver abituguru_driver = {
.driver = {
.name = ABIT_UGURU_NAME,
.pm = ABIT_UGURU_PM,
},
.probe = abituguru_probe,
.remove = abituguru_remove,
};
static int __init abituguru_detect(void)
{
/*
* See if there is an uguru there. After a reboot uGuru will hold 0x00
* at DATA and 0xAC, when this driver has already been loaded once
* DATA will hold 0x08. For most uGuru's CMD will hold 0xAC in either
* scenario but some will hold 0x00.
* Some uGuru's initially hold 0x09 at DATA and will only hold 0x08
* after reading CMD first, so CMD must be read first!
*/
u8 cmd_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_CMD);
u8 data_val = inb_p(ABIT_UGURU_BASE + ABIT_UGURU_DATA);
if (((data_val == 0x00) || (data_val == 0x08)) &&
((cmd_val == 0x00) || (cmd_val == 0xAC)))
return ABIT_UGURU_BASE;
ABIT_UGURU_DEBUG(2, "no Abit uGuru found, data = 0x%02X, cmd = "
"0x%02X\n", (unsigned int)data_val, (unsigned int)cmd_val);
if (force) {
pr_info("Assuming Abit uGuru is present because of \"force\" parameter\n");
return ABIT_UGURU_BASE;
}
/* No uGuru found */
return -ENODEV;
}
static struct platform_device *abituguru_pdev;
static int __init abituguru_init(void)
{
int address, err;
struct resource res = { .flags = IORESOURCE_IO };
const char *board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
/* safety check, refuse to load on non Abit motherboards */
if (!force && (!board_vendor ||
strcmp(board_vendor, "http://www.abit.com.tw/")))
return -ENODEV;
address = abituguru_detect();
if (address < 0)
return address;
err = platform_driver_register(&abituguru_driver);
if (err)
goto exit;
abituguru_pdev = platform_device_alloc(ABIT_UGURU_NAME, address);
if (!abituguru_pdev) {
pr_err("Device allocation failed\n");
err = -ENOMEM;
goto exit_driver_unregister;
}
res.start = address;
res.end = address + ABIT_UGURU_REGION_LENGTH - 1;
res.name = ABIT_UGURU_NAME;
err = platform_device_add_resources(abituguru_pdev, &res, 1);
if (err) {
pr_err("Device resource addition failed (%d)\n", err);
goto exit_device_put;
}
err = platform_device_add(abituguru_pdev);
if (err) {
pr_err("Device addition failed (%d)\n", err);
goto exit_device_put;
}
return 0;
exit_device_put:
platform_device_put(abituguru_pdev);
exit_driver_unregister:
platform_driver_unregister(&abituguru_driver);
exit:
return err;
}
static void __exit abituguru_exit(void)
{
platform_device_unregister(abituguru_pdev);
platform_driver_unregister(&abituguru_driver);
}
MODULE_AUTHOR("Hans de Goede <hdegoede@redhat.com>");
MODULE_DESCRIPTION("Abit uGuru Sensor device");
MODULE_LICENSE("GPL");
module_init(abituguru_init);
module_exit(abituguru_exit);