2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/tools/testing/radix-tree/multiorder.c
Thomas Gleixner 2025cf9e19 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 288
Based on 1 normalized pattern(s):

  this program is free software you can redistribute it and or modify
  it under the terms and conditions of the gnu general public license
  version 2 as published by the free software foundation this program
  is distributed in the hope it will be useful but without any
  warranty without even the implied warranty of merchantability or
  fitness for a particular purpose see the gnu general public license
  for more details

extracted by the scancode license scanner the SPDX license identifier

  GPL-2.0-only

has been chosen to replace the boilerplate/reference in 263 file(s).

Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Reviewed-by: Allison Randal <allison@lohutok.net>
Reviewed-by: Alexios Zavras <alexios.zavras@intel.com>
Cc: linux-spdx@vger.kernel.org
Link: https://lkml.kernel.org/r/20190529141901.208660670@linutronix.de
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-05 17:36:37 +02:00

231 lines
5.1 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* multiorder.c: Multi-order radix tree entry testing
* Copyright (c) 2016 Intel Corporation
* Author: Ross Zwisler <ross.zwisler@linux.intel.com>
* Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
*/
#include <linux/radix-tree.h>
#include <linux/slab.h>
#include <linux/errno.h>
#include <pthread.h>
#include "test.h"
static int item_insert_order(struct xarray *xa, unsigned long index,
unsigned order)
{
XA_STATE_ORDER(xas, xa, index, order);
struct item *item = item_create(index, order);
do {
xas_lock(&xas);
xas_store(&xas, item);
xas_unlock(&xas);
} while (xas_nomem(&xas, GFP_KERNEL));
if (!xas_error(&xas))
return 0;
free(item);
return xas_error(&xas);
}
void multiorder_iteration(struct xarray *xa)
{
XA_STATE(xas, xa, 0);
struct item *item;
int i, j, err;
#define NUM_ENTRIES 11
int index[NUM_ENTRIES] = {0, 2, 4, 8, 16, 32, 34, 36, 64, 72, 128};
int order[NUM_ENTRIES] = {1, 1, 2, 3, 4, 1, 0, 1, 3, 0, 7};
printv(1, "Multiorder iteration test\n");
for (i = 0; i < NUM_ENTRIES; i++) {
err = item_insert_order(xa, index[i], order[i]);
assert(!err);
}
for (j = 0; j < 256; j++) {
for (i = 0; i < NUM_ENTRIES; i++)
if (j <= (index[i] | ((1 << order[i]) - 1)))
break;
xas_set(&xas, j);
xas_for_each(&xas, item, ULONG_MAX) {
int height = order[i] / XA_CHUNK_SHIFT;
int shift = height * XA_CHUNK_SHIFT;
unsigned long mask = (1UL << order[i]) - 1;
assert((xas.xa_index | mask) == (index[i] | mask));
assert(xas.xa_node->shift == shift);
assert(!radix_tree_is_internal_node(item));
assert((item->index | mask) == (index[i] | mask));
assert(item->order == order[i]);
i++;
}
}
item_kill_tree(xa);
}
void multiorder_tagged_iteration(struct xarray *xa)
{
XA_STATE(xas, xa, 0);
struct item *item;
int i, j;
#define MT_NUM_ENTRIES 9
int index[MT_NUM_ENTRIES] = {0, 2, 4, 16, 32, 40, 64, 72, 128};
int order[MT_NUM_ENTRIES] = {1, 0, 2, 4, 3, 1, 3, 0, 7};
#define TAG_ENTRIES 7
int tag_index[TAG_ENTRIES] = {0, 4, 16, 40, 64, 72, 128};
printv(1, "Multiorder tagged iteration test\n");
for (i = 0; i < MT_NUM_ENTRIES; i++)
assert(!item_insert_order(xa, index[i], order[i]));
assert(!xa_marked(xa, XA_MARK_1));
for (i = 0; i < TAG_ENTRIES; i++)
xa_set_mark(xa, tag_index[i], XA_MARK_1);
for (j = 0; j < 256; j++) {
int k;
for (i = 0; i < TAG_ENTRIES; i++) {
for (k = i; index[k] < tag_index[i]; k++)
;
if (j <= (index[k] | ((1 << order[k]) - 1)))
break;
}
xas_set(&xas, j);
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_1) {
unsigned long mask;
for (k = i; index[k] < tag_index[i]; k++)
;
mask = (1UL << order[k]) - 1;
assert((xas.xa_index | mask) == (tag_index[i] | mask));
assert(!xa_is_internal(item));
assert((item->index | mask) == (tag_index[i] | mask));
assert(item->order == order[k]);
i++;
}
}
assert(tag_tagged_items(xa, 0, ULONG_MAX, TAG_ENTRIES, XA_MARK_1,
XA_MARK_2) == TAG_ENTRIES);
for (j = 0; j < 256; j++) {
int mask, k;
for (i = 0; i < TAG_ENTRIES; i++) {
for (k = i; index[k] < tag_index[i]; k++)
;
if (j <= (index[k] | ((1 << order[k]) - 1)))
break;
}
xas_set(&xas, j);
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_2) {
for (k = i; index[k] < tag_index[i]; k++)
;
mask = (1 << order[k]) - 1;
assert((xas.xa_index | mask) == (tag_index[i] | mask));
assert(!xa_is_internal(item));
assert((item->index | mask) == (tag_index[i] | mask));
assert(item->order == order[k]);
i++;
}
}
assert(tag_tagged_items(xa, 1, ULONG_MAX, MT_NUM_ENTRIES * 2, XA_MARK_1,
XA_MARK_0) == TAG_ENTRIES);
i = 0;
xas_set(&xas, 0);
xas_for_each_marked(&xas, item, ULONG_MAX, XA_MARK_0) {
assert(xas.xa_index == tag_index[i]);
i++;
}
assert(i == TAG_ENTRIES);
item_kill_tree(xa);
}
bool stop_iteration = false;
static void *creator_func(void *ptr)
{
/* 'order' is set up to ensure we have sibling entries */
unsigned int order = RADIX_TREE_MAP_SHIFT - 1;
struct radix_tree_root *tree = ptr;
int i;
for (i = 0; i < 10000; i++) {
item_insert_order(tree, 0, order);
item_delete_rcu(tree, 0);
}
stop_iteration = true;
return NULL;
}
static void *iterator_func(void *ptr)
{
XA_STATE(xas, ptr, 0);
struct item *item;
while (!stop_iteration) {
rcu_read_lock();
xas_for_each(&xas, item, ULONG_MAX) {
if (xas_retry(&xas, item))
continue;
item_sanity(item, xas.xa_index);
}
rcu_read_unlock();
}
return NULL;
}
static void multiorder_iteration_race(struct xarray *xa)
{
const int num_threads = sysconf(_SC_NPROCESSORS_ONLN);
pthread_t worker_thread[num_threads];
int i;
pthread_create(&worker_thread[0], NULL, &creator_func, xa);
for (i = 1; i < num_threads; i++)
pthread_create(&worker_thread[i], NULL, &iterator_func, xa);
for (i = 0; i < num_threads; i++)
pthread_join(worker_thread[i], NULL);
item_kill_tree(xa);
}
static DEFINE_XARRAY(array);
void multiorder_checks(void)
{
multiorder_iteration(&array);
multiorder_tagged_iteration(&array);
multiorder_iteration_race(&array);
radix_tree_cpu_dead(0);
}
int __weak main(void)
{
radix_tree_init();
multiorder_checks();
return 0;
}