mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-12 15:44:01 +08:00
158a962422
Both SLUB and SLAB really did almost exactly the same thing for /proc/slabinfo setup, using duplicate code and per-allocator #ifdef's. This just creates a common CONFIG_SLABINFO that is enabled by both SLUB and SLAB, and shares all the setup code. Maybe SLOB will want this some day too. Reviewed-by: Pekka Enberg <penberg@cs.helsinki.fi> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
281 lines
9.0 KiB
C
281 lines
9.0 KiB
C
/*
|
|
* Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
|
|
*
|
|
* (C) SGI 2006, Christoph Lameter <clameter@sgi.com>
|
|
* Cleaned up and restructured to ease the addition of alternative
|
|
* implementations of SLAB allocators.
|
|
*/
|
|
|
|
#ifndef _LINUX_SLAB_H
|
|
#define _LINUX_SLAB_H
|
|
|
|
#ifdef __KERNEL__
|
|
|
|
#include <linux/gfp.h>
|
|
#include <linux/types.h>
|
|
|
|
/*
|
|
* Flags to pass to kmem_cache_create().
|
|
* The ones marked DEBUG are only valid if CONFIG_SLAB_DEBUG is set.
|
|
*/
|
|
#define SLAB_DEBUG_FREE 0x00000100UL /* DEBUG: Perform (expensive) checks on free */
|
|
#define SLAB_RED_ZONE 0x00000400UL /* DEBUG: Red zone objs in a cache */
|
|
#define SLAB_POISON 0x00000800UL /* DEBUG: Poison objects */
|
|
#define SLAB_HWCACHE_ALIGN 0x00002000UL /* Align objs on cache lines */
|
|
#define SLAB_CACHE_DMA 0x00004000UL /* Use GFP_DMA memory */
|
|
#define SLAB_STORE_USER 0x00010000UL /* DEBUG: Store the last owner for bug hunting */
|
|
#define SLAB_PANIC 0x00040000UL /* Panic if kmem_cache_create() fails */
|
|
#define SLAB_DESTROY_BY_RCU 0x00080000UL /* Defer freeing slabs to RCU */
|
|
#define SLAB_MEM_SPREAD 0x00100000UL /* Spread some memory over cpuset */
|
|
#define SLAB_TRACE 0x00200000UL /* Trace allocations and frees */
|
|
|
|
/* The following flags affect the page allocator grouping pages by mobility */
|
|
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
|
|
#define SLAB_TEMPORARY SLAB_RECLAIM_ACCOUNT /* Objects are short-lived */
|
|
/*
|
|
* ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
|
|
*
|
|
* Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
|
|
*
|
|
* ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
|
|
* Both make kfree a no-op.
|
|
*/
|
|
#define ZERO_SIZE_PTR ((void *)16)
|
|
|
|
#define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
|
|
(unsigned long)ZERO_SIZE_PTR)
|
|
|
|
/*
|
|
* struct kmem_cache related prototypes
|
|
*/
|
|
void __init kmem_cache_init(void);
|
|
int slab_is_available(void);
|
|
|
|
struct kmem_cache *kmem_cache_create(const char *, size_t, size_t,
|
|
unsigned long,
|
|
void (*)(struct kmem_cache *, void *));
|
|
void kmem_cache_destroy(struct kmem_cache *);
|
|
int kmem_cache_shrink(struct kmem_cache *);
|
|
void kmem_cache_free(struct kmem_cache *, void *);
|
|
unsigned int kmem_cache_size(struct kmem_cache *);
|
|
const char *kmem_cache_name(struct kmem_cache *);
|
|
int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr);
|
|
|
|
/*
|
|
* Please use this macro to create slab caches. Simply specify the
|
|
* name of the structure and maybe some flags that are listed above.
|
|
*
|
|
* The alignment of the struct determines object alignment. If you
|
|
* f.e. add ____cacheline_aligned_in_smp to the struct declaration
|
|
* then the objects will be properly aligned in SMP configurations.
|
|
*/
|
|
#define KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
|
|
sizeof(struct __struct), __alignof__(struct __struct),\
|
|
(__flags), NULL)
|
|
|
|
/*
|
|
* The largest kmalloc size supported by the slab allocators is
|
|
* 32 megabyte (2^25) or the maximum allocatable page order if that is
|
|
* less than 32 MB.
