mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-22 20:23:57 +08:00
da86748bf6
- Add the SPI-NAND framework. - Create a helper to find the best ECC configuration. - Create NAND controller operations. - Allocate dynamically ONFI parameters structure. - Add defines for ONFI version bits. - Add manufacturer fixup for ONFI parameter page. - Add an option to specify NAND chip as a boot device. - Add Reed-Solomon error correction algorithm. - Better name for the controller structure. - Remove unused caller_is_module() definition. - Make subop helpers return unsigned values. - Expose _notsupp() helpers for raw page accessors. - Add default values for dynamic timings. - Kill the chip->scan_bbt() hook. - Rename nand_default_bbt() into nand_create_bbt(). - Start to clean the nand_chip structure. - Remove stale prototype from rawnand.h. Raw NAND controllers drivers changes: - Qcom: structuring cleanup. - Denali: use core helper to find the best ECC configuration. - Possible build of almost all drivers by adding a dependency on COMPILE_TEST for almost all of them in Kconfig, implies various fixes, Kconfig cleanup, GPIO headers inclusion cleanup, and even changes in sparc64 and ia64 architectures. - Clean the ->probe() functions error path of a lot of drivers. - Migrate all drivers to use nand_scan() instead of nand_scan_ident()/nand_scan_tail() pair. - Use mtd_device_register() where applicable to simplify the code. - Marvell: * Handle on-die ECC. * Better clocks handling. * Remove bogus comment. * Add suspend and resume support. - Tegra: add NAND controller driver. - Atmel: * Add module param to avoid using dma. * Drop Wenyou Yang from MAINTAINERS. - Denali: optimize timings handling. - FSMC: Stop using chip->read_buf(). - FSL: * Switch to SPDX license tag identifiers. * Fix qualifiers in MXC init functions. Raw NAND chip drivers changes: - Micron: * Add fixup for ONFI revision. * Update ecc_stats.corrected. * Make ECC activation stateful. * Avoid enabling/disabling ECC when it can't be disabled. * Get the actual number of bitflips. * Allow forced on-die ECC. * Support 8/512 on-die ECC. * Fix on-die ECC detection logic. - Hynix: * Fix decoding the OOB size on H27UCG8T2BTR. * Use ->exec_op() in hynix_nand_reg_write_op(). -----BEGIN PGP SIGNATURE----- iQEcBAABCAAGBQJbYYGVAAoJECVq6hhHvVaE0poIAJy+VpZl0jTPQ/oO8TQui9hE IZbc8LwohCvegYYhiY1cNESyMYamDfoK6M93i/0zTJF2AJAxPl25ldT8N5Wr16DO 5Vfsdjv75V8l0JEY2SvWYmC6glOAYs0UEDdcFNJRMPqUnQz+VvBIafJOCQqzo4ZH SDnLx3XzOxO4PAPnztWEg50WvaqMPt7ThcqoxThHMcQaLrNjgJUsV0mN+vNEv16Q 6gH6hl1C019k+Kj2Zu0vAifHw1K7gIYT4HvqKwstQ6HYUX2IzIzuEpRIcIze0S5z XKzZ57USItb3l+Y3YwFBLjgP4N+VTT5X59LxdtCOXJ+YvzgxwtKElRvalNcryYI= =zkEf -----END PGP SIGNATURE----- Merge tag 'nand/for-4.19' of git://git.infradead.org/linux-mtd into mtd/next Pull NAND updates from Miquel Raynal: " NAND core changes: - Add the SPI-NAND framework. - Create a helper to find the best ECC configuration. - Create NAND controller operations. - Allocate dynamically ONFI parameters structure. - Add defines for ONFI version bits. - Add manufacturer fixup for ONFI parameter page. - Add an option to specify NAND chip as a boot device. - Add Reed-Solomon error correction algorithm. - Better name for the controller structure. - Remove unused caller_is_module() definition. - Make subop helpers return unsigned values. - Expose _notsupp() helpers for raw page accessors. - Add default values for dynamic timings. - Kill the chip->scan_bbt() hook. - Rename nand_default_bbt() into nand_create_bbt(). - Start to clean the nand_chip structure. - Remove stale prototype from rawnand.h. Raw NAND controllers drivers changes: - Qcom: structuring cleanup. - Denali: use core helper to find the best ECC configuration. - Possible build of almost all drivers by adding a dependency on COMPILE_TEST for almost all of them in Kconfig, implies various fixes, Kconfig cleanup, GPIO headers inclusion cleanup, and even changes in sparc64 and ia64 architectures. - Clean the ->probe() functions error path of a lot of drivers. - Migrate all drivers to use nand_scan() instead of nand_scan_ident()/nand_scan_tail() pair. - Use mtd_device_register() where applicable to simplify the code. - Marvell: * Handle on-die ECC. * Better clocks handling. * Remove bogus comment. * Add suspend and resume support. - Tegra: add NAND controller driver. - Atmel: * Add module param to avoid using dma. * Drop Wenyou Yang from MAINTAINERS. - Denali: optimize timings handling. - FSMC: Stop using chip->read_buf(). - FSL: * Switch to SPDX license tag identifiers. * Fix qualifiers in MXC init functions. Raw NAND chip drivers changes: - Micron: * Add fixup for ONFI revision. * Update ecc_stats.corrected. * Make ECC activation stateful. * Avoid enabling/disabling ECC when it can't be disabled. * Get the actual number of bitflips. * Allow forced on-die ECC. * Support 8/512 on-die ECC. * Fix on-die ECC detection logic. - Hynix: * Fix decoding the OOB size on H27UCG8T2BTR. * Use ->exec_op() in hynix_nand_reg_write_op(). "
2927 lines
79 KiB
C
2927 lines
79 KiB
C
/*
|
|
* Common Flash Interface support:
|
|
* AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
|
|
*
|
|
* Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
|
|
* Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
|
|
* Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
|
|
*
|
|
* 2_by_8 routines added by Simon Munton
|
|
*
|
|
* 4_by_16 work by Carolyn J. Smith
|
|
*
|
|
* XIP support hooks by Vitaly Wool (based on code for Intel flash
|
|
* by Nicolas Pitre)
|
|
*
|
|
* 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
|
|
*
|
|
* Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
|
|
*
|
|
* This code is GPL
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/types.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/sched.h>
|
|
#include <asm/io.h>
|
|
#include <asm/byteorder.h>
|
|
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/reboot.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_platform.h>
|
|
#include <linux/mtd/map.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/cfi.h>
|
|
#include <linux/mtd/xip.h>
|
|
|
|
#define AMD_BOOTLOC_BUG
|
|
#define FORCE_WORD_WRITE 0
|
|
|
|
#define MAX_RETRIES 3
|
|
|
|
#define SST49LF004B 0x0060
|
|
#define SST49LF040B 0x0050
|
|
#define SST49LF008A 0x005a
|
|
#define AT49BV6416 0x00d6
|
|
|
|
static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
|
static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
|
|
static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
|
|
static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
|
|
static void cfi_amdstd_sync (struct mtd_info *);
|
|
static int cfi_amdstd_suspend (struct mtd_info *);
|
|
static void cfi_amdstd_resume (struct mtd_info *);
