mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-27 14:43:58 +08:00
5a0e3ad6af
percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
432 lines
11 KiB
C
432 lines
11 KiB
C
/*
|
|
* Common pmac/prep/chrp pci routines. -- Cort
|
|
*/
|
|
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/string.h>
|
|
#include <linux/init.h>
|
|
#include <linux/capability.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/irq.h>
|
|
#include <linux/list.h>
|
|
#include <linux/of.h>
|
|
#include <linux/slab.h>
|
|
|
|
#include <asm/processor.h>
|
|
#include <asm/io.h>
|
|
#include <asm/prom.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/byteorder.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
#undef DEBUG
|
|
|
|
unsigned long isa_io_base;
|
|
unsigned long pci_dram_offset;
|
|
int pcibios_assign_bus_offset = 1;
|
|
|
|
static u8 *pci_to_OF_bus_map;
|
|
|
|
/* By default, we don't re-assign bus numbers. We do this only on
|
|
* some pmacs
|
|
*/
|
|
static int pci_assign_all_buses;
|
|
|
|
static int pci_bus_count;
|
|
|
|
/*
|
|
* Functions below are used on OpenFirmware machines.
|
|
*/
|
|
static void
|
|
make_one_node_map(struct device_node *node, u8 pci_bus)
|
|
{
|
|
const int *bus_range;
|
|
int len;
|
|
|
|
if (pci_bus >= pci_bus_count)
|
|
return;
|
|
bus_range = of_get_property(node, "bus-range", &len);
|
|
if (bus_range == NULL || len < 2 * sizeof(int)) {
|
|
printk(KERN_WARNING "Can't get bus-range for %s, "
|
|
"assuming it starts at 0\n", node->full_name);
|
|
pci_to_OF_bus_map[pci_bus] = 0;
|
|
} else
|
|
pci_to_OF_bus_map[pci_bus] = bus_range[0];
|
|
|
|
for_each_child_of_node(node, node) {
|
|
struct pci_dev *dev;
|
|
const unsigned int *class_code, *reg;
|
|
|
|
class_code = of_get_property(node, "class-code", NULL);
|
|
if (!class_code ||
|
|
((*class_code >> 8) != PCI_CLASS_BRIDGE_PCI &&
|
|
(*class_code >> 8) != PCI_CLASS_BRIDGE_CARDBUS))
|
|
continue;
|
|
reg = of_get_property(node, "reg", NULL);
|
|
if (!reg)
|
|
continue;
|
|
dev = pci_get_bus_and_slot(pci_bus, ((reg[0] >> 8) & 0xff));
|
|
if (!dev || !dev->subordinate) {
|
|
pci_dev_put(dev);
|
|
continue;
|
|
}
|
|
make_one_node_map(node, dev->subordinate->number);
|
|
pci_dev_put(dev);
|
|
}
|
|
}
|
|
|
|
void
|
|
pcibios_make_OF_bus_map(void)
|
|
{
|
|
int i;
|
|
struct pci_controller *hose, *tmp;
|
|
struct property *map_prop;
|
|
struct device_node *dn;
|
|
|
|
pci_to_OF_bus_map = kmalloc(pci_bus_count, GFP_KERNEL);
|
|
if (!pci_to_OF_bus_map) {
|
|
printk(KERN_ERR "Can't allocate OF bus map !\n");
|
|
return;
|
|
}
|
|
|
|
/* We fill the bus map with invalid values, that helps
|
|
* debugging.
