2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/drivers/net/wireless/libertas/if_spi.c
Bill Pemberton fbdb7fcefe libertas: remove __dev* attributes
CONFIG_HOTPLUG is going away as an option.  As result the __dev*
markings will be going away.

Remove use of __devinit, __devexit_p, __devinitdata, __devinitconst,
and __devexit.

Signed-off-by: Bill Pemberton <wfp5p@virginia.edu>
Cc: Dan Williams <dcbw@redhat.com>
Cc: libertas-dev@lists.infradead.org
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Signed-off-by: John W. Linville <linville@tuxdriver.com>
2012-12-06 15:04:57 -05:00

1325 lines
32 KiB
C

/*
* linux/drivers/net/wireless/libertas/if_spi.c
*
* Driver for Marvell SPI WLAN cards.
*
* Copyright 2008 Analog Devices Inc.
*
* Authors:
* Andrey Yurovsky <andrey@cozybit.com>
* Colin McCabe <colin@cozybit.com>
*
* Inspired by if_sdio.c, Copyright 2007-2008 Pierre Ossman
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/hardirq.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/firmware.h>
#include <linux/jiffies.h>
#include <linux/list.h>
#include <linux/netdevice.h>
#include <linux/slab.h>
#include <linux/spi/libertas_spi.h>
#include <linux/spi/spi.h>
#include "host.h"
#include "decl.h"
#include "defs.h"
#include "dev.h"
#include "if_spi.h"
struct if_spi_packet {
struct list_head list;
u16 blen;
u8 buffer[0] __attribute__((aligned(4)));
};
struct if_spi_card {
struct spi_device *spi;
struct lbs_private *priv;
struct libertas_spi_platform_data *pdata;
/* The card ID and card revision, as reported by the hardware. */
u16 card_id;
u8 card_rev;
/* The last time that we initiated an SPU operation */
unsigned long prev_xfer_time;
int use_dummy_writes;
unsigned long spu_port_delay;
unsigned long spu_reg_delay;
/* Handles all SPI communication (except for FW load) */
struct workqueue_struct *workqueue;
struct work_struct packet_work;
struct work_struct resume_work;
u8 cmd_buffer[IF_SPI_CMD_BUF_SIZE];
/* A buffer of incoming packets from libertas core.
* Since we can't sleep in hw_host_to_card, we have to buffer
* them. */
struct list_head cmd_packet_list;
struct list_head data_packet_list;
/* Protects cmd_packet_list and data_packet_list */
spinlock_t buffer_lock;
/* True is card suspended */
u8 suspended;
};
static void free_if_spi_card(struct if_spi_card *card)
{
struct list_head *cursor, *next;
struct if_spi_packet *packet;
list_for_each_safe(cursor, next, &card->cmd_packet_list) {
packet = container_of(cursor, struct if_spi_packet, list);
list_del(&packet->list);
kfree(packet);
}
list_for_each_safe(cursor, next, &card->data_packet_list) {
packet = container_of(cursor, struct if_spi_packet, list);
list_del(&packet->list);
kfree(packet);
}
spi_set_drvdata(card->spi, NULL);
kfree(card);
}
#define MODEL_8385 0x04
#define MODEL_8686 0x0b
#define MODEL_8688 0x10
static const struct lbs_fw_table fw_table[] = {
{ MODEL_8385, "libertas/gspi8385_helper.bin", "libertas/gspi8385.bin" },
{ MODEL_8385, "libertas/gspi8385_hlp.bin", "libertas/gspi8385.bin" },
{ MODEL_8686, "libertas/gspi8686_v9_helper.bin", "libertas/gspi8686_v9.bin" },
{ MODEL_8686, "libertas/gspi8686_hlp.bin", "libertas/gspi8686.bin" },
{ MODEL_8688, "libertas/gspi8688_helper.bin", "libertas/gspi8688.bin" },
{ 0, NULL, NULL }
};
MODULE_FIRMWARE("libertas/gspi8385_helper.bin");
MODULE_FIRMWARE("libertas/gspi8385_hlp.bin");
MODULE_FIRMWARE("libertas/gspi8385.bin");
MODULE_FIRMWARE("libertas/gspi8686_v9_helper.bin");
MODULE_FIRMWARE("libertas/gspi8686_v9.bin");
MODULE_FIRMWARE("libertas/gspi8686_hlp.bin");
MODULE_FIRMWARE("libertas/gspi8686.bin");
MODULE_FIRMWARE("libertas/gspi8688_helper.bin");
MODULE_FIRMWARE("libertas/gspi8688.bin");
/*
* SPI Interface Unit Routines
*
* The SPU sits between the host and the WLAN module.
* All communication with the firmware is through SPU transactions.
*
* First we have to put a SPU register name on the bus. Then we can
* either read from or write to that register.