|
|
static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
|
|
static int cfi_amdstd_get_fact_prot_info(struct mtd_info *, size_t,
|
|
size_t *, struct otp_info *);
|
|
static int cfi_amdstd_get_user_prot_info(struct mtd_info *, size_t,
|
|
size_t *, struct otp_info *);
|
|
static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
|
|
static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *, loff_t, size_t,
|
|
size_t *, u_char *);
|
|
static int cfi_amdstd_read_user_prot_reg(struct mtd_info *, loff_t, size_t,
|
|
size_t *, u_char *);
|
|
static int cfi_amdstd_write_user_prot_reg(struct mtd_info *, loff_t, size_t,
|
|
size_t *, u_char *);
|
|
static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *, loff_t, size_t);
|
|
|
|
static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf);
|
|
|
|
static void cfi_amdstd_destroy(struct mtd_info *);
|
|
|
|
struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
|
|
static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
|
|
|
|
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
|
|
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
|
|
#include "fwh_lock.h"
|
|
|
|
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
|
|
static int cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
static int cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
static int cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
|
|
|
|
static struct mtd_chip_driver cfi_amdstd_chipdrv = {
|
|
.probe = NULL, /* Not usable directly */
|
|
.destroy = cfi_amdstd_destroy,
|
|
.name = "cfi_cmdset_0002",
|
|
.module = THIS_MODULE
|
|
};
|
|
|
|
|
|
/* #define DEBUG_CFI_FEATURES */
|
|
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
static void cfi_tell_features(struct cfi_pri_amdstd *extp)
|
|
{
|
|
const char* erase_suspend[3] = {
|
|
"Not supported", "Read only", "Read/write"
|
|
};
|
|
const char* top_bottom[6] = {
|
|
"No WP", "8x8KiB sectors at top & bottom, no WP",
|
|
"Bottom boot", "Top boot",
|
|
"Uniform, Bottom WP", "Uniform, Top WP"
|
|
};
|
|
|
|
printk(" Silicon revision: %d\n", extp->SiliconRevision >> 1);
|
|
printk(" Address sensitive unlock: %s\n",
|
|
(extp->SiliconRevision & 1) ? "Not required" : "Required");
|
|
|
|
if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
|
|
printk(" Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
|
|
else
|
|
printk(" Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
|
|
|
|
if (extp->BlkProt == 0)
|
|
printk(" Block protection: Not supported\n");
|
|
else
|
|
printk(" Block protection: %d sectors per group\n", extp->BlkProt);
|
|
|
|
|
|
printk(" Temporary block unprotect: %s\n",
|
|
extp->TmpBlkUnprotect ? "Supported" : "Not supported");
|
|
printk(" Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
|
|
printk(" Number of simultaneous operations: %d\n", extp->SimultaneousOps);
|
|
printk(" Burst mode: %s\n",
|
|
extp->BurstMode ? "Supported" : "Not supported");
|
|
if (extp->PageMode == 0)
|
|
printk(" Page mode: Not supported\n");
|
|
else
|
|
printk(" Page mode: %d word page\n", extp->PageMode << 2);
|
|
|
|
printk(" Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VppMin >> 4, extp->VppMin & 0xf);
|
|
printk(" Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
|
|
extp->VppMax >> 4, extp->VppMax & 0xf);
|
|
|
|
if (extp->TopBottom < ARRAY_SIZE(top_bottom))
|
|
printk(" Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
|
|
else
|
|
printk(" Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
|
|
}
|
|
#endif
|
|
|
|
#ifdef AMD_BOOTLOC_BUG
|
|
/* Wheee. Bring me the head of someone at AMD. */
|
|
static void fixup_amd_bootblock(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
|
|
__u8 major = extp->MajorVersion;
|
|
__u8 minor = extp->MinorVersion;
|
|
|
|
if (((major << 8) | minor) < 0x3131) {
|
|
/* CFI version 1.0 => don't trust bootloc */
|
|
|
|
pr_debug("%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
|
|
map->name, cfi->mfr, cfi->id);
|
|
|
|
/* AFAICS all 29LV400 with a bottom boot block have a device ID
|
|
* of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
|
|
* These were badly detected as they have the 0x80 bit set
|
|
* so treat them as a special case.
|
|
*/
|
|
if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
|
|
|
|
/* Macronix added CFI to their 2nd generation
|
|
* MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
|
|
* Fujitsu, Spansion, EON, ESI and older Macronix)
|
|
* has CFI.
|
|
*
|
|
* Therefore also check the manufacturer.
|
|
* This reduces the risk of false detection due to
|
|
* the 8-bit device ID.
|
|
*/
|
|
(cfi->mfr == CFI_MFR_MACRONIX)) {
|
|
pr_debug("%s: Macronix MX29LV400C with bottom boot block"
|
|
" detected\n", map->name);
|
|
extp->TopBottom = 2; /* bottom boot */
|
|
} else
|
|
if (cfi->id & 0x80) {
|
|
printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
|
|
extp->TopBottom = 3; /* top boot */
|
|
} else {
|
|
extp->TopBottom = 2; /* bottom boot */
|
|
}
|
|
|
|
pr_debug("%s: AMD CFI PRI V%c.%c has no boot block field;"
|
|
" deduced %s from Device ID\n", map->name, major, minor,
|
|
extp->TopBottom == 2 ? "bottom" : "top");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
static void fixup_use_write_buffers(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
if (cfi->cfiq->BufWriteTimeoutTyp) {
|
|
pr_debug("Using buffer write method\n");
|
|
mtd->_write = cfi_amdstd_write_buffers;
|
|
}
|
|
}
|
|
|
|
/* Atmel chips don't use the same PRI format as AMD chips */
|
|
static void fixup_convert_atmel_pri(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
|
|
struct cfi_pri_atmel atmel_pri;
|
|
|
|
memcpy(&atmel_pri, extp, sizeof(atmel_pri));
|
|
memset((char *)extp + 5, 0, sizeof(*extp) - 5);
|
|
|
|
if (atmel_pri.Features & 0x02)
|
|
extp->EraseSuspend = 2;
|
|
|
|
/* Some chips got it backwards... */
|
|
if (cfi->id == AT49BV6416) {
|
|
if (atmel_pri.BottomBoot)
|
|
extp->TopBottom = 3;
|
|
else
|
|
extp->TopBottom = 2;
|
|
} else {
|
|
if (atmel_pri.BottomBoot)
|
|
extp->TopBottom = 2;
|
|
else
|
|
extp->TopBottom = 3;
|
|
}
|
|
|
|
/* burst write mode not supported */
|
|
cfi->cfiq->BufWriteTimeoutTyp = 0;
|
|
cfi->cfiq->BufWriteTimeoutMax = 0;
|
|
}
|
|
|
|
static void fixup_use_secsi(struct mtd_info *mtd)
|
|
{
|
|
/* Setup for chips with a secsi area */
|
|
mtd->_read_user_prot_reg = cfi_amdstd_secsi_read;
|
|
mtd->_read_fact_prot_reg = cfi_amdstd_secsi_read;
|
|
}
|
|
|
|
static void fixup_use_erase_chip(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
if ((cfi->cfiq->NumEraseRegions == 1) &&
|
|
((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
|
|
mtd->_erase = cfi_amdstd_erase_chip;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
|
|
* locked by default.