|
|
*/
|
|
for (i = 0; i < pci_bus_count; i++)
|
|
pci_to_OF_bus_map[i] = 0xff;
|
|
|
|
/* For each hose, we begin searching bridges */
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
|
|
struct device_node *node = hose->dn;
|
|
|
|
if (!node)
|
|
continue;
|
|
make_one_node_map(node, hose->first_busno);
|
|
}
|
|
dn = of_find_node_by_path("/");
|
|
map_prop = of_find_property(dn, "pci-OF-bus-map", NULL);
|
|
if (map_prop) {
|
|
BUG_ON(pci_bus_count > map_prop->length);
|
|
memcpy(map_prop->value, pci_to_OF_bus_map, pci_bus_count);
|
|
}
|
|
of_node_put(dn);
|
|
#ifdef DEBUG
|
|
printk(KERN_INFO "PCI->OF bus map:\n");
|
|
for (i = 0; i < pci_bus_count; i++) {
|
|
if (pci_to_OF_bus_map[i] == 0xff)
|
|
continue;
|
|
printk(KERN_INFO "%d -> %d\n", i, pci_to_OF_bus_map[i]);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
typedef int (*pci_OF_scan_iterator)(struct device_node *node, void *data);
|
|
|
|
static struct device_node *scan_OF_pci_childs(struct device_node *parent,
|
|
pci_OF_scan_iterator filter, void *data)
|
|
{
|
|
struct device_node *node;
|
|
struct device_node *sub_node;
|
|
|
|
for_each_child_of_node(parent, node) {
|
|
const unsigned int *class_code;
|
|
|
|
if (filter(node, data)) {
|
|
of_node_put(node);
|
|
return node;
|
|
}
|
|
|
|
/* For PCI<->PCI bridges or CardBus bridges, we go down
|
|
* Note: some OFs create a parent node "multifunc-device" as
|
|
* a fake root for all functions of a multi-function device,
|
|
* we go down them as well.
|
|
*/
|
|
class_code = of_get_property(node, "class-code", NULL);
|
|
if ((!class_code ||
|
|
((*class_code >> 8) != PCI_CLASS_BRIDGE_PCI &&
|
|
(*class_code >> 8) != PCI_CLASS_BRIDGE_CARDBUS)) &&
|
|
strcmp(node->name, "multifunc-device"))
|
|
continue;
|
|
sub_node = scan_OF_pci_childs(node, filter, data);
|
|
if (sub_node) {
|
|
of_node_put(node);
|
|
return sub_node;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct device_node *scan_OF_for_pci_dev(struct device_node *parent,
|
|
unsigned int devfn)
|
|
{
|
|
struct device_node *np, *cnp;
|
|
const u32 *reg;
|
|
unsigned int psize;
|
|
|
|
for_each_child_of_node(parent, np) {
|
|
reg = of_get_property(np, "reg", &psize);
|
|
if (reg && psize >= 4 && ((reg[0] >> 8) & 0xff) == devfn)
|
|
return np;
|
|
|
|
/* Note: some OFs create a parent node "multifunc-device" as
|
|
* a fake root for all functions of a multi-function device,
|
|
* we go down them as well. */
|
|
if (!strcmp(np->name, "multifunc-device")) {
|
|
cnp = scan_OF_for_pci_dev(np, devfn);
|
|
if (cnp)
|
|
return cnp;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
|
|
static struct device_node *scan_OF_for_pci_bus(struct pci_bus *bus)
|
|
{
|
|
struct device_node *parent, *np;
|
|
|
|
/* Are we a root bus ? */
|
|
if (bus->self == NULL || bus->parent == NULL) {
|
|
struct pci_controller *hose = pci_bus_to_host(bus);
|
|
if (hose == NULL)
|
|
return NULL;
|
|
return of_node_get(hose->dn);
|
|
}
|
|
|
|
/* not a root bus, we need to get our parent */
|
|
parent = scan_OF_for_pci_bus(bus->parent);
|
|
if (parent == NULL)
|
|
return NULL;
|
|
|
|
/* now iterate for children for a match */
|
|
np = scan_OF_for_pci_dev(parent, bus->self->devfn);
|
|
of_node_put(parent);
|
|
|
|
return np;
|
|
}
|
|
|
|
/*
|
|
* Scans the OF tree for a device node matching a PCI device
|
|
*/
|
|
struct device_node *
|
|
pci_busdev_to_OF_node(struct pci_bus *bus, int devfn)
|
|
{
|
|
struct device_node *parent, *np;
|
|
|
|
pr_debug("pci_busdev_to_OF_node(%d,0x%x)\n", bus->number, devfn);
|
|
parent = scan_OF_for_pci_bus(bus);
|
|
if (parent == NULL)
|
|
return NULL;
|
|
pr_debug(" parent is %s\n", parent ? parent->full_name : "<NULL>");
|
|
np = scan_OF_for_pci_dev(parent, devfn);
|
|
of_node_put(parent);
|
|
pr_debug(" result is %s\n", np ? np->full_name : "<NULL>");
|
|
|
|
/* XXX most callers don't release the returned node
|
|
* mostly because ppc64 doesn't increase the refcount,
|
|
* we need to fix that.