|
|
*
|
|
* WARNING: Its not easy to increase this value since the allocators have
|
|
* to do various tricks to work around compiler limitations in order to
|
|
* ensure proper constant folding.
|
|
*/
|
|
#define KMALLOC_SHIFT_HIGH ((MAX_ORDER + PAGE_SHIFT - 1) <= 25 ? \
|
|
(MAX_ORDER + PAGE_SHIFT - 1) : 25)
|
|
|
|
#define KMALLOC_MAX_SIZE (1UL << KMALLOC_SHIFT_HIGH)
|
|
#define KMALLOC_MAX_ORDER (KMALLOC_SHIFT_HIGH - PAGE_SHIFT)
|
|
|
|
/*
|
|
* Common kmalloc functions provided by all allocators
|
|
*/
|
|
void * __must_check krealloc(const void *, size_t, gfp_t);
|
|
void kfree(const void *);
|
|
size_t ksize(const void *);
|
|
|
|
/*
|
|
* Allocator specific definitions. These are mainly used to establish optimized
|
|
* ways to convert kmalloc() calls to kmem_cache_alloc() invocations by
|
|
* selecting the appropriate general cache at compile time.
|
|
*
|
|
* Allocators must define at least:
|
|
*
|
|
* kmem_cache_alloc()
|
|
* __kmalloc()
|
|
* kmalloc()
|
|
*
|
|
* Those wishing to support NUMA must also define:
|
|
*
|
|
* kmem_cache_alloc_node()
|
|
* kmalloc_node()
|
|
*
|
|
* See each allocator definition file for additional comments and
|
|
* implementation notes.
|
|
*/
|
|
#ifdef CONFIG_SLUB
|
|
#include <linux/slub_def.h>
|
|
#elif defined(CONFIG_SLOB)
|
|
#include <linux/slob_def.h>
|
|
#else
|
|
#include <linux/slab_def.h>
|
|
#endif
|
|
|
|
/**
|
|
* kcalloc - allocate memory for an array. The memory is set to zero.
|
|
* @n: number of elements.
|
|
* @size: element size.
|
|
* @flags: the type of memory to allocate.
|
|
*
|
|
* The @flags argument may be one of:
|
|
*
|
|
* %GFP_USER - Allocate memory on behalf of user. May sleep.
|
|
*
|
|
* %GFP_KERNEL - Allocate normal kernel ram. May sleep.
|
|
*
|
|
* %GFP_ATOMIC - Allocation will not sleep. May use emergency pools.
|
|
* For example, use this inside interrupt handlers.
|
|
*
|
|
* %GFP_HIGHUSER - Allocate pages from high memory.
|
|
*
|
|
* %GFP_NOIO - Do not do any I/O at all while trying to get memory.
|
|
*
|
|
* %GFP_NOFS - Do not make any fs calls while trying to get memory.
|
|
*
|
|
* %GFP_NOWAIT - Allocation will not sleep.
|
|
*
|
|
* %GFP_THISNODE - Allocate node-local memory only.
|
|
*
|
|
* %GFP_DMA - Allocation suitable for DMA.
|
|
* Should only be used for kmalloc() caches. Otherwise, use a
|
|
* slab created with SLAB_DMA.
|
|
*
|
|
* Also it is possible to set different flags by OR'ing
|
|
* in one or more of the following additional @flags:
|
|
*
|
|
* %__GFP_COLD - Request cache-cold pages instead of
|
|
* trying to return cache-warm pages.
|
|
*
|
|
* %__GFP_HIGH - This allocation has high priority and may use emergency pools.
|
|
*
|
|
* %__GFP_NOFAIL - Indicate that this allocation is in no way allowed to fail
|
|
* (think twice before using).
|
|
*
|
|
* %__GFP_NORETRY - If memory is not immediately available,
|
|
* then give up at once.
|
|
*
|
|
* %__GFP_NOWARN - If allocation fails, don't issue any warnings.
|
|
*
|
|
* %__GFP_REPEAT - If allocation fails initially, try once more before failing.
|
|
*
|
|
* There are other flags available as well, but these are not intended
|
|
* for general use, and so are not documented here. For a full list of
|
|
* potential flags, always refer to linux/gfp.h.