|
|
*/
|
|
static void fixup_use_atmel_lock(struct mtd_info *mtd)
|
|
{
|
|
mtd->_lock = cfi_atmel_lock;
|
|
mtd->_unlock = cfi_atmel_unlock;
|
|
mtd->flags |= MTD_POWERUP_LOCK;
|
|
}
|
|
|
|
static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
/*
|
|
* These flashes report two separate eraseblock regions based on the
|
|
* sector_erase-size and block_erase-size, although they both operate on the
|
|
* same memory. This is not allowed according to CFI, so we just pick the
|
|
* sector_erase-size.
|
|
*/
|
|
cfi->cfiq->NumEraseRegions = 1;
|
|
}
|
|
|
|
static void fixup_sst39vf(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
fixup_old_sst_eraseregion(mtd);
|
|
|
|
cfi->addr_unlock1 = 0x5555;
|
|
cfi->addr_unlock2 = 0x2AAA;
|
|
}
|
|
|
|
static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
fixup_old_sst_eraseregion(mtd);
|
|
|
|
cfi->addr_unlock1 = 0x555;
|
|
cfi->addr_unlock2 = 0x2AA;
|
|
|
|
cfi->sector_erase_cmd = CMD(0x50);
|
|
}
|
|
|
|
static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
fixup_sst39vf_rev_b(mtd);
|
|
|
|
/*
|
|
* CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
|
|
* it should report a size of 8KBytes (0x0020*256).
|
|
*/
|
|
cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
|
|
pr_warn("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n",
|
|
mtd->name);
|
|
}
|
|
|
|
static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
|
|
cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
|
|
pr_warn("%s: Bad S29GL064N CFI data; adjust from 64 to 128 sectors\n",
|
|
mtd->name);
|
|
}
|
|
}
|
|
|
|
static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
|
|
cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
|
|
pr_warn("%s: Bad S29GL032N CFI data; adjust from 127 to 63 sectors\n",
|
|
mtd->name);
|
|
}
|
|
}
|
|
|
|
static void fixup_s29ns512p_sectors(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
/*
|
|
* S29NS512P flash uses more than 8bits to report number of sectors,
|
|
* which is not permitted by CFI.
|
|
*/
|
|
cfi->cfiq->EraseRegionInfo[0] = 0x020001ff;
|
|
pr_warn("%s: Bad S29NS512P CFI data; adjust to 512 sectors\n",
|
|
mtd->name);
|
|
}
|
|
|
|
/* Used to fix CFI-Tables of chips without Extended Query Tables */
|
|
static struct cfi_fixup cfi_nopri_fixup_table[] = {
|
|
{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
|
|
{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
|
|
{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
|
|
{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
|
|
{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
|
|
{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
|
|
{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
|
|
{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static struct cfi_fixup cfi_fixup_table[] = {
|
|
{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
|
|
#ifdef AMD_BOOTLOC_BUG
|
|
{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
|
|
{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
|
|
{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
|
|
#endif
|
|
{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
|
|
{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
|
|
{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
|
|
{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
|
|
{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
|
|
{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
|
|
{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
|
|
{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
|
|
{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
|
|
{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
|
|
{ CFI_MFR_AMD, 0x3f00, fixup_s29ns512p_sectors },
|
|
{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
|
|
{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
|
|
{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
|
|
{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
|
|
#if !FORCE_WORD_WRITE
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
|
|
#endif
|
|
{ 0, 0, NULL }
|
|
};
|
|
static struct cfi_fixup jedec_fixup_table[] = {
|
|
{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
|
|
{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
|
|
{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
static struct cfi_fixup fixup_table[] = {
|
|
/* The CFI vendor ids and the JEDEC vendor IDs appear
|
|
* to be common. It is like the devices id's are as
|
|
* well. This table is to pick all cases where
|
|
* we know that is the case.
|
|
*/
|
|
{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
|
|
{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
|
|
{ 0, 0, NULL }
|
|
};
|
|
|
|
|
|
static void cfi_fixup_major_minor(struct cfi_private *cfi,
|
|
struct cfi_pri_amdstd *extp)
|
|
{
|
|
if (cfi->mfr == CFI_MFR_SAMSUNG) {
|
|
if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
|
|
(extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
|
|
/*
|
|
* Samsung K8P2815UQB and K8D6x16UxM chips
|
|
* report major=0 / minor=0.
|
|
* K8D3x16UxC chips report major=3 / minor=3.
|
|
*/
|
|
printk(KERN_NOTICE " Fixing Samsung's Amd/Fujitsu"
|
|
" Extended Query version to 1.%c\n",
|
|
extp->MinorVersion);
|
|
extp->MajorVersion = '1';
|
|
}
|
|
}
|
|
|
|
/*
|
|
* SST 38VF640x chips report major=0xFF / minor=0xFF.
|
|
*/
|
|
if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
|
|
extp->MajorVersion = '1';
|
|
extp->MinorVersion = '0';
|
|
}
|
|
}
|
|
|
|
static int is_m29ew(struct cfi_private *cfi)
|
|
{
|
|
if (cfi->mfr == CFI_MFR_INTEL &&
|
|
((cfi->device_type == CFI_DEVICETYPE_X8 && (cfi->id & 0xff) == 0x7e) ||
|
|
(cfi->device_type == CFI_DEVICETYPE_X16 && cfi->id == 0x227e)))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 20:
|
|
* Some revisions of the M29EW suffer from erase suspend hang ups. In
|
|
* particular, it can occur when the sequence
|
|
* Erase Confirm -> Suspend -> Program -> Resume
|
|
* causes a lockup due to internal timing issues. The consequence is that the
|
|
* erase cannot be resumed without inserting a dummy command after programming
|
|
* and prior to resuming. [...] The work-around is to issue a dummy write cycle
|
|
* that writes an F0 command code before the RESUME command.
|
|
*/
|
|
static void cfi_fixup_m29ew_erase_suspend(struct map_info *map,
|
|
unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
/* before resume, insert a dummy 0xF0 cycle for Micron M29EW devices */
|
|
if (is_m29ew(cfi))
|
|
map_write(map, CMD(0xF0), adr);
|
|
}
|
|
|
|
/*
|
|
* From TN-13-07: Patching the Linux Kernel and U-Boot for M29 Flash, page 22:
|
|
*
|
|
* Some revisions of the M29EW (for example, A1 and A2 step revisions)
|
|
* are affected by a problem that could cause a hang up when an ERASE SUSPEND
|
|
* command is issued after an ERASE RESUME operation without waiting for a
|
|
* minimum delay. The result is that once the ERASE seems to be completed
|
|
* (no bits are toggling), the contents of the Flash memory block on which
|
|
* the erase was ongoing could be inconsistent with the expected values
|
|
* (typically, the array value is stuck to the 0xC0, 0xC4, 0x80, or 0x84
|
|
* values), causing a consequent failure of the ERASE operation.
|
|
* The occurrence of this issue could be high, especially when file system
|
|
* operations on the Flash are intensive. As a result, it is recommended
|
|
* that a patch be applied. Intensive file system operations can cause many
|
|
* calls to the garbage routine to free Flash space (also by erasing physical
|
|
* Flash blocks) and as a result, many consecutive SUSPEND and RESUME
|
|
* commands can occur. The problem disappears when a delay is inserted after
|
|
* the RESUME command by using the udelay() function available in Linux.
|
|
* The DELAY value must be tuned based on the customer's platform.
|
|
* The maximum value that fixes the problem in all cases is 500us.