|
|
*/
|
|
return np;
|
|
}
|
|
EXPORT_SYMBOL(pci_busdev_to_OF_node);
|
|
|
|
struct device_node*
|
|
pci_device_to_OF_node(struct pci_dev *dev)
|
|
{
|
|
return pci_busdev_to_OF_node(dev->bus, dev->devfn);
|
|
}
|
|
EXPORT_SYMBOL(pci_device_to_OF_node);
|
|
|
|
static int
|
|
find_OF_pci_device_filter(struct device_node *node, void *data)
|
|
{
|
|
return ((void *)node == data);
|
|
}
|
|
|
|
/*
|
|
* Returns the PCI device matching a given OF node
|
|
*/
|
|
int
|
|
pci_device_from_OF_node(struct device_node *node, u8 *bus, u8 *devfn)
|
|
{
|
|
const unsigned int *reg;
|
|
struct pci_controller *hose;
|
|
struct pci_dev *dev = NULL;
|
|
|
|
/* Make sure it's really a PCI device */
|
|
hose = pci_find_hose_for_OF_device(node);
|
|
if (!hose || !hose->dn)
|
|
return -ENODEV;
|
|
if (!scan_OF_pci_childs(hose->dn,
|
|
find_OF_pci_device_filter, (void *)node))
|
|
return -ENODEV;
|
|
reg = of_get_property(node, "reg", NULL);
|
|
if (!reg)
|
|
return -ENODEV;
|
|
*bus = (reg[0] >> 16) & 0xff;
|
|
*devfn = ((reg[0] >> 8) & 0xff);
|
|
|
|
/* Ok, here we need some tweak. If we have already renumbered
|
|
* all busses, we can't rely on the OF bus number any more.
|
|
* the pci_to_OF_bus_map is not enough as several PCI busses
|
|
* may match the same OF bus number.
|
|
*/
|
|
if (!pci_to_OF_bus_map)
|
|
return 0;
|
|
|
|
for_each_pci_dev(dev)
|
|
if (pci_to_OF_bus_map[dev->bus->number] == *bus &&
|
|
dev->devfn == *devfn) {
|
|
*bus = dev->bus->number;
|
|
pci_dev_put(dev);
|
|
return 0;
|
|
}
|
|
|
|
return -ENODEV;
|
|
}
|
|
EXPORT_SYMBOL(pci_device_from_OF_node);
|
|
|
|
/* We create the "pci-OF-bus-map" property now so it appears in the
|
|
* /proc device tree
|
|
*/
|
|
void __init
|
|
pci_create_OF_bus_map(void)
|
|
{
|
|
struct property *of_prop;
|
|
struct device_node *dn;
|
|
|
|
of_prop = (struct property *) alloc_bootmem(sizeof(struct property) + \
|
|
256);
|
|
if (!of_prop)
|
|
return;
|
|
dn = of_find_node_by_path("/");
|
|
if (dn) {
|
|
memset(of_prop, -1, sizeof(struct property) + 256);
|
|
of_prop->name = "pci-OF-bus-map";
|
|
of_prop->length = 256;
|
|
of_prop->value = &of_prop[1];
|
|
prom_add_property(dn, of_prop);
|
|
of_node_put(dn);
|
|
}
|
|
}
|
|
|
|
static void __devinit pcibios_scan_phb(struct pci_controller *hose)
|
|
{
|
|
struct pci_bus *bus;
|
|
struct device_node *node = hose->dn;
|
|
unsigned long io_offset;
|
|
struct resource *res = &hose->io_resource;
|
|
|
|
pr_debug("PCI: Scanning PHB %s\n",
|
|
node ? node->full_name : "<NO NAME>");
|
|
|
|
/* Create an empty bus for the toplevel */
|
|
bus = pci_create_bus(hose->parent, hose->first_busno, hose->ops, hose);
|
|
if (bus == NULL) {
|
|
printk(KERN_ERR "Failed to create bus for PCI domain %04x\n",
|
|
hose->global_number);
|
|
