2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-19 18:53:52 +08:00
linux-next/arch/x86/xen/multicalls.c
Christoph Lameter 89cbc76768 x86: Replace __get_cpu_var uses
__get_cpu_var() is used for multiple purposes in the kernel source. One of
them is address calculation via the form &__get_cpu_var(x).  This calculates
the address for the instance of the percpu variable of the current processor
based on an offset.

Other use cases are for storing and retrieving data from the current
processors percpu area.  __get_cpu_var() can be used as an lvalue when
writing data or on the right side of an assignment.

__get_cpu_var() is defined as :

#define __get_cpu_var(var) (*this_cpu_ptr(&(var)))

__get_cpu_var() always only does an address determination. However, store
and retrieve operations could use a segment prefix (or global register on
other platforms) to avoid the address calculation.

this_cpu_write() and this_cpu_read() can directly take an offset into a
percpu area and use optimized assembly code to read and write per cpu
variables.

This patch converts __get_cpu_var into either an explicit address
calculation using this_cpu_ptr() or into a use of this_cpu operations that
use the offset.  Thereby address calculations are avoided and less registers
are used when code is generated.

Transformations done to __get_cpu_var()

1. Determine the address of the percpu instance of the current processor.

	DEFINE_PER_CPU(int, y);
	int *x = &__get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(&y);

2. Same as #1 but this time an array structure is involved.

	DEFINE_PER_CPU(int, y[20]);
	int *x = __get_cpu_var(y);

    Converts to

	int *x = this_cpu_ptr(y);

3. Retrieve the content of the current processors instance of a per cpu
variable.

	DEFINE_PER_CPU(int, y);
	int x = __get_cpu_var(y)

   Converts to

	int x = __this_cpu_read(y);

4. Retrieve the content of a percpu struct

	DEFINE_PER_CPU(struct mystruct, y);
	struct mystruct x = __get_cpu_var(y);

   Converts to

	memcpy(&x, this_cpu_ptr(&y), sizeof(x));

5. Assignment to a per cpu variable

	DEFINE_PER_CPU(int, y)
	__get_cpu_var(y) = x;

   Converts to

	__this_cpu_write(y, x);

6. Increment/Decrement etc of a per cpu variable

	DEFINE_PER_CPU(int, y);
	__get_cpu_var(y)++

   Converts to

	__this_cpu_inc(y)

Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: x86@kernel.org
Acked-by: H. Peter Anvin <hpa@linux.intel.com>
Acked-by: Ingo Molnar <mingo@kernel.org>
Signed-off-by: Christoph Lameter <cl@linux.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
2014-08-26 13:45:49 -04:00