|
|
* But, in our experience, a delay of 30 µs to 50 µs is sufficient
|
|
* in most cases.
|
|
* We have chosen 500µs because this latency is acceptable.
|
|
*/
|
|
static void cfi_fixup_m29ew_delay_after_resume(struct cfi_private *cfi)
|
|
{
|
|
/*
|
|
* Resolving the Delay After Resume Issue see Micron TN-13-07
|
|
* Worst case delay must be 500µs but 30-50µs should be ok as well
|
|
*/
|
|
if (is_m29ew(cfi))
|
|
cfi_udelay(500);
|
|
}
|
|
|
|
struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct device_node __maybe_unused *np = map->device_node;
|
|
struct mtd_info *mtd;
|
|
int i;
|
|
|
|
mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
|
|
if (!mtd)
|
|
return NULL;
|
|
mtd->priv = map;
|
|
mtd->type = MTD_NORFLASH;
|
|
|
|
/* Fill in the default mtd operations */
|
|
mtd->_erase = cfi_amdstd_erase_varsize;
|
|
mtd->_write = cfi_amdstd_write_words;
|
|
mtd->_read = cfi_amdstd_read;
|
|
mtd->_sync = cfi_amdstd_sync;
|
|
mtd->_suspend = cfi_amdstd_suspend;
|
|
mtd->_resume = cfi_amdstd_resume;
|
|
mtd->_read_user_prot_reg = cfi_amdstd_read_user_prot_reg;
|
|
mtd->_read_fact_prot_reg = cfi_amdstd_read_fact_prot_reg;
|
|
mtd->_get_fact_prot_info = cfi_amdstd_get_fact_prot_info;
|
|
mtd->_get_user_prot_info = cfi_amdstd_get_user_prot_info;
|
|
mtd->_write_user_prot_reg = cfi_amdstd_write_user_prot_reg;
|
|
mtd->_lock_user_prot_reg = cfi_amdstd_lock_user_prot_reg;
|
|
mtd->flags = MTD_CAP_NORFLASH;
|
|
mtd->name = map->name;
|
|
mtd->writesize = 1;
|
|
mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
|
|
pr_debug("MTD %s(): write buffer size %d\n", __func__,
|
|
mtd->writebufsize);
|
|
|
|
mtd->_panic_write = cfi_amdstd_panic_write;
|
|
mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
|
|
|
|
if (cfi->cfi_mode==CFI_MODE_CFI){
|
|
unsigned char bootloc;
|
|
__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
|
|
struct cfi_pri_amdstd *extp;
|
|
|
|
extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
|
|
if (extp) {
|
|
/*
|
|
* It's a real CFI chip, not one for which the probe
|
|
* routine faked a CFI structure.
|
|
*/
|
|
cfi_fixup_major_minor(cfi, extp);
|
|
|
|
/*
|
|
* Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
|
|
* see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
|
|
* http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
|
|
* http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
|
|
* http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
|
|
*/
|
|
if (extp->MajorVersion != '1' ||
|
|
(extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
|
|
printk(KERN_ERR " Unknown Amd/Fujitsu Extended Query "
|
|
"version %c.%c (%#02x/%#02x).\n",
|
|
extp->MajorVersion, extp->MinorVersion,
|
|
extp->MajorVersion, extp->MinorVersion);
|
|
kfree(extp);
|
|
kfree(mtd);
|
|
return NULL;
|
|
}
|
|
|
|
printk(KERN_INFO " Amd/Fujitsu Extended Query version %c.%c.\n",
|
|
extp->MajorVersion, extp->MinorVersion);
|
|
|
|
/* Install our own private info structure */
|
|
cfi->cmdset_priv = extp;
|
|
|
|
/* Apply cfi device specific fixups */
|
|
cfi_fixup(mtd, cfi_fixup_table);
|
|
|
|
#ifdef DEBUG_CFI_FEATURES
|
|
/* Tell the user about it in lots of lovely detail */
|
|
cfi_tell_features(extp);
|
|
#endif
|
|
|
|
#ifdef CONFIG_OF
|
|
if (np && of_property_read_bool(
|
|
np, "use-advanced-sector-protection")
|
|
&& extp->BlkProtUnprot == 8) {
|
|
printk(KERN_INFO " Advanced Sector Protection (PPB Locking) supported\n");
|
|
mtd->_lock = cfi_ppb_lock;
|
|
mtd->_unlock = cfi_ppb_unlock;
|
|
mtd->_is_locked = cfi_ppb_is_locked;
|
|
}
|
|
#endif
|
|
|
|
bootloc = extp->TopBottom;
|
|
if ((bootloc < 2) || (bootloc > 5)) {
|
|
printk(KERN_WARNING "%s: CFI contains unrecognised boot "
|
|
"bank location (%d). Assuming bottom.\n",
|
|
map->name, bootloc);
|
|
bootloc = 2;
|
|
}
|
|
|
|
if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
|
|
printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
|
|
|
|
for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
|
|
int j = (cfi->cfiq->NumEraseRegions-1)-i;
|
|
|
|
swap(cfi->cfiq->EraseRegionInfo[i],
|
|
cfi->cfiq->EraseRegionInfo[j]);
|
|
}
|
|
}
|
|
/* Set the default CFI lock/unlock addresses */
|
|
cfi->addr_unlock1 = 0x555;
|
|
cfi->addr_unlock2 = 0x2aa;
|
|
}
|
|
cfi_fixup(mtd, cfi_nopri_fixup_table);
|
|
|
|
if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
|
|
kfree(mtd);
|
|
return NULL;
|
|
}
|
|
|
|
} /* CFI mode */
|
|
else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
|
|
/* Apply jedec specific fixups */
|
|
cfi_fixup(mtd, jedec_fixup_table);
|
|
}
|
|
/* Apply generic fixups */
|
|
cfi_fixup(mtd, fixup_table);
|
|
|
|
for (i=0; i< cfi->numchips; i++) {
|
|
cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
|
|
cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
|
|
cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
|
|
/*
|
|
* First calculate the timeout max according to timeout field
|
|
* of struct cfi_ident that probed from chip's CFI aera, if
|
|
* available. Specify a minimum of 2000us, in case the CFI data
|
|
* is wrong.
