2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 04:34:11 +08:00
linux-next/mm/internal.h
Konstantin Khlebnikov 30bdbb7800 mm: polish virtual memory accounting
* add VM_STACK as alias for VM_GROWSUP/DOWN depending on architecture
* always account VMAs with flag VM_STACK as stack (as it was before)
* cleanup classifying helpers
* update comments and documentation

Signed-off-by: Konstantin Khlebnikov <koct9i@gmail.com>
Tested-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com>
Cc: Cyrill Gorcunov <gorcunov@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-02-03 08:28:43 -08:00

470 lines
14 KiB
C

/* internal.h: mm/ internal definitions
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#ifndef __MM_INTERNAL_H
#define __MM_INTERNAL_H
#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/pagemap.h>
/*
* The set of flags that only affect watermark checking and reclaim
* behaviour. This is used by the MM to obey the caller constraints
* about IO, FS and watermark checking while ignoring placement
* hints such as HIGHMEM usage.
*/
#define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
__GFP_NOWARN|__GFP_REPEAT|__GFP_NOFAIL|\
__GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC)
/* The GFP flags allowed during early boot */
#define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
/* Control allocation cpuset and node placement constraints */
#define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
/* Do not use these with a slab allocator */
#define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
unsigned long floor, unsigned long ceiling);
static inline void set_page_count(struct page *page, int v)
{
atomic_set(&page->_count, v);
}
extern int __do_page_cache_readahead(struct address_space *mapping,
struct file *filp, pgoff_t offset, unsigned long nr_to_read,
unsigned long lookahead_size);
/*
* Submit IO for the read-ahead request in file_ra_state.
*/
static inline unsigned long ra_submit(struct file_ra_state *ra,
struct address_space *mapping, struct file *filp)
{
return __do_page_cache_readahead(mapping, filp,
ra->start, ra->size, ra->async_size);
}
/*
* Turn a non-refcounted page (->_count == 0) into refcounted with
* a count of one.
*/
static inline void set_page_refcounted(struct page *page)
{
VM_BUG_ON_PAGE(PageTail(page), page);
VM_BUG_ON_PAGE(atomic_read(&page->_count), page);
set_page_count(page, 1);
}
extern unsigned long highest_memmap_pfn;
/*
* in mm/vmscan.c:
*/
extern int isolate_lru_page(struct page *page);
extern void putback_lru_page(struct page *page);
extern bool zone_reclaimable(struct zone *zone);
/*
* in mm/rmap.c:
*/
extern pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
/*
* in mm/page_alloc.c
*/
/*
* Structure for holding the mostly immutable allocation parameters passed
* between functions involved in allocations, including the alloc_pages*
* family of functions.
*
* nodemask, migratetype and high_zoneidx are initialized only once in
* __alloc_pages_nodemask() and then never change.
*
* zonelist, preferred_zone and classzone_idx are set first in
* __alloc_pages_nodemask() for the fast path, and might be later changed
* in __alloc_pages_slowpath(). All other functions pass the whole strucure
* by a const pointer.
*/
struct alloc_context {
struct zonelist *zonelist;
nodemask_t *nodemask;
struct zone *preferred_zone;
int classzone_idx;
int migratetype;
enum zone_type high_zoneidx;
bool spread_dirty_pages;
};
/*
* Locate the struct page for both the matching buddy in our
* pair (buddy1) and the combined O(n+1) page they form (page).