*
*/
static void spu_transaction_init(struct if_spi_card *card)
{
if (!time_after(jiffies, card->prev_xfer_time + 1)) {
/* Unfortunately, the SPU requires a delay between successive
* transactions. If our last transaction was more than a jiffy
* ago, we have obviously already delayed enough.
* If not, we have to busy-wait to be on the safe side. */
ndelay(400);
}
}
static void spu_transaction_finish(struct if_spi_card *card)
{
card->prev_xfer_time = jiffies;
}
/*
* Write out a byte buffer to an SPI register,
* using a series of 16-bit transfers.
*/
static int spu_write(struct if_spi_card *card, u16 reg, const u8 *buf, int len)
{
int err = 0;
__le16 reg_out = cpu_to_le16(reg | IF_SPI_WRITE_OPERATION_MASK);
struct spi_message m;
struct spi_transfer reg_trans;
struct spi_transfer data_trans;
spi_message_init(&m);
memset(&reg_trans, 0, sizeof(reg_trans));
memset(&data_trans, 0, sizeof(data_trans));
/* You must give an even number of bytes to the SPU, even if it
* doesn't care about the last one. */
BUG_ON(len & 0x1);
spu_transaction_init(card);
/* write SPU register index */
reg_trans.tx_buf = &reg_out;
reg_trans.len = sizeof(reg_out);
data_trans.tx_buf = buf;
data_trans.len = len;
spi_message_add_tail(&reg_trans, &m);
spi_message_add_tail(&data_trans, &m);
err = spi_sync(card->spi, &m);
spu_transaction_finish(card);
return err;
}
static inline int spu_write_u16(struct if_spi_card *card, u16 reg, u16 val)
{
__le16 buff;
buff = cpu_to_le16(val);
return spu_write(card, reg, (u8 *)&buff, sizeof(u16));
}
static inline int spu_reg_is_port_reg(u16 reg)
{
switch (reg) {
case IF_SPI_IO_RDWRPORT_REG:
case IF_SPI_CMD_RDWRPORT_REG:
case IF_SPI_DATA_RDWRPORT_REG:
return 1;
default:
return 0;
}
}
static int spu_read(struct if_spi_card *card, u16 reg, u8 *buf, int len)
{
unsigned int delay;
int err = 0;
__le16 reg_out = cpu_to_le16(reg | IF_SPI_READ_OPERATION_MASK);
struct spi_message m;
struct spi_transfer reg_trans;
struct spi_transfer dummy_trans;
struct spi_transfer data_trans;
/*
* You must take an even number of bytes from the SPU, even if you
* don't care about the last one.
*/
BUG_ON(len & 0x1);
spu_transaction_init(card);
spi_message_init(&m);
memset(&reg_trans, 0, sizeof(reg_trans));
memset(&dummy_trans, 0, sizeof(dummy_trans));
memset(&data_trans, 0, sizeof(data_trans));
/* write SPU register index */
reg_trans.tx_buf = &reg_out;
reg_trans.len = sizeof(reg_out);
spi_message_add_tail(&reg_trans, &m);
delay = spu_reg_is_port_reg(reg) ? card->spu_port_delay :
card->spu_reg_delay;
if (card->use_dummy_writes) {
/* Clock in dummy cycles while the SPU fills the FIFO */
dummy_trans.len = delay / 8;
spi_message_add_tail(&dummy_trans, &m);
} else {
/* Busy-wait while the SPU fills the FIFO */
reg_trans.delay_usecs =
DIV_ROUND_UP((100 + (delay * 10)), 1000);
}
/* read in data */
data_trans.rx_buf = buf;
data_trans.len = len;
spi_message_add_tail(&data_trans, &m);
err = spi_sync(card->spi, &m);
spu_transaction_finish(card);
return err;
}
/* Read 16 bits from an SPI register */
static inline int spu_read_u16(struct if_spi_card *card, u16 reg, u16 *val)
{
__le16 buf;
int ret;
ret = spu_read(card, reg, (u8 *)&buf, sizeof(buf));
if (ret == 0)
*val = le16_to_cpup(&buf);
return ret;
}
/*
* Read 32 bits from an SPI register.
* The low 16 bits are read first.
*/
static int spu_read_u32(struct if_spi_card *card, u16 reg, u32 *val)
{
__le32 buf;
int err;
err = spu_read(card, reg, (u8 *)&buf, sizeof(buf));
if (!err)
*val = le32_to_cpup(&buf);
return err;
}
/*
* Keep reading 16 bits from an SPI register until you get the correct result.
*
* If mask = 0, the correct result is any non-zero number.
* If mask != 0, the correct result is any number where
* number & target_mask == target
*
* Returns -ETIMEDOUT if a second passes without the correct result.