|
|
*/
|
|
if (cfi->cfiq->BufWriteTimeoutTyp &&
|
|
cfi->cfiq->BufWriteTimeoutMax)
|
|
cfi->chips[i].buffer_write_time_max =
|
|
1 << (cfi->cfiq->BufWriteTimeoutTyp +
|
|
cfi->cfiq->BufWriteTimeoutMax);
|
|
else
|
|
cfi->chips[i].buffer_write_time_max = 0;
|
|
|
|
cfi->chips[i].buffer_write_time_max =
|
|
max(cfi->chips[i].buffer_write_time_max, 2000);
|
|
|
|
cfi->chips[i].ref_point_counter = 0;
|
|
init_waitqueue_head(&(cfi->chips[i].wq));
|
|
}
|
|
|
|
map->fldrv = &cfi_amdstd_chipdrv;
|
|
|
|
return cfi_amdstd_setup(mtd);
|
|
}
|
|
struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
|
|
struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
|
|
EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
|
|
EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
|
|
EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
|
|
|
|
static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
|
|
unsigned long offset = 0;
|
|
int i,j;
|
|
|
|
printk(KERN_NOTICE "number of %s chips: %d\n",
|
|
(cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
|
|
/* Select the correct geometry setup */
|
|
mtd->size = devsize * cfi->numchips;
|
|
|
|
mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
|
|
mtd->eraseregions = kmalloc_array(mtd->numeraseregions,
|
|
sizeof(struct mtd_erase_region_info),
|
|
GFP_KERNEL);
|
|
if (!mtd->eraseregions)
|
|
goto setup_err;
|
|
|
|
for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
|
|
unsigned long ernum, ersize;
|
|
ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
|
|
ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
|
|
|
|
if (mtd->erasesize < ersize) {
|
|
mtd->erasesize = ersize;
|
|
}
|
|
for (j=0; j<cfi->numchips; j++) {
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
|
|
mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
|
|
}
|
|
offset += (ersize * ernum);
|
|
}
|
|
if (offset != devsize) {
|
|
/* Argh */
|
|
printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
|
|
goto setup_err;
|
|
}
|
|
|
|
__module_get(THIS_MODULE);
|
|
register_reboot_notifier(&mtd->reboot_notifier);
|
|
return mtd;
|
|
|
|
setup_err:
|
|
kfree(mtd->eraseregions);
|
|
kfree(mtd);
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(cfi->cfiq);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return true if the chip is ready.
|
|
*
|
|
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
|
|
* non-suspended sector) and is indicated by no toggle bits toggling.
|
|
*
|
|
* Note that anything more complicated than checking if no bits are toggling
|
|
* (including checking DQ5 for an error status) is tricky to get working
|
|
* correctly and is therefore not done (particularly with interleaved chips
|
|
* as each chip must be checked independently of the others).
|
|
*/
|
|
static int __xipram chip_ready(struct map_info *map, unsigned long addr)
|
|
{
|
|
map_word d, t;
|
|
|
|
d = map_read(map, addr);
|
|
t = map_read(map, addr);
|
|
|
|
return map_word_equal(map, d, t);
|
|
}
|
|
|
|
/*
|
|
* Return true if the chip is ready and has the correct value.
|
|
*
|
|
* Ready is one of: read mode, query mode, erase-suspend-read mode (in any
|
|
* non-suspended sector) and it is indicated by no bits toggling.
|
|
*
|
|
* Error are indicated by toggling bits or bits held with the wrong value,
|
|
* or with bits toggling.
|
|
*
|
|
* Note that anything more complicated than checking if no bits are toggling
|
|
* (including checking DQ5 for an error status) is tricky to get working
|
|
* correctly and is therefore not done (particularly with interleaved chips
|
|
* as each chip must be checked independently of the others).
|
|
*
|
|
*/
|
|
static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
|
|
{
|
|
map_word oldd, curd;
|
|
|
|
oldd = map_read(map, addr);
|
|
curd = map_read(map, addr);
|
|
|
|
return map_word_equal(map, oldd, curd) &&
|
|
map_word_equal(map, curd, expected);
|
|
}
|
|
|
|
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo;
|
|
struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
|
|
|
|
resettime:
|
|
timeo = jiffies + HZ;
|
|
retry:
|
|
switch (chip->state) {
|
|
|
|
case FL_STATUS:
|
|
for (;;) {
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
|
|
return -EIO;
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
/* Someone else might have been playing with it. */
|
|
goto retry;
|
|
}
|
|
|
|
case FL_READY:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
return 0;
|
|
|
|
case FL_ERASING:
|
|
if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
|
|
!(mode == FL_READY || mode == FL_POINT ||
|
|
(mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
|
|
goto sleep;
|
|
|
|
/* Do not allow suspend iff read/write to EB address */
|
|
if ((adr & chip->in_progress_block_mask) ==
|
|
chip->in_progress_block_addr)
|
|
goto sleep;
|
|
|
|
/* Erase suspend */
|
|
/* It's harmless to issue the Erase-Suspend and Erase-Resume
|
|
* commands when the erase algorithm isn't in progress. */
|
|
map_write(map, CMD(0xB0), chip->in_progress_block_addr);
|
|
chip->oldstate = FL_ERASING;
|
|
chip->state = FL_ERASE_SUSPENDING;
|
|
chip->erase_suspended = 1;
|
|
for (;;) {
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
/* Should have suspended the erase by now.
|
|
* Send an Erase-Resume command as either
|
|
* there was an error (so leave the erase
|
|
* routine to recover from it) or we trying to
|
|
* use the erase-in-progress sector. */
|
|
put_chip(map, chip, adr);
|
|
printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
|
|
return -EIO;
|
|
}
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
cfi_udelay(1);
|
|
mutex_lock(&chip->mutex);
|
|
/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
|
|
So we can just loop here. */
|
|
}
|
|
chip->state = FL_READY;
|
|
return 0;
|
|
|
|
case FL_XIP_WHILE_ERASING:
|
|
if (mode != FL_READY && mode != FL_POINT &&
|
|
(!cfip || !(cfip->EraseSuspend&2)))
|
|
goto sleep;
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_READY;
|
|
return 0;
|
|
|
|
case FL_SHUTDOWN:
|
|
/* The machine is rebooting */
|
|
return -EIO;
|
|
|
|
case FL_POINT:
|
|
/* Only if there's no operation suspended... */
|
|
if (mode == FL_READY && chip->oldstate == FL_READY)
|
|
return 0;
|
|
|
|
default:
|
|
sleep:
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
goto resettime;
|
|
}
|
|
}
|
|
|
|
|
|
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
switch(chip->oldstate) {
|
|
case FL_ERASING:
|
|
cfi_fixup_m29ew_erase_suspend(map,
|
|
chip->in_progress_block_addr);
|
|
map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
|
|
cfi_fixup_m29ew_delay_after_resume(cfi);
|
|
chip->oldstate = FL_READY;
|
|
chip->state = FL_ERASING;
|
|
break;
|
|
|
|
case FL_XIP_WHILE_ERASING:
|
|
chip->state = chip->oldstate;
|
|
chip->oldstate = FL_READY;
|
|
break;
|
|
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
|
|
}
|
|
wake_up(&chip->wq);
|
|
}
|
|
|
|
#ifdef CONFIG_MTD_XIP
|
|
|
|
/*
|
|
* No interrupt what so ever can be serviced while the flash isn't in array
|
|
* mode. This is ensured by the xip_disable() and xip_enable() functions
|
|
* enclosing any code path where the flash is known not to be in array mode.
|
|
* And within a XIP disabled code path, only functions marked with __xipram
|
|
* may be called and nothing else (it's a good thing to inspect generated
|
|
* assembly to make sure inline functions were actually inlined and that gcc
|
|
* didn't emit calls to its own support functions). Also configuring MTD CFI
|
|
* support to a single buswidth and a single interleave is also recommended.