*
* 1) Any buddy B1 will have an order O twin B2 which satisfies
* the following equation:
* B2 = B1 ^ (1 << O)
* For example, if the starting buddy (buddy2) is #8 its order
* 1 buddy is #10:
* B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
*
* 2) Any buddy B will have an order O+1 parent P which
* satisfies the following equation:
* P = B & ~(1 << O)
*
* Assumption: *_mem_map is contiguous at least up to MAX_ORDER
*/
static inline unsigned long
__find_buddy_index(unsigned long page_idx, unsigned int order)
{
return page_idx ^ (1 << order);
}
extern int __isolate_free_page(struct page *page, unsigned int order);
extern void __free_pages_bootmem(struct page *page, unsigned long pfn,
unsigned int order);
extern void prep_compound_page(struct page *page, unsigned int order);
#ifdef CONFIG_MEMORY_FAILURE
extern bool is_free_buddy_page(struct page *page);
#endif
extern int user_min_free_kbytes;
#if defined CONFIG_COMPACTION || defined CONFIG_CMA
/*
* in mm/compaction.c
*/
/*
* compact_control is used to track pages being migrated and the free pages
* they are being migrated to during memory compaction. The free_pfn starts
* at the end of a zone and migrate_pfn begins at the start. Movable pages
* are moved to the end of a zone during a compaction run and the run
* completes when free_pfn <= migrate_pfn
*/
struct compact_control {
struct list_head freepages; /* List of free pages to migrate to */
struct list_head migratepages; /* List of pages being migrated */
unsigned long nr_freepages; /* Number of isolated free pages */
unsigned long nr_migratepages; /* Number of pages to migrate */
unsigned long free_pfn; /* isolate_freepages search base */
unsigned long migrate_pfn; /* isolate_migratepages search base */
unsigned long last_migrated_pfn;/* Not yet flushed page being freed */
enum migrate_mode mode; /* Async or sync migration mode */
bool ignore_skip_hint; /* Scan blocks even if marked skip */
int order; /* order a direct compactor needs */
const gfp_t gfp_mask; /* gfp mask of a direct compactor */
const int alloc_flags; /* alloc flags of a direct compactor */
const int classzone_idx; /* zone index of a direct compactor */
struct zone *zone;
int contended; /* Signal need_sched() or lock
* contention detected during
* compaction
*/
};
unsigned long
isolate_freepages_range(struct compact_control *cc,
unsigned long start_pfn, unsigned long end_pfn);
unsigned long
isolate_migratepages_range(struct compact_control *cc,
unsigned long low_pfn, unsigned long end_pfn);
int find_suitable_fallback(struct free_area *area, unsigned int order,
int migratetype, bool only_stealable, bool *can_steal);
#endif
/*
* This function returns the order of a free page in the buddy system. In
* general, page_zone(page)->lock must be held by the caller to prevent the
* page from being allocated in parallel and returning garbage as the order.
* If a caller does not hold page_zone(page)->lock, it must guarantee that the
* page cannot be allocated or merged in parallel. Alternatively, it must
* handle invalid values gracefully, and use page_order_unsafe() below.
*/
static inline unsigned int page_order(struct page *page)
{
/* PageBuddy() must be checked by the caller */
return page_private(page);
}
/*
* Like page_order(), but for callers who cannot afford to hold the zone lock.
* PageBuddy() should be checked first by the caller to minimize race window,
* and invalid values must be handled gracefully.
*
* READ_ONCE is used so that if the caller assigns the result into a local
* variable and e.g. tests it for valid range before using, the compiler cannot
* decide to remove the variable and inline the page_private(page) multiple
* times, potentially observing different values in the tests and the actual
* use of the result.
*/
#define page_order_unsafe(page) READ_ONCE(page_private(page))
static inline bool is_cow_mapping(vm_flags_t flags)
{
return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
}
/*
* These three helpers classifies VMAs for virtual memory accounting.
*/
/*
* Executable code area - executable, not writable, not stack
*/
static inline bool is_exec_mapping(vm_flags_t flags)
{
return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
}
/*
* Stack area - atomatically grows in one direction
*
* VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
* do_mmap() forbids all other combinations.
*/
static inline bool is_stack_mapping(vm_flags_t flags)
{
return (flags & VM_STACK) == VM_STACK;
}
/*
* Data area - private, writable, not stack
*/
static inline bool is_data_mapping(vm_flags_t flags)
{
return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
}
/* mm/util.c */
void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct rb_node *rb_parent);
#ifdef CONFIG_MMU
extern long populate_vma_page_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end, int *nonblocking);
extern void munlock_vma_pages_range(struct vm_area_struct *vma,
unsigned long start, unsigned long end);
static inline void munlock_vma_pages_all(struct vm_area_struct *vma)
{
munlock_vma_pages_range(vma, vma->vm_start, vma->vm_end);
}
/*
* must be called with vma's mmap_sem held for read or write, and page locked.
*/
extern void mlock_vma_page(struct page *page);
extern unsigned int munlock_vma_page(struct page *page);
/*
* Clear the page's PageMlocked(). This can be useful in a situation where
* we want to unconditionally remove a page from the pagecache -- e.g.,
* on truncation or freeing.
*
* It is legal to call this function for any page, mlocked or not.
* If called for a page that is still mapped by mlocked vmas, all we do
* is revert to lazy LRU behaviour -- semantics are not broken.
*/
extern void clear_page_mlock(struct page *page);
/*
* mlock_migrate_page - called only from migrate_misplaced_transhuge_page()
* (because that does not go through the full procedure of migration ptes):
* to migrate the Mlocked page flag; update statistics.
*/
static inline void mlock_migrate_page(struct page *newpage, struct page *page)
{
if (TestClearPageMlocked(page)) {
int nr_pages = hpage_nr_pages(page);
/* Holding pmd lock, no change in irq context: __mod is safe */
__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
SetPageMlocked(newpage);
__mod_zone_page_state(page_zone(newpage), NR_MLOCK, nr_pages);
}
}
extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
/*
* At what user virtual address is page expected in @vma?