*/
static int spu_wait_for_u16(struct if_spi_card *card, u16 reg,
u16 target_mask, u16 target)
{
int err;
unsigned long timeout = jiffies + 5*HZ;
while (1) {
u16 val;
err = spu_read_u16(card, reg, &val);
if (err)
return err;
if (target_mask) {
if ((val & target_mask) == target)
return 0;
} else {
if (val)
return 0;
}
udelay(100);
if (time_after(jiffies, timeout)) {
pr_err("%s: timeout with val=%02x, target_mask=%02x, target=%02x\n",
__func__, val, target_mask, target);
return -ETIMEDOUT;
}
}
}
/*
* Read 16 bits from an SPI register until you receive a specific value.
* Returns -ETIMEDOUT if a 4 tries pass without success.
*/
static int spu_wait_for_u32(struct if_spi_card *card, u32 reg, u32 target)
{
int err, try;
for (try = 0; try < 4; ++try) {
u32 val = 0;
err = spu_read_u32(card, reg, &val);
if (err)
return err;
if (val == target)
return 0;
mdelay(100);
}
return -ETIMEDOUT;
}
static int spu_set_interrupt_mode(struct if_spi_card *card,
int suppress_host_int,
int auto_int)
{
int err = 0;
/*
* We can suppress a host interrupt by clearing the appropriate
* bit in the "host interrupt status mask" register
*/
if (suppress_host_int) {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0);
if (err)
return err;
} else {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG,
IF_SPI_HISM_TX_DOWNLOAD_RDY |
IF_SPI_HISM_RX_UPLOAD_RDY |
IF_SPI_HISM_CMD_DOWNLOAD_RDY |
IF_SPI_HISM_CARDEVENT |
IF_SPI_HISM_CMD_UPLOAD_RDY);
if (err)
return err;
}
/*
* If auto-interrupts are on, the completion of certain transactions
* will trigger an interrupt automatically. If auto-interrupts
* are off, we need to set the "Card Interrupt Cause" register to
* trigger a card interrupt.
*/
if (auto_int) {
err = spu_write_u16(card, IF_SPI_HOST_INT_CTRL_REG,
IF_SPI_HICT_TX_DOWNLOAD_OVER_AUTO |
IF_SPI_HICT_RX_UPLOAD_OVER_AUTO |
IF_SPI_HICT_CMD_DOWNLOAD_OVER_AUTO |
IF_SPI_HICT_CMD_UPLOAD_OVER_AUTO);
if (err)
return err;
} else {
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_MASK_REG, 0);
if (err)
return err;
}
return err;
}
static int spu_get_chip_revision(struct if_spi_card *card,
u16 *card_id, u8 *card_rev)
{
int err = 0;
u32 dev_ctrl;
err = spu_read_u32(card, IF_SPI_DEVICEID_CTRL_REG, &dev_ctrl);
if (err)
return err;
*card_id = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_ID(dev_ctrl);
*card_rev = IF_SPI_DEVICEID_CTRL_REG_TO_CARD_REV(dev_ctrl);
return err;
}
static int spu_set_bus_mode(struct if_spi_card *card, u16 mode)
{
int err = 0;
u16 rval;
/* set bus mode */
err = spu_write_u16(card, IF_SPI_SPU_BUS_MODE_REG, mode);
if (err)
return err;
/* Check that we were able to read back what we just wrote. */
err = spu_read_u16(card, IF_SPI_SPU_BUS_MODE_REG, &rval);
if (err)
return err;
if ((rval & 0xF) != mode) {
pr_err("Can't read bus mode register\n");
return -EIO;
}
return 0;
}
static int spu_init(struct if_spi_card *card, int use_dummy_writes)
{
int err = 0;
u32 delay;
/*
* We have to start up in timed delay mode so that we can safely
* read the Delay Read Register.