|
|
*/
|
|
|
|
static void xip_disable(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr)
|
|
{
|
|
/* TODO: chips with no XIP use should ignore and return */
|
|
(void) map_read(map, adr); /* ensure mmu mapping is up to date */
|
|
local_irq_disable();
|
|
}
|
|
|
|
static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
|
map_write(map, CMD(0xf0), adr);
|
|
chip->state = FL_READY;
|
|
}
|
|
(void) map_read(map, adr);
|
|
xip_iprefetch();
|
|
local_irq_enable();
|
|
}
|
|
|
|
/*
|
|
* When a delay is required for the flash operation to complete, the
|
|
* xip_udelay() function is polling for both the given timeout and pending
|
|
* (but still masked) hardware interrupts. Whenever there is an interrupt
|
|
* pending then the flash erase operation is suspended, array mode restored
|
|
* and interrupts unmasked. Task scheduling might also happen at that
|
|
* point. The CPU eventually returns from the interrupt or the call to
|
|
* schedule() and the suspended flash operation is resumed for the remaining
|
|
* of the delay period.
|
|
*
|
|
* Warning: this function _will_ fool interrupt latency tracing tools.
|
|
*/
|
|
|
|
static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, int usec)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
|
|
map_word status, OK = CMD(0x80);
|
|
unsigned long suspended, start = xip_currtime();
|
|
flstate_t oldstate;
|
|
|
|
do {
|
|
cpu_relax();
|
|
if (xip_irqpending() && extp &&
|
|
((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
|
|
(cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
|
|
/*
|
|
* Let's suspend the erase operation when supported.
|
|
* Note that we currently don't try to suspend
|
|
* interleaved chips if there is already another
|
|
* operation suspended (imagine what happens
|
|
* when one chip was already done with the current
|
|
* operation while another chip suspended it, then
|
|
* we resume the whole thing at once). Yes, it
|
|
* can happen!
|
|
*/
|
|
map_write(map, CMD(0xb0), adr);
|
|
usec -= xip_elapsed_since(start);
|
|
suspended = xip_currtime();
|
|
do {
|
|
if (xip_elapsed_since(suspended) > 100000) {
|
|
/*
|
|
* The chip doesn't want to suspend
|
|
* after waiting for 100 msecs.
|
|
* This is a critical error but there
|
|
* is not much we can do here.
|
|
*/
|
|
return;
|
|
}
|
|
status = map_read(map, adr);
|
|
} while (!map_word_andequal(map, status, OK, OK));
|
|
|
|
/* Suspend succeeded */
|
|
oldstate = chip->state;
|
|
if (!map_word_bitsset(map, status, CMD(0x40)))
|
|
break;
|
|
chip->state = FL_XIP_WHILE_ERASING;
|
|
chip->erase_suspended = 1;
|
|
map_write(map, CMD(0xf0), adr);
|
|
(void) map_read(map, adr);
|
|
xip_iprefetch();
|
|
local_irq_enable();
|
|
mutex_unlock(&chip->mutex);
|
|
xip_iprefetch();
|
|
cond_resched();
|
|
|
|
/*
|
|
* We're back. However someone else might have
|
|
* decided to go write to the chip if we are in
|
|
* a suspended erase state. If so let's wait
|
|
* until it's done.
|
|
*/
|
|
mutex_lock(&chip->mutex);
|
|
while (chip->state != FL_XIP_WHILE_ERASING) {
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
}
|
|
/* Disallow XIP again */
|
|
local_irq_disable();
|
|
|
|
/* Correct Erase Suspend Hangups for M29EW */
|
|
cfi_fixup_m29ew_erase_suspend(map, adr);
|
|
/* Resume the write or erase operation */
|
|
map_write(map, cfi->sector_erase_cmd, adr);
|
|
chip->state = oldstate;
|
|
start = xip_currtime();
|
|
} else if (usec >= 1000000/HZ) {
|
|
/*
|
|
* Try to save on CPU power when waiting delay
|
|
* is at least a system timer tick period.
|
|
* No need to be extremely accurate here.
|
|
*/
|
|
xip_cpu_idle();
|
|
}
|
|
status = map_read(map, adr);
|
|
} while (!map_word_andequal(map, status, OK, OK)
|
|
&& xip_elapsed_since(start) < usec);
|
|
}
|
|
|
|
#define UDELAY(map, chip, adr, usec) xip_udelay(map, chip, adr, usec)
|
|
|
|
/*
|
|
* The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
|
|
* the flash is actively programming or erasing since we have to poll for
|
|
* the operation to complete anyway. We can't do that in a generic way with
|
|
* a XIP setup so do it before the actual flash operation in this case
|
|
* and stub it out from INVALIDATE_CACHE_UDELAY.
|
|
*/
|
|
#define XIP_INVAL_CACHED_RANGE(map, from, size) \
|
|
INVALIDATE_CACHED_RANGE(map, from, size)
|
|
|
|
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
|
|
UDELAY(map, chip, adr, usec)
|
|
|
|
/*
|
|
* Extra notes:
|
|
*
|
|
* Activating this XIP support changes the way the code works a bit. For
|
|
* example the code to suspend the current process when concurrent access
|
|
* happens is never executed because xip_udelay() will always return with the
|
|
* same chip state as it was entered with. This is why there is no care for
|
|
* the presence of add_wait_queue() or schedule() calls from within a couple
|
|
* xip_disable()'d areas of code, like in do_erase_oneblock for example.
|
|
* The queueing and scheduling are always happening within xip_udelay().
|
|
*
|
|
* Similarly, get_chip() and put_chip() just happen to always be executed
|
|
* with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
|
|
* is in array mode, therefore never executing many cases therein and not
|
|
* causing any problem with XIP.
|
|
*/
|
|
|
|
#else
|
|
|
|
#define xip_disable(map, chip, adr)
|
|
#define xip_enable(map, chip, adr)
|
|
#define XIP_INVAL_CACHED_RANGE(x...)