return;
|
|
}
|
|
bus->secondary = hose->first_busno;
|
|
hose->bus = bus;
|
|
|
|
/* Fixup IO space offset */
|
|
io_offset = (unsigned long)hose->io_base_virt - isa_io_base;
|
|
res->start = (res->start + io_offset) & 0xffffffffu;
|
|
res->end = (res->end + io_offset) & 0xffffffffu;
|
|
|
|
/* Wire up PHB bus resources */
|
|
pcibios_setup_phb_resources(hose);
|
|
|
|
/* Scan children */
|
|
hose->last_busno = bus->subordinate = pci_scan_child_bus(bus);
|
|
}
|
|
|
|
static int __init pcibios_init(void)
|
|
{
|
|
struct pci_controller *hose, *tmp;
|
|
int next_busno = 0;
|
|
|
|
printk(KERN_INFO "PCI: Probing PCI hardware\n");
|
|
|
|
if (pci_flags & PCI_REASSIGN_ALL_BUS) {
|
|
printk(KERN_INFO "setting pci_asign_all_busses\n");
|
|
pci_assign_all_buses = 1;
|
|
}
|
|
|
|
/* Scan all of the recorded PCI controllers. */
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
|
|
if (pci_assign_all_buses)
|
|
hose->first_busno = next_busno;
|
|
hose->last_busno = 0xff;
|
|
pcibios_scan_phb(hose);
|
|
printk(KERN_INFO "calling pci_bus_add_devices()\n");
|
|
pci_bus_add_devices(hose->bus);
|
|
if (pci_assign_all_buses || next_busno <= hose->last_busno)
|
|
next_busno = hose->last_busno + \
|
|
pcibios_assign_bus_offset;
|
|
}
|
|
pci_bus_count = next_busno;
|
|
|
|
/* OpenFirmware based machines need a map of OF bus
|
|
* numbers vs. kernel bus numbers since we may have to
|
|
* remap them.
|
|
*/
|
|
if (pci_assign_all_buses)
|
|
pcibios_make_OF_bus_map();
|
|
|
|
/* Call common code to handle resource allocation */
|
|
pcibios_resource_survey();
|
|
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(pcibios_init);
|
|
|
|
static struct pci_controller*
|
|
pci_bus_to_hose(int bus)
|
|
{
|
|
struct pci_controller *hose, *tmp;
|
|
|
|
list_for_each_entry_safe(hose, tmp, &hose_list, list_node)
|
|
if (bus >= hose->first_busno && bus <= hose->last_busno)
|
|
return hose;
|
|
return NULL;
|
|
}
|
|
|
|
/* Provide information on locations of various I/O regions in physical
|
|
* memory. Do this on a per-card basis so that we choose the right
|
|
* root bridge.
|
|
* Note that the returned IO or memory base is a physical address
|
|
*/
|
|
|
|
long sys_pciconfig_iobase(long which, unsigned long bus, unsigned long devfn)
|
|
{
|
|
struct pci_controller *hose;
|
|
long result = -EOPNOTSUPP;
|
|
|
|
hose = pci_bus_to_hose(bus);
|
|
if (!hose)
|
|
return -ENODEV;
|
|
|
|
switch (which) {
|
|
case IOBASE_BRIDGE_NUMBER:
|
|
return (long)hose->first_busno;
|
|
case IOBASE_MEMORY:
|
|
return (long)hose->pci_mem_offset;
|
|
case IOBASE_IO:
|
|
return (long)hose->io_base_phys;
|
|
case IOBASE_ISA_IO:
|
|
return (long)isa_io_base;
|
|
case IOBASE_ISA_MEM:
|
|
return (long)isa_mem_base;
|
|
}
|
|
|
|
return result;
|
|
}
|