*/
card->use_dummy_writes = 0;
err = spu_set_bus_mode(card,
IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING |
IF_SPI_BUS_MODE_DELAY_METHOD_TIMED |
IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA);
if (err)
return err;
card->spu_port_delay = 1000;
card->spu_reg_delay = 1000;
err = spu_read_u32(card, IF_SPI_DELAY_READ_REG, &delay);
if (err)
return err;
card->spu_port_delay = delay & 0x0000ffff;
card->spu_reg_delay = (delay & 0xffff0000) >> 16;
/* If dummy clock delay mode has been requested, switch to it now */
if (use_dummy_writes) {
card->use_dummy_writes = 1;
err = spu_set_bus_mode(card,
IF_SPI_BUS_MODE_SPI_CLOCK_PHASE_RISING |
IF_SPI_BUS_MODE_DELAY_METHOD_DUMMY_CLOCK |
IF_SPI_BUS_MODE_16_BIT_ADDRESS_16_BIT_DATA);
if (err)
return err;
}
lbs_deb_spi("Initialized SPU unit. "
"spu_port_delay=0x%04lx, spu_reg_delay=0x%04lx\n",
card->spu_port_delay, card->spu_reg_delay);
return err;
}
/*
* Firmware Loading
*/
static int if_spi_prog_helper_firmware(struct if_spi_card *card,
const struct firmware *firmware)
{
int err = 0;
int bytes_remaining;
const u8 *fw;
u8 temp[HELPER_FW_LOAD_CHUNK_SZ];
lbs_deb_enter(LBS_DEB_SPI);
err = spu_set_interrupt_mode(card, 1, 0);
if (err)
goto out;
bytes_remaining = firmware->size;
fw = firmware->data;
/* Load helper firmware image */
while (bytes_remaining > 0) {
/*
* Scratch pad 1 should contain the number of bytes we
* want to download to the firmware
*/
err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG,
HELPER_FW_LOAD_CHUNK_SZ);
if (err)
goto out;
err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG,
IF_SPI_HIST_CMD_DOWNLOAD_RDY,
IF_SPI_HIST_CMD_DOWNLOAD_RDY);
if (err)
goto out;
/*
* Feed the data into the command read/write port reg
* in chunks of 64 bytes
*/
memset(temp, 0, sizeof(temp));
memcpy(temp, fw,
min(bytes_remaining, HELPER_FW_LOAD_CHUNK_SZ));
mdelay(10);
err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG,
temp, HELPER_FW_LOAD_CHUNK_SZ);
if (err)
goto out;
/* Interrupt the boot code */
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto out;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
if (err)
goto out;
bytes_remaining -= HELPER_FW_LOAD_CHUNK_SZ;
fw += HELPER_FW_LOAD_CHUNK_SZ;
}
/*
* Once the helper / single stage firmware download is complete,
* write 0 to scratch pad 1 and interrupt the
* bootloader. This completes the helper download.
*/
err = spu_write_u16(card, IF_SPI_SCRATCH_1_REG, FIRMWARE_DNLD_OK);
if (err)
goto out;
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto out;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
out:
if (err)
pr_err("failed to load helper firmware (err=%d)\n", err);
lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err);
return err;
}
/*
* Returns the length of the next packet the firmware expects us to send.
* Sets crc_err if the previous transfer had a CRC error.
*/
static int if_spi_prog_main_firmware_check_len(struct if_spi_card *card,
int *crc_err)
{
u16 len;
int err = 0;
/*
* wait until the host interrupt status register indicates
* that we are ready to download
*/
err = spu_wait_for_u16(card, IF_SPI_HOST_INT_STATUS_REG,
IF_SPI_HIST_CMD_DOWNLOAD_RDY,
IF_SPI_HIST_CMD_DOWNLOAD_RDY);
if (err) {
pr_err("timed out waiting for host_int_status\n");
return err;
}
/* Ask the device how many bytes of firmware it wants. */
err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len);
if (err)
return err;
if (len > IF_SPI_CMD_BUF_SIZE) {
pr_err("firmware load device requested a larger transfer than we are prepared to handle (len = %d)\n",
len);
return -EIO;
}
if (len & 0x1) {
lbs_deb_spi("%s: crc error\n", __func__);
len &= ~0x1;
*crc_err = 1;
} else
*crc_err = 0;
return len;
}
static int if_spi_prog_main_firmware(struct if_spi_card *card,
const struct firmware *firmware)
{
struct lbs_private *priv = card->priv;
int len, prev_len;
int bytes, crc_err = 0, err = 0;
const u8 *fw;
u16 num_crc_errs;
lbs_deb_enter(LBS_DEB_SPI);
err = spu_set_interrupt_mode(card, 1, 0);
if (err)
goto out;
err = spu_wait_for_u16(card, IF_SPI_SCRATCH_1_REG, 0, 0);
if (err) {
netdev_err(priv->dev,
"%s: timed out waiting for initial scratch reg = 0\n",
__func__);
goto out;
}
num_crc_errs = 0;
prev_len = 0;
bytes = firmware->size;
fw = firmware->data;
while ((len = if_spi_prog_main_firmware_check_len(card, &crc_err))) {
if (len < 0) {
err = len;
goto out;
}
if (bytes < 0) {
/*
* If there are no more bytes left, we would normally
* expect to have terminated with len = 0
*/
netdev_err(priv->dev,
"Firmware load wants more bytes than we have to offer.\n");
break;
}
if (crc_err) {
/* Previous transfer failed. */
if (++num_crc_errs > MAX_MAIN_FW_LOAD_CRC_ERR) {
pr_err("Too many CRC errors encountered in firmware load.\n");
err = -EIO;
goto out;
}
} else {
/* Previous transfer succeeded. Advance counters. */
bytes -= prev_len;
fw += prev_len;
}
if (bytes < len) {
memset(card->cmd_buffer, 0, len);
memcpy(card->cmd_buffer, fw, bytes);
} else
memcpy(card->cmd_buffer, fw, len);
err = spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG, 0);
if (err)
goto out;
err = spu_write(card, IF_SPI_CMD_RDWRPORT_REG,
card->cmd_buffer, len);
if (err)
goto out;
err = spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG ,
IF_SPI_CIC_CMD_DOWNLOAD_OVER);
if (err)
goto out;
prev_len = len;
}
if (bytes > prev_len) {
pr_err("firmware load wants fewer bytes than we have to offer\n");
}
/* Confirm firmware download */
err = spu_wait_for_u32(card, IF_SPI_SCRATCH_4_REG,
SUCCESSFUL_FW_DOWNLOAD_MAGIC);
if (err) {
pr_err("failed to confirm the firmware download\n");
goto out;
}
out:
if (err)
pr_err("failed to load firmware (err=%d)\n", err);
lbs_deb_leave_args(LBS_DEB_SPI, "err %d", err);
return err;
}
/*
* SPI Transfer Thread
*
* The SPI worker handles all SPI transfers, so there is no need for a lock.