|
|
|
|
#define UDELAY(map, chip, adr, usec) \
|
|
do { \
|
|
mutex_unlock(&chip->mutex); \
|
|
cfi_udelay(usec); \
|
|
mutex_lock(&chip->mutex); \
|
|
} while (0)
|
|
|
|
#define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec) \
|
|
do { \
|
|
mutex_unlock(&chip->mutex); \
|
|
INVALIDATE_CACHED_RANGE(map, adr, len); \
|
|
cfi_udelay(usec); \
|
|
mutex_lock(&chip->mutex); \
|
|
} while (0)
|
|
|
|
#endif
|
|
|
|
static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
|
|
{
|
|
unsigned long cmd_addr;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret;
|
|
|
|
adr += chip->start;
|
|
|
|
/* Ensure cmd read/writes are aligned. */
|
|
cmd_addr = adr & ~(map_bankwidth(map)-1);
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, cmd_addr, FL_READY);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
if (chip->state != FL_POINT && chip->state != FL_READY) {
|
|
map_write(map, CMD(0xf0), cmd_addr);
|
|
chip->state = FL_READY;
|
|
}
|
|
|
|
map_copy_from(map, buf, adr, len);
|
|
|
|
put_chip(map, chip, cmd_addr);
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
chipnum = (from >> cfi->chipshift);
|
|
ofs = from - (chipnum << cfi->chipshift);
|
|
|
|
while (len) {
|
|
unsigned long thislen;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> cfi->chipshift)
|
|
thislen = (1<<cfi->chipshift) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
|
|
if (ret)
|
|
break;
|
|
|
|
*retlen += thislen;
|
|
len -= thislen;
|
|
buf += thislen;
|
|
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
typedef int (*otp_op_t)(struct map_info *map, struct flchip *chip,
|
|
loff_t adr, size_t len, u_char *buf, size_t grouplen);
|
|
|
|
static inline void otp_enter(struct map_info *map, struct flchip *chip,
|
|
loff_t adr, size_t len)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
|
|
INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
|
|
}
|
|
|
|
static inline void otp_exit(struct map_info *map, struct flchip *chip,
|
|
loff_t adr, size_t len)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
|
|
INVALIDATE_CACHED_RANGE(map, chip->start + adr, len);
|
|
}
|
|
|
|
static inline int do_read_secsi_onechip(struct map_info *map,
|
|
struct flchip *chip, loff_t adr,
|
|
size_t len, u_char *buf,
|
|
size_t grouplen)
|
|
{
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state != FL_READY){
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
goto retry;
|
|
}
|
|
|
|
adr += chip->start;
|
|
|
|
chip->state = FL_READY;
|
|
|
|
otp_enter(map, chip, adr, len);
|
|
map_copy_from(map, buf, adr, len);
|
|
otp_exit(map, chip, adr, len);
|
|
|
|
wake_up(&chip->wq);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs;
|
|
int chipnum;
|
|
int ret = 0;
|
|
|
|
/* ofs: offset within the first chip that the first read should start */
|
|
/* 8 secsi bytes per chip */
|
|
chipnum=from>>3;
|
|
ofs=from & 7;
|
|
|
|
while (len) {
|
|
unsigned long thislen;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
|
|
if ((len + ofs -1) >> 3)
|
|
thislen = (1<<3) - ofs;
|
|
else
|
|
thislen = len;
|
|
|
|
ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs,
|
|
thislen, buf, 0);
|
|
if (ret)
|
|
break;
|
|
|
|
*retlen += thislen;
|
|
len -= thislen;
|
|
buf += thislen;
|
|
|
|
ofs = 0;
|
|
chipnum++;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, map_word datum,
|
|
int mode);
|
|
|
|
static int do_otp_write(struct map_info *map, struct flchip *chip, loff_t adr,
|
|
size_t len, u_char *buf, size_t grouplen)
|
|
{
|
|
int ret;
|
|
while (len) {
|
|
unsigned long bus_ofs = adr & ~(map_bankwidth(map)-1);
|
|
int gap = adr - bus_ofs;
|
|
int n = min_t(int, len, map_bankwidth(map) - gap);
|
|
map_word datum = map_word_ff(map);
|
|
|
|
if (n != map_bankwidth(map)) {
|
|
/* partial write of a word, load old contents */
|
|
otp_enter(map, chip, bus_ofs, map_bankwidth(map));
|
|
datum = map_read(map, bus_ofs);
|
|
otp_exit(map, chip, bus_ofs, map_bankwidth(map));
|
|
}
|
|
|
|
datum = map_word_load_partial(map, datum, buf, gap, n);
|
|
ret = do_write_oneword(map, chip, bus_ofs, datum, FL_OTP_WRITE);
|
|
if (ret)
|
|
return ret;
|
|
|
|
adr += n;
|
|
buf += n;
|
|
len -= n;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_otp_lock(struct map_info *map, struct flchip *chip, loff_t adr,
|
|
size_t len, u_char *buf, size_t grouplen)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
uint8_t lockreg;
|
|
unsigned long timeo;
|
|
int ret;
|
|
|
|
/* make sure area matches group boundaries */
|
|
if ((adr != 0) || (len != grouplen))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, chip->start, FL_LOCKING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
chip->state = FL_LOCKING;
|
|
|
|
/* Enter lock register command */
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x40, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
|
|
/* read lock register */
|
|
lockreg = cfi_read_query(map, 0);
|
|
|
|
/* set bit 0 to protect extended memory block */
|
|
lockreg &= ~0x01;
|
|
|
|
/* set bit 0 to protect extended memory block */
|
|
/* write lock register */
|
|
map_write(map, CMD(0xA0), chip->start);
|
|
map_write(map, CMD(lockreg), chip->start);
|
|
|
|
/* wait for chip to become ready */
|
|
timeo = jiffies + msecs_to_jiffies(2);
|
|
for (;;) {
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
pr_err("Waiting for chip to be ready timed out.\n");
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
UDELAY(map, chip, 0, 1);
|
|
}
|
|
|
|
/* exit protection commands */
|
|
map_write(map, CMD(0x90), chip->start);
|
|
map_write(map, CMD(0x00), chip->start);
|
|
|
|
chip->state = FL_READY;
|
|
put_chip(map, chip, chip->start);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_amdstd_otp_walk(struct mtd_info *mtd, loff_t from, size_t len,
|
|
size_t *retlen, u_char *buf,
|
|
otp_op_t action, int user_regs)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ofs_factor = cfi->interleave * cfi->device_type;
|
|
unsigned long base;
|
|
int chipnum;
|
|
struct flchip *chip;
|
|
uint8_t otp, lockreg;
|
|
int ret;
|
|
|
|
size_t user_size, factory_size, otpsize;
|
|
loff_t user_offset, factory_offset, otpoffset;
|
|
int user_locked = 0, otplocked;
|
|
|
|
*retlen = 0;
|
|
|
|
for (chipnum = 0; chipnum < cfi->numchips; chipnum++) {
|
|
chip = &cfi->chips[chipnum];
|
|
factory_size = 0;
|
|
user_size = 0;
|
|
|
|
/* Micron M29EW family */
|
|
if (is_m29ew(cfi)) {
|
|
base = chip->start;
|
|
|
|
/* check whether secsi area is factory locked
|
|
or user lockable */
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, base, FL_CFI_QUERY);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
cfi_qry_mode_on(base, map, cfi);
|
|
otp = cfi_read_query(map, base + 0x3 * ofs_factor);
|
|
cfi_qry_mode_off(base, map, cfi);
|
|
put_chip(map, chip, base);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
if (otp & 0x80) {
|
|
/* factory locked */
|
|
factory_offset = 0;
|
|
factory_size = 0x100;
|
|
} else {
|
|
/* customer lockable */
|
|
user_offset = 0;
|
|
user_size = 0x100;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, base, FL_LOCKING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
/* Enter lock register command */
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1,
|
|
chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2,
|
|
chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x40, cfi->addr_unlock1,
|
|
chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
/* read lock register */
|
|
lockreg = cfi_read_query(map, 0);
|
|
/* exit protection commands */
|
|
map_write(map, CMD(0x90), chip->start);
|
|