|
|
*/
|
|
static inline void *kcalloc(size_t n, size_t size, gfp_t flags)
|
|
{
|
|
if (n != 0 && size > ULONG_MAX / n)
|
|
return NULL;
|
|
return __kmalloc(n * size, flags | __GFP_ZERO);
|
|
}
|
|
|
|
#if !defined(CONFIG_NUMA) && !defined(CONFIG_SLOB)
|
|
/**
|
|
* kmalloc_node - allocate memory from a specific node
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate (see kcalloc).
|
|
* @node: node to allocate from.
|
|
*
|
|
* kmalloc() for non-local nodes, used to allocate from a specific node
|
|
* if available. Equivalent to kmalloc() in the non-NUMA single-node
|
|
* case.
|
|
*/
|
|
static inline void *kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
return kmalloc(size, flags);
|
|
}
|
|
|
|
static inline void *__kmalloc_node(size_t size, gfp_t flags, int node)
|
|
{
|
|
return __kmalloc(size, flags);
|
|
}
|
|
|
|
void *kmem_cache_alloc(struct kmem_cache *, gfp_t);
|
|
|
|
static inline void *kmem_cache_alloc_node(struct kmem_cache *cachep,
|
|
gfp_t flags, int node)
|
|
{
|
|
return kmem_cache_alloc(cachep, flags);
|
|
}
|
|
#endif /* !CONFIG_NUMA && !CONFIG_SLOB */
|
|
|
|
/*
|
|
* kmalloc_track_caller is a special version of kmalloc that records the
|
|
* calling function of the routine calling it for slab leak tracking instead
|
|
* of just the calling function (confusing, eh?).
|
|
* It's useful when the call to kmalloc comes from a widely-used standard
|
|
* allocator where we care about the real place the memory allocation
|
|
* request comes from.
|
|
*/
|
|
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
|
|
extern void *__kmalloc_track_caller(size_t, gfp_t, void*);
|
|
#define kmalloc_track_caller(size, flags) \
|
|
__kmalloc_track_caller(size, flags, __builtin_return_address(0))
|
|
#else
|
|
#define kmalloc_track_caller(size, flags) \
|
|
__kmalloc(size, flags)
|
|
#endif /* DEBUG_SLAB */
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* kmalloc_node_track_caller is a special version of kmalloc_node that
|
|
* records the calling function of the routine calling it for slab leak
|
|
* tracking instead of just the calling function (confusing, eh?).
|
|
* It's useful when the call to kmalloc_node comes from a widely-used
|
|
* standard allocator where we care about the real place the memory
|
|
* allocation request comes from.
|
|
*/
|
|
#if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB)
|
|
extern void *__kmalloc_node_track_caller(size_t, gfp_t, int, void *);
|
|
#define kmalloc_node_track_caller(size, flags, node) \
|
|
__kmalloc_node_track_caller(size, flags, node, \
|
|
__builtin_return_address(0))
|
|
#else
|
|
#define kmalloc_node_track_caller(size, flags, node) \
|
|
__kmalloc_node(size, flags, node)
|
|
#endif
|
|
|
|
#else /* CONFIG_NUMA */
|
|
|
|
#define kmalloc_node_track_caller(size, flags, node) \
|
|
kmalloc_track_caller(size, flags)
|
|
|
|
#endif /* DEBUG_SLAB */
|
|
|
|
/*
|
|
* Shortcuts
|
|
*/
|
|
static inline void *kmem_cache_zalloc(struct kmem_cache *k, gfp_t flags)
|
|
{
|
|
return kmem_cache_alloc(k, flags | __GFP_ZERO);
|
|
}
|
|
|
|
/**
|
|
* kzalloc - allocate memory. The memory is set to zero.
|
|
* @size: how many bytes of memory are required.
|
|
* @flags: the type of memory to allocate (see kmalloc).
|
|
*/
|
|
static inline void *kzalloc(size_t size, gfp_t flags)
|
|
{
|
|
return kmalloc(size, flags | __GFP_ZERO);
|
|
}
|
|
|
|
#ifdef CONFIG_SLABINFO
|
|
extern const struct seq_operations slabinfo_op;
|
|
ssize_t slabinfo_write(struct file *, const char __user *, size_t, loff_t *);
|
|
#endif
|
|
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _LINUX_SLAB_H */
|