*/
/* Move a command from the card to the host */
static int if_spi_c2h_cmd(struct if_spi_card *card)
{
struct lbs_private *priv = card->priv;
unsigned long flags;
int err = 0;
u16 len;
u8 i;
/*
* We need a buffer big enough to handle whatever people send to
* hw_host_to_card
*/
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_CMD_BUFFER_SIZE);
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE < LBS_UPLD_SIZE);
/*
* It's just annoying if the buffer size isn't a multiple of 4, because
* then we might have len < IF_SPI_CMD_BUF_SIZE but
* ALIGN(len, 4) > IF_SPI_CMD_BUF_SIZE
*/
BUILD_BUG_ON(IF_SPI_CMD_BUF_SIZE % 4 != 0);
lbs_deb_enter(LBS_DEB_SPI);
/* How many bytes are there to read? */
err = spu_read_u16(card, IF_SPI_SCRATCH_2_REG, &len);
if (err)
goto out;
if (!len) {
netdev_err(priv->dev, "%s: error: card has no data for host\n",
__func__);
err = -EINVAL;
goto out;
} else if (len > IF_SPI_CMD_BUF_SIZE) {
netdev_err(priv->dev,
"%s: error: response packet too large: %d bytes, but maximum is %d\n",
__func__, len, IF_SPI_CMD_BUF_SIZE);
err = -EINVAL;
goto out;
}
/* Read the data from the WLAN module into our command buffer */
err = spu_read(card, IF_SPI_CMD_RDWRPORT_REG,
card->cmd_buffer, ALIGN(len, 4));
if (err)
goto out;
spin_lock_irqsave(&priv->driver_lock, flags);
i = (priv->resp_idx == 0) ? 1 : 0;
BUG_ON(priv->resp_len[i]);
priv->resp_len[i] = len;
memcpy(priv->resp_buf[i], card->cmd_buffer, len);
lbs_notify_command_response(priv, i);
spin_unlock_irqrestore(&priv->driver_lock, flags);
out:
if (err)
netdev_err(priv->dev, "%s: err=%d\n", __func__, err);
lbs_deb_leave(LBS_DEB_SPI);
return err;
}
/* Move data from the card to the host */
static int if_spi_c2h_data(struct if_spi_card *card)
{
struct lbs_private *priv = card->priv;
struct sk_buff *skb;
char *data;
u16 len;
int err = 0;
lbs_deb_enter(LBS_DEB_SPI);
/* How many bytes are there to read? */
err = spu_read_u16(card, IF_SPI_SCRATCH_1_REG, &len);
if (err)
goto out;
if (!len) {
netdev_err(priv->dev, "%s: error: card has no data for host\n",
__func__);
err = -EINVAL;
goto out;
} else if (len > MRVDRV_ETH_RX_PACKET_BUFFER_SIZE) {
netdev_err(priv->dev,
"%s: error: card has %d bytes of data, but our maximum skb size is %zu\n",
__func__, len, MRVDRV_ETH_RX_PACKET_BUFFER_SIZE);
err = -EINVAL;
goto out;
}
/* TODO: should we allocate a smaller skb if we have less data? */
skb = dev_alloc_skb(MRVDRV_ETH_RX_PACKET_BUFFER_SIZE);
if (!skb) {
err = -ENOBUFS;
goto out;
}
skb_reserve(skb, IPFIELD_ALIGN_OFFSET);
data = skb_put(skb, len);
/* Read the data from the WLAN module into our skb... */
err = spu_read(card, IF_SPI_DATA_RDWRPORT_REG, data, ALIGN(len, 4));
if (err)
goto free_skb;
/* pass the SKB to libertas */
err = lbs_process_rxed_packet(card->priv, skb);
if (err)
goto free_skb;
/* success */
goto out;
free_skb:
dev_kfree_skb(skb);
out:
if (err)
netdev_err(priv->dev, "%s: err=%d\n", __func__, err);
lbs_deb_leave(LBS_DEB_SPI);
return err;
}
/* Move data or a command from the host to the card. */
static void if_spi_h2c(struct if_spi_card *card,
struct if_spi_packet *packet, int type)
{
struct lbs_private *priv = card->priv;
int err = 0;
u16 int_type, port_reg;
switch (type) {
case MVMS_DAT:
int_type = IF_SPI_CIC_TX_DOWNLOAD_OVER;