209 lines
4.8 KiB
C

/*
* Xen hypercall batching.
*
* Xen allows multiple hypercalls to be issued at once, using the
* multicall interface. This allows the cost of trapping into the
* hypervisor to be amortized over several calls.
*
* This file implements a simple interface for multicalls. There's a
* per-cpu buffer of outstanding multicalls. When you want to queue a
* multicall for issuing, you can allocate a multicall slot for the
* call and its arguments, along with storage for space which is
* pointed to by the arguments (for passing pointers to structures,
* etc). When the multicall is actually issued, all the space for the
* commands and allocated memory is freed for reuse.
*
* Multicalls are flushed whenever any of the buffers get full, or
* when explicitly requested. There's no way to get per-multicall
* return results back. It will BUG if any of the multicalls fail.
*
* Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
*/
#include <linux/percpu.h>
#include <linux/hardirq.h>
#include <linux/debugfs.h>
#include <asm/xen/hypercall.h>
#include "multicalls.h"
#include "debugfs.h"
#define MC_BATCH 32
#define MC_DEBUG 0
#define MC_ARGS (MC_BATCH * 16)
struct mc_buffer {
unsigned mcidx, argidx, cbidx;
struct multicall_entry entries[MC_BATCH];
#if MC_DEBUG
struct multicall_entry debug[MC_BATCH];
void *caller[MC_BATCH];
#endif
unsigned char args[MC_ARGS];
struct callback {
void (*fn)(void *);
void *data;
} callbacks[MC_BATCH];
};
static DEFINE_PER_CPU(struct mc_buffer, mc_buffer);
DEFINE_PER_CPU(unsigned long, xen_mc_irq_flags);
void xen_mc_flush(void)
{
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
struct multicall_entry *mc;
int ret = 0;
unsigned long flags;
int i;
BUG_ON(preemptible());
/* Disable interrupts in case someone comes in and queues
something in the middle */
local_irq_save(flags);
trace_xen_mc_flush(b->mcidx, b->argidx, b->cbidx);
switch (b->mcidx) {
case 0:
/* no-op */
BUG_ON(b->argidx != 0);
break;
case 1:
/* Singleton multicall - bypass multicall machinery
and just do the call directly. */
mc = &b->entries[0];
mc->result = privcmd_call(mc->op,
mc->args[0], mc->args[1], mc->args[2],
mc->args[3], mc->args[4]);
ret = mc->result < 0;
break;
default:
#if MC_DEBUG
memcpy(b->debug, b->entries,
b->mcidx * sizeof(struct multicall_entry));
#endif
if (HYPERVISOR_multicall(b->entries, b->mcidx) != 0)
BUG();
for (i = 0; i < b->mcidx; i++)
if (b->entries[i].result < 0)
ret++;
#if MC_DEBUG
if (ret) {
printk(KERN_ERR "%d multicall(s) failed: cpu %d\n",
ret, smp_processor_id());
dump_stack();
for (i = 0; i < b->mcidx; i++) {
printk(KERN_DEBUG " call %2d/%d: op=%lu arg=[%lx] result=%ld\t%pF\n",
i+1, b->mcidx,
b->debug[i].op,
b->debug[i].args[0],
b->entries[i].result,
b->caller[i]);
}
}
#endif
}
b->mcidx = 0;
b->argidx = 0;
for (i = 0; i < b->cbidx; i++) {
struct callback *cb = &b->callbacks[i];
(*cb->fn)(cb->data);
}
b->cbidx = 0;
local_irq_restore(flags);
WARN_ON(ret);
}
struct multicall_space __xen_mc_entry(size_t args)
{
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
struct multicall_space ret;
unsigned argidx = roundup(b->argidx, sizeof(u64));
trace_xen_mc_entry_alloc(args);
BUG_ON(preemptible());
BUG_ON(b->argidx >= MC_ARGS);
if (unlikely(b->mcidx == MC_BATCH ||
(argidx + args) >= MC_ARGS)) {
trace_xen_mc_flush_reason((b->mcidx == MC_BATCH) ?
XEN_MC_FL_BATCH : XEN_MC_FL_ARGS);
xen_mc_flush();
argidx = roundup(b->argidx, sizeof(u64));
}
ret.mc = &b->entries[b->mcidx];
#if MC_DEBUG
b->caller[b->mcidx] = __builtin_return_address(0);
#endif
b->mcidx++;
ret.args = &b->args[argidx];
b->argidx = argidx + args;
BUG_ON(b->argidx >= MC_ARGS);
return ret;
}
struct multicall_space xen_mc_extend_args(unsigned long op, size_t size)
{
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
struct multicall_space ret = { NULL, NULL };
BUG_ON(preemptible());
BUG_ON(b->argidx >= MC_ARGS);
if (unlikely(b->mcidx == 0 ||
b->entries[b->mcidx - 1].op != op)) {
trace_xen_mc_extend_args(op, size, XEN_MC_XE_BAD_OP);
goto out;
}
if (unlikely((b->argidx + size) >= MC_ARGS)) {
trace_xen_mc_extend_args(op, size, XEN_MC_XE_NO_SPACE);
goto out;
}
ret.mc = &b->entries[b->mcidx - 1];
ret.args = &b->args[b->argidx];
b->argidx += size;
BUG_ON(b->argidx >= MC_ARGS);
trace_xen_mc_extend_args(op, size, XEN_MC_XE_OK);
out:
return ret;
}
void xen_mc_callback(void (*fn)(void *), void *data)
{
struct mc_buffer *b = this_cpu_ptr(&mc_buffer);
struct callback *cb;
if (b->cbidx == MC_BATCH) {
trace_xen_mc_flush_reason(XEN_MC_FL_CALLBACK);
xen_mc_flush();
}
trace_xen_mc_callback(fn, data);
cb = &b->callbacks[b->cbidx++];
cb->fn = fn;
cb->data = data;
}