2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/Documentation/fpga/fpga-region.txt
Alan Tull 5cf0c7f650 fpga: mgr: API change to replace fpga load functions with single function
fpga-mgr has three methods for programming FPGAs, depending on
whether the image is in a scatter gather list, a contiguous
buffer, or a firmware file. This makes it difficult to write
upper layers as the caller has to assume whether the FPGA image
is in a sg table, as a single buffer, or a firmware file.
This commit moves these parameters to struct fpga_image_info
and adds a single function for programming fpgas.

New functions:
* fpga_mgr_load - given fpga manager and struct fpga_image_info,
   program the fpga.

* fpga_image_info_alloc - alloc a struct fpga_image_info.

* fpga_image_info_free - free a struct fpga_image_info.

These three functions are unexported:
* fpga_mgr_buf_load_sg
* fpga_mgr_buf_load
* fpga_mgr_firmware_load

Also use devm_kstrdup to copy firmware_name so we aren't making
assumptions about where it comes from when allocing/freeing the
struct fpga_image_info.

API documentation has been updated and a new document for
FPGA region has been added.

Signed-off-by: Alan Tull <atull@kernel.org>
Acked-by: Moritz Fischer <mdf@kernel.org>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-28 16:30:37 +01:00

96 lines
2.6 KiB
Plaintext

FPGA Regions
Alan Tull 2017
CONTENTS
- Introduction
- The FPGA region API
- Usage example
Introduction
============
This document is meant to be an brief overview of the FPGA region API usage. A
more conceptual look at regions can be found in [1].
For the purposes of this API document, let's just say that a region associates
an FPGA Manager and a bridge (or bridges) with a reprogrammable region of an
FPGA or the whole FPGA. The API provides a way to register a region and to
program a region.
Currently the only layer above fpga-region.c in the kernel is the Device Tree
support (of-fpga-region.c) described in [1]. The DT support layer uses regions
to program the FPGA and then DT to handle enumeration. The common region code
is intended to be used by other schemes that have other ways of accomplishing
enumeration after programming.
An fpga-region can be set up to know the following things:
* which FPGA manager to use to do the programming
* which bridges to disable before programming and enable afterwards.
Additional info needed to program the FPGA image is passed in the struct
fpga_image_info [2] including:
* pointers to the image as either a scatter-gather buffer, a contiguous
buffer, or the name of firmware file
* flags indicating specifics such as whether the image if for partial
reconfiguration.
===================
The FPGA region API
===================
To register or unregister a region:
-----------------------------------
int fpga_region_register(struct device *dev,
struct fpga_region *region);
int fpga_region_unregister(struct fpga_region *region);
An example of usage can be seen in the probe function of [3]
To program an FPGA:
-------------------
int fpga_region_program_fpga(struct fpga_region *region);
This function operates on info passed in the fpga_image_info
(region->info).
This function will attempt to:
* lock the region's mutex
* lock the region's FPGA manager
* build a list of FPGA bridges if a method has been specified to do so
* disable the bridges
* program the FPGA
* re-enable the bridges
* release the locks
=============
Usage example
=============
First, allocate the info struct:
info = fpga_image_info_alloc(dev);
if (!info)
return -ENOMEM;
Set flags as needed, i.e.
info->flags |= FPGA_MGR_PARTIAL_RECONFIG;
Point to your FPGA image, such as:
info->sgt = &sgt;
Add info to region and do the programming:
region->info = info;
ret = fpga_region_program_fpga(region);
Then enumerate whatever hardware has appeared in the FPGA.
--
[1] ../devicetree/bindings/fpga/fpga-region.txt
[2] ./fpga-mgr.txt
[3] ../../drivers/fpga/of-fpga-region.c