port_reg = IF_SPI_DATA_RDWRPORT_REG;
break;
case MVMS_CMD:
int_type = IF_SPI_CIC_CMD_DOWNLOAD_OVER;
port_reg = IF_SPI_CMD_RDWRPORT_REG;
break;
default:
netdev_err(priv->dev, "can't transfer buffer of type %d\n",
type);
err = -EINVAL;
goto out;
}
/* Write the data to the card */
err = spu_write(card, port_reg, packet->buffer, packet->blen);
if (err)
goto out;
out:
kfree(packet);
if (err)
netdev_err(priv->dev, "%s: error %d\n", __func__, err);
}
/* Inform the host about a card event */
static void if_spi_e2h(struct if_spi_card *card)
{
int err = 0;
u32 cause;
struct lbs_private *priv = card->priv;
err = spu_read_u32(card, IF_SPI_SCRATCH_3_REG, &cause);
if (err)
goto out;
/* re-enable the card event interrupt */
spu_write_u16(card, IF_SPI_HOST_INT_STATUS_REG,
~IF_SPI_HICU_CARD_EVENT);
/* generate a card interrupt */
spu_write_u16(card, IF_SPI_CARD_INT_CAUSE_REG, IF_SPI_CIC_HOST_EVENT);
lbs_queue_event(priv, cause & 0xff);
out:
if (err)
netdev_err(priv->dev, "%s: error %d\n", __func__, err);
}
static void if_spi_host_to_card_worker(struct work_struct *work)
{
int err;
struct if_spi_card *card;
u16 hiStatus;
unsigned long flags;
struct if_spi_packet *packet;
struct lbs_private *priv;
card = container_of(work, struct if_spi_card, packet_work);
priv = card->priv;
lbs_deb_enter(LBS_DEB_SPI);
/*
* Read the host interrupt status register to see what we
* can do.
*/
err = spu_read_u16(card, IF_SPI_HOST_INT_STATUS_REG,
&hiStatus);
if (err) {
netdev_err(priv->dev, "I/O error\n");
goto err;
}
if (hiStatus & IF_SPI_HIST_CMD_UPLOAD_RDY) {
err = if_spi_c2h_cmd(card);
if (err)
goto err;
}
if (hiStatus & IF_SPI_HIST_RX_UPLOAD_RDY) {
err = if_spi_c2h_data(card);
if (err)
goto err;
}
/*
* workaround: in PS mode, the card does not set the Command
* Download Ready bit, but it sets TX Download Ready.
*/
if (hiStatus & IF_SPI_HIST_CMD_DOWNLOAD_RDY ||
(card->priv->psstate != PS_STATE_FULL_POWER &&
(hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY))) {
/*
* This means two things. First of all,
* if there was a previous command sent, the card has
* successfully received it.
* Secondly, it is now ready to download another
* command.
*/
lbs_host_to_card_done(card->priv);
/* Do we have any command packets from the host to send? */
packet = NULL;
spin_lock_irqsave(&card->buffer_lock, flags);
if (!list_empty(&card->cmd_packet_list)) {
packet = (struct if_spi_packet *)(card->
cmd_packet_list.next);
list_del(&packet->list);
}
spin_unlock_irqrestore(&card->buffer_lock, flags);
if (packet)
if_spi_h2c(card, packet, MVMS_CMD);
}
if (hiStatus & IF_SPI_HIST_TX_DOWNLOAD_RDY) {
/* Do we have any data packets from the host to send? */
packet = NULL;
spin_lock_irqsave(&card->buffer_lock, flags);
if (!list_empty(&card->data_packet_list)) {
packet = (struct if_spi_packet *)(card->
data_packet_list.next);
list_del(&packet->list);
}
spin_unlock_irqrestore(&card->buffer_lock, flags);
if (packet)
if_spi_h2c(card, packet, MVMS_DAT);
}
if (hiStatus & IF_SPI_HIST_CARD_EVENT)
if_spi_e2h(card);
err:
if (err)
netdev_err(priv->dev, "%s: got error %d\n", __func__, err);
lbs_deb_leave(LBS_DEB_SPI);
}
/*
* Host to Card
*
* Called from Libertas to transfer some data to the WLAN device
* We can't sleep here.