*/
static inline unsigned long
__vma_address(struct page *page, struct vm_area_struct *vma)
{
pgoff_t pgoff = page_to_pgoff(page);
return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
}
static inline unsigned long
vma_address(struct page *page, struct vm_area_struct *vma)
{
unsigned long address = __vma_address(page, vma);
/* page should be within @vma mapping range */
VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
return address;
}
#else /* !CONFIG_MMU */
static inline void clear_page_mlock(struct page *page) { }
static inline void mlock_vma_page(struct page *page) { }
static inline void mlock_migrate_page(struct page *new, struct page *old) { }
#endif /* !CONFIG_MMU */
/*
* Return the mem_map entry representing the 'offset' subpage within
* the maximally aligned gigantic page 'base'. Handle any discontiguity
* in the mem_map at MAX_ORDER_NR_PAGES boundaries.
*/
static inline struct page *mem_map_offset(struct page *base, int offset)
{
if (unlikely(offset >= MAX_ORDER_NR_PAGES))
return nth_page(base, offset);
return base + offset;
}
/*
* Iterator over all subpages within the maximally aligned gigantic
* page 'base'. Handle any discontiguity in the mem_map.
*/
static inline struct page *mem_map_next(struct page *iter,
struct page *base, int offset)
{
if (unlikely((offset & (MAX_ORDER_NR_PAGES - 1)) == 0)) {
unsigned long pfn = page_to_pfn(base) + offset;
if (!pfn_valid(pfn))
return NULL;
return pfn_to_page(pfn);
}
return iter + 1;
}
/*
* FLATMEM and DISCONTIGMEM configurations use alloc_bootmem_node,
* so all functions starting at paging_init should be marked __init
* in those cases. SPARSEMEM, however, allows for memory hotplug,
* and alloc_bootmem_node is not used.
*/
#ifdef CONFIG_SPARSEMEM
#define __paginginit __meminit
#else
#define __paginginit __init
#endif
/* Memory initialisation debug and verification */
enum mminit_level {
MMINIT_WARNING,
MMINIT_VERIFY,
MMINIT_TRACE
};
#ifdef CONFIG_DEBUG_MEMORY_INIT
extern int mminit_loglevel;
#define mminit_dprintk(level, prefix, fmt, arg...) \
do { \
if (level < mminit_loglevel) { \
if (level <= MMINIT_WARNING) \
printk(KERN_WARNING "mminit::" prefix " " fmt, ##arg); \
else \
printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
} \
} while (0)
extern void mminit_verify_pageflags_layout(void);
extern void mminit_verify_zonelist(void);
#else
static inline void mminit_dprintk(enum mminit_level level,
const char *prefix, const char *fmt, ...)
{
}
static inline void mminit_verify_pageflags_layout(void)
{
}
static inline void mminit_verify_zonelist(void)
{
}
#endif /* CONFIG_DEBUG_MEMORY_INIT */
/* mminit_validate_memmodel_limits is independent of CONFIG_DEBUG_MEMORY_INIT */
#if defined(CONFIG_SPARSEMEM)
extern void mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn);
#else
static inline void mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn)
{
}
#endif /* CONFIG_SPARSEMEM */
#define ZONE_RECLAIM_NOSCAN -2
#define ZONE_RECLAIM_FULL -1
#define ZONE_RECLAIM_SOME 0
#define ZONE_RECLAIM_SUCCESS 1
extern int hwpoison_filter(struct page *p);
extern u32 hwpoison_filter_dev_major;
extern u32 hwpoison_filter_dev_minor;
extern u64 hwpoison_filter_flags_mask;
extern u64 hwpoison_filter_flags_value;
extern u64 hwpoison_filter_memcg;
extern u32 hwpoison_filter_enable;
extern unsigned long vm_mmap_pgoff(struct file *, unsigned long,
unsigned long, unsigned long,
unsigned long, unsigned long);
extern void set_pageblock_order(void);
unsigned long reclaim_clean_pages_from_list(struct zone *zone,
struct list_head *page_list);
/* The ALLOC_WMARK bits are used as an index to zone->watermark */
#define ALLOC_WMARK_MIN WMARK_MIN
#define ALLOC_WMARK_LOW WMARK_LOW
#define ALLOC_WMARK_HIGH WMARK_HIGH
#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
/* Mask to get the watermark bits */
#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
#define ALLOC_HARDER 0x10 /* try to alloc harder */
#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
#define ALLOC_CMA 0x80 /* allow allocations from CMA areas */
#define ALLOC_FAIR 0x100 /* fair zone allocation */
enum ttu_flags;
struct tlbflush_unmap_batch;
#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
void try_to_unmap_flush(void);
void try_to_unmap_flush_dirty(void);
#else
static inline void try_to_unmap_flush(void)
{
}
static inline void try_to_unmap_flush_dirty(void)
{
}
#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
#endif /* __MM_INTERNAL_H */