*/
static int if_spi_host_to_card(struct lbs_private *priv,
u8 type, u8 *buf, u16 nb)
{
int err = 0;
unsigned long flags;
struct if_spi_card *card = priv->card;
struct if_spi_packet *packet;
u16 blen;
lbs_deb_enter_args(LBS_DEB_SPI, "type %d, bytes %d", type, nb);
if (nb == 0) {
netdev_err(priv->dev, "%s: invalid size requested: %d\n",
__func__, nb);
err = -EINVAL;
goto out;
}
blen = ALIGN(nb, 4);
packet = kzalloc(sizeof(struct if_spi_packet) + blen, GFP_ATOMIC);
if (!packet) {
err = -ENOMEM;
goto out;
}
packet->blen = blen;
memcpy(packet->buffer, buf, nb);
memset(packet->buffer + nb, 0, blen - nb);
switch (type) {
case MVMS_CMD:
priv->dnld_sent = DNLD_CMD_SENT;
spin_lock_irqsave(&card->buffer_lock, flags);
list_add_tail(&packet->list, &card->cmd_packet_list);
spin_unlock_irqrestore(&card->buffer_lock, flags);
break;
case MVMS_DAT:
priv->dnld_sent = DNLD_DATA_SENT;
spin_lock_irqsave(&card->buffer_lock, flags);
list_add_tail(&packet->list, &card->data_packet_list);
spin_unlock_irqrestore(&card->buffer_lock, flags);
break;
default:
kfree(packet);
netdev_err(priv->dev, "can't transfer buffer of type %d\n",
type);
err = -EINVAL;
break;
}
/* Queue spi xfer work */
queue_work(card->workqueue, &card->packet_work);
out:
lbs_deb_leave_args(LBS_DEB_SPI, "err=%d", err);
return err;
}
/*
* Host Interrupts
*
* Service incoming interrupts from the WLAN device. We can't sleep here, so
* don't try to talk on the SPI bus, just queue the SPI xfer work.
*/
static irqreturn_t if_spi_host_interrupt(int irq, void *dev_id)
{
struct if_spi_card *card = dev_id;
queue_work(card->workqueue, &card->packet_work);
return IRQ_HANDLED;
}
/*
* SPI callbacks
*/
static int if_spi_init_card(struct if_spi_card *card)
{
struct lbs_private *priv = card->priv;
int err, i;
u32 scratch;
const struct firmware *helper = NULL;
const struct firmware *mainfw = NULL;
lbs_deb_enter(LBS_DEB_SPI);
err = spu_init(card, card->pdata->use_dummy_writes);
if (err)
goto out;
err = spu_get_chip_revision(card, &card->card_id, &card->card_rev);
if (err)
goto out;
err = spu_read_u32(card, IF_SPI_SCRATCH_4_REG, &scratch);
if (err)
goto out;
if (scratch == SUCCESSFUL_FW_DOWNLOAD_MAGIC)
lbs_deb_spi("Firmware is already loaded for "
"Marvell WLAN 802.11 adapter\n");
else {
/* Check if we support this card */
for (i = 0; i < ARRAY_SIZE(fw_table); i++) {
if (card->card_id == fw_table[i].model)
break;
}
if (i == ARRAY_SIZE(fw_table)) {
netdev_err(priv->dev, "Unsupported chip_id: 0x%02x\n",
card->card_id);
err = -ENODEV;
goto out;
}
err = lbs_get_firmware(&card->spi->dev, card->card_id,
&fw_table[0], &helper, &mainfw);
if (err) {
netdev_err(priv->dev, "failed to find firmware (%d)\n",
err);
goto out;
}
lbs_deb_spi("Initializing FW for Marvell WLAN 802.11 adapter "
"(chip_id = 0x%04x, chip_rev = 0x%02x) "
"attached to SPI bus_num %d, chip_select %d. "
"spi->max_speed_hz=%d\n",
card->card_id, card->card_rev,
card->spi->master->bus_num,
card->spi->chip_select,
card->spi->max_speed_hz);
err = if_spi_prog_helper_firmware(card, helper);
if (err)
goto out;
err = if_spi_prog_main_firmware(card, mainfw);
if (err)
goto out;
lbs_deb_spi("loaded FW for Marvell WLAN 802.11 adapter\n");
}
err = spu_set_interrupt_mode(card, 0, 1);
if (err)
goto out;
out:
release_firmware(helper);
release_firmware(mainfw);
lbs_deb_leave_args(LBS_DEB_SPI, "err %d\n", err);
return err;
}
static void if_spi_resume_worker(struct work_struct *work)
{
struct if_spi_card *card;
card = container_of(work, struct if_spi_card, resume_work);
if (card->suspended) {
if (card->pdata->setup)
card->pdata->setup(card->spi);
/* Init card ... */
if_spi_init_card(card);
enable_irq(card->spi->irq);
/* And resume it ... */
lbs_resume(card->priv);
card->suspended = 0;
}
}
static int if_spi_probe(struct spi_device *spi)
{
struct if_spi_card *card;
struct lbs_private *priv = NULL;
struct libertas_spi_platform_data *pdata = spi->dev.platform_data;
int err = 0;
lbs_deb_enter(LBS_DEB_SPI);
if (!pdata) {
err = -EINVAL;
goto out;
}
if (pdata->setup) {
err = pdata->setup(spi);
if (err)
goto out;
}
/* Allocate card structure to represent this specific device */
card = kzalloc(sizeof(struct if_spi_card), GFP_KERNEL);
if (!card) {
err = -ENOMEM;
goto teardown;
}
spi_set_drvdata(spi, card);
card->pdata = pdata;
card->spi = spi;
card->prev_xfer_time = jiffies;
INIT_LIST_HEAD(&card->cmd_packet_list);
INIT_LIST_HEAD(&card->data_packet_list);
spin_lock_init(&card->buffer_lock);
/* Initialize the SPI Interface Unit */
/* Firmware load */
err = if_spi_init_card(card);
if (err)
goto free_card;
/*
* Register our card with libertas.
* This will call alloc_etherdev.
*/
priv = lbs_add_card(card, &spi->dev);
if (!priv) {
err = -ENOMEM;
goto free_card;
}
card->priv = priv;
priv->setup_fw_on_resume = 1;
priv->card = card;
priv->hw_host_to_card = if_spi_host_to_card;
priv->enter_deep_sleep = NULL;
priv->exit_deep_sleep = NULL;
priv->reset_deep_sleep_wakeup = NULL;
priv->fw_ready = 1;
/* Initialize interrupt handling stuff. */
card->workqueue = create_workqueue("libertas_spi");
INIT_WORK(&card->packet_work, if_spi_host_to_card_worker);
INIT_WORK(&card->resume_work, if_spi_resume_worker);
err = request_irq(spi->irq, if_spi_host_interrupt,
IRQF_TRIGGER_FALLING, "libertas_spi", card);
if (err) {
pr_err("can't get host irq line-- request_irq failed\n");
goto terminate_workqueue;
}
/*
* Start the card.
* This will call register_netdev, and we'll start
* getting interrupts...
*/
err = lbs_start_card(priv);
if (err)
goto release_irq;
lbs_deb_spi("Finished initializing WLAN module.\n");
/* successful exit */
goto out;
release_irq:
free_irq(spi->irq, card);
terminate_workqueue:
flush_workqueue(card->workqueue);
destroy_workqueue(card->workqueue);
lbs_remove_card(priv); /* will call free_netdev */
free_card:
free_if_spi_card(card);
teardown:
if (pdata->teardown)
pdata->teardown(spi);
out:
lbs_deb_leave_args(LBS_DEB_SPI, "err %d\n", err);
return err;
}
static int libertas_spi_remove(struct spi_device *spi)
{
struct if_spi_card *card = spi_get_drvdata(spi);
struct lbs_private *priv = card->priv;
lbs_deb_spi("libertas_spi_remove\n");
lbs_deb_enter(LBS_DEB_SPI);
cancel_work_sync(&card->resume_work);
lbs_stop_card(priv);
lbs_remove_card(priv); /* will call free_netdev */
free_irq(spi->irq, card);
flush_workqueue(card->workqueue);
destroy_workqueue(card->workqueue);
if (card->pdata->teardown)
card->pdata->teardown(spi);
free_if_spi_card(card);
lbs_deb_leave(LBS_DEB_SPI);
return 0;
}
static int if_spi_suspend(struct device *dev)
{
struct spi_device *spi = to_spi_device(dev);
struct if_spi_card *card = spi_get_drvdata(spi);
if (!card->suspended) {
lbs_suspend(card->priv);
flush_workqueue(card->workqueue);
disable_irq(spi->irq);
if (card->pdata->teardown)
card->pdata->teardown(spi);
card->suspended = 1;
}
return 0;
}
static int if_spi_resume(struct device *dev)
{
struct spi_device *spi = to_spi_device(dev);
struct if_spi_card *card = spi_get_drvdata(spi);
/* Schedule delayed work */
schedule_work(&card->resume_work);
return 0;
}
static const struct dev_pm_ops if_spi_pm_ops = {
.suspend = if_spi_suspend,
.resume = if_spi_resume,
};
static struct spi_driver libertas_spi_driver = {
.probe = if_spi_probe,
.remove = libertas_spi_remove,
.driver = {
.name = "libertas_spi",
.owner = THIS_MODULE,
.pm = &if_spi_pm_ops,
},
};
/*
* Module functions
*/
static int __init if_spi_init_module(void)
{
int ret = 0;
lbs_deb_enter(LBS_DEB_SPI);
printk(KERN_INFO "libertas_spi: Libertas SPI driver\n");
ret = spi_register_driver(&libertas_spi_driver);
lbs_deb_leave(LBS_DEB_SPI);
return ret;
}
static void __exit if_spi_exit_module(void)
{
lbs_deb_enter(LBS_DEB_SPI);
spi_unregister_driver(&libertas_spi_driver);
lbs_deb_leave(LBS_DEB_SPI);
}
module_init(if_spi_init_module);
module_exit(if_spi_exit_module);
MODULE_DESCRIPTION("Libertas SPI WLAN Driver");
MODULE_AUTHOR("Andrey Yurovsky <andrey@cozybit.com>, "
"Colin McCabe <colin@cozybit.com>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:libertas_spi");