map_write(map, CMD(0x00), chip->start);
|
|
put_chip(map, chip, chip->start);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
user_locked = ((lockreg & 0x01) == 0x00);
|
|
}
|
|
}
|
|
|
|
otpsize = user_regs ? user_size : factory_size;
|
|
if (!otpsize)
|
|
continue;
|
|
otpoffset = user_regs ? user_offset : factory_offset;
|
|
otplocked = user_regs ? user_locked : 1;
|
|
|
|
if (!action) {
|
|
/* return otpinfo */
|
|
struct otp_info *otpinfo;
|
|
len -= sizeof(*otpinfo);
|
|
if (len <= 0)
|
|
return -ENOSPC;
|
|
otpinfo = (struct otp_info *)buf;
|
|
otpinfo->start = from;
|
|
otpinfo->length = otpsize;
|
|
otpinfo->locked = otplocked;
|
|
buf += sizeof(*otpinfo);
|
|
*retlen += sizeof(*otpinfo);
|
|
from += otpsize;
|
|
} else if ((from < otpsize) && (len > 0)) {
|
|
size_t size;
|
|
size = (len < otpsize - from) ? len : otpsize - from;
|
|
ret = action(map, chip, otpoffset + from, size, buf,
|
|
otpsize);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
buf += size;
|
|
len -= size;
|
|
*retlen += size;
|
|
from = 0;
|
|
} else {
|
|
from -= otpsize;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cfi_amdstd_get_fact_prot_info(struct mtd_info *mtd, size_t len,
|
|
size_t *retlen, struct otp_info *buf)
|
|
{
|
|
return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
|
|
NULL, 0);
|
|
}
|
|
|
|
static int cfi_amdstd_get_user_prot_info(struct mtd_info *mtd, size_t len,
|
|
size_t *retlen, struct otp_info *buf)
|
|
{
|
|
return cfi_amdstd_otp_walk(mtd, 0, len, retlen, (u_char *)buf,
|
|
NULL, 1);
|
|
}
|
|
|
|
static int cfi_amdstd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen,
|
|
u_char *buf)
|
|
{
|
|
return cfi_amdstd_otp_walk(mtd, from, len, retlen,
|
|
buf, do_read_secsi_onechip, 0);
|
|
}
|
|
|
|
static int cfi_amdstd_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen,
|
|
u_char *buf)
|
|
{
|
|
return cfi_amdstd_otp_walk(mtd, from, len, retlen,
|
|
buf, do_read_secsi_onechip, 1);
|
|
}
|
|
|
|
static int cfi_amdstd_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len, size_t *retlen,
|
|
u_char *buf)
|
|
{
|
|
return cfi_amdstd_otp_walk(mtd, from, len, retlen, buf,
|
|
do_otp_write, 1);
|
|
}
|
|
|
|
static int cfi_amdstd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
|
|
size_t len)
|
|
{
|
|
size_t retlen;
|
|
return cfi_amdstd_otp_walk(mtd, from, len, &retlen, NULL,
|
|
do_otp_lock, 1);
|
|
}
|
|
|
|
static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, map_word datum,
|
|
int mode)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
/*
|
|
* We use a 1ms + 1 jiffies generic timeout for writes (most devices
|
|
* have a max write time of a few hundreds usec). However, we should
|
|
* use the maximum timeout value given by the chip at probe time
|
|
* instead. Unfortunately, struct flchip does have a field for
|
|
* maximum timeout, only for typical which can be far too short
|
|
* depending of the conditions. The ' + 1' is to avoid having a
|
|
* timeout of 0 jiffies if HZ is smaller than 1000.
|
|
*/
|
|
unsigned long uWriteTimeout = (HZ / 1000) + 1;
|
|
int ret = 0;
|
|
map_word oldd;
|
|
int retry_cnt = 0;
|
|
|
|
adr += chip->start;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, mode);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
|
|
__func__, adr, datum.x[0]);
|
|
|
|
if (mode == FL_OTP_WRITE)
|
|
otp_enter(map, chip, adr, map_bankwidth(map));
|
|
|
|
/*
|
|
* Check for a NOP for the case when the datum to write is already
|
|
* present - it saves time and works around buggy chips that corrupt
|
|
* data at other locations when 0xff is written to a location that
|
|
* already contains 0xff.
|
|
*/
|
|
oldd = map_read(map, adr);
|
|
if (map_word_equal(map, oldd, datum)) {
|
|
pr_debug("MTD %s(): NOP\n",
|
|
__func__);
|
|
goto op_done;
|
|
}
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
|
|
retry:
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
map_write(map, datum, adr);
|
|
chip->state = mode;
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, map_bankwidth(map),
|
|
chip->word_write_time);
|
|
|
|
/* See comment above for timeout value. */
|
|
timeo = jiffies + uWriteTimeout;
|
|
for (;;) {
|
|
if (chip->state != mode) {
|
|
/* Someone's suspended the write. Sleep */
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + (HZ / 2); /* FIXME */
|
|
mutex_lock(&chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
|
|
xip_enable(map, chip, adr);
|
|
printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
|
|
xip_disable(map, chip, adr);
|
|
break;
|
|
}
|
|
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1);
|
|
}
|
|
/* Did we succeed? */
|
|
if (!chip_good(map, adr, datum)) {
|
|
/* reset on all failures. */
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
if (++retry_cnt <= MAX_RETRIES)
|
|
goto retry;
|
|
|
|
ret = -EIO;
|
|
}
|
|
xip_enable(map, chip, adr);
|
|
op_done:
|
|
if (mode == FL_OTP_WRITE)
|
|
otp_exit(map, chip, adr, map_bankwidth(map));
|
|
chip->state = FL_READY;
|
|
DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs, chipstart;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
chipstart = cfi->chips[chipnum].start;
|
|
|
|
/* If it's not bus-aligned, do the first byte write */
|
|
if (ofs & (map_bankwidth(map)-1)) {
|
|
unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
|
|
int i = ofs - bus_ofs;
|
|
int n = 0;
|
|
map_word tmp_buf;
|
|
|
|
retry:
|
|
mutex_lock(&cfi->chips[chipnum].mutex);
|
|
|
|
if (cfi->chips[chipnum].state != FL_READY) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
|
|
mutex_unlock(&cfi->chips[chipnum].mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
goto retry;
|
|
}
|
|
|
|
/* Load 'tmp_buf' with old contents of flash */
|
|
tmp_buf = map_read(map, bus_ofs+chipstart);
|
|
|
|
mutex_unlock(&cfi->chips[chipnum].mutex);
|
|
|
|
/* Number of bytes to copy from buffer */
|
|
n = min_t(int, len, map_bankwidth(map)-i);
|
|
|
|
tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
bus_ofs, tmp_buf, FL_WRITING);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += n;
|
|
buf += n;
|
|
(*retlen) += n;
|
|
len -= n;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We are now aligned, write as much as possible */
|
|
while(len >= map_bankwidth(map)) {
|
|
map_word datum;
|
|
|
|
datum = map_word_load(map, buf);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, datum, FL_WRITING);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += map_bankwidth(map);
|
|
buf += map_bankwidth(map);
|
|
(*retlen) += map_bankwidth(map);
|
|
len -= map_bankwidth(map);
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
chipstart = cfi->chips[chipnum].start;
|
|
}
|
|
}
|
|
|
|
/* Write the trailing bytes if any */
|
|
if (len & (map_bankwidth(map)-1)) {
|
|
map_word tmp_buf;
|
|
|
|
retry1:
|
|
mutex_lock(&cfi->chips[chipnum].mutex);
|
|
|
|
if (cfi->chips[chipnum].state != FL_READY) {
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
|
|
mutex_unlock(&cfi->chips[chipnum].mutex);
|
|
|
|
schedule();
|
|
remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
|
|
goto retry1;
|
|
}
|
|
|
|
tmp_buf = map_read(map, ofs + chipstart);
|
|
|
|
mutex_unlock(&cfi->chips[chipnum].mutex);
|
|
|
|
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
|
|
|
|
ret = do_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, tmp_buf, FL_WRITING);
|
|
if (ret)
|
|
return ret;
|
|
|
|
(*retlen) += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* FIXME: interleaved mode not tested, and probably not supported!
|
|
*/
|
|
static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, const u_char *buf,
|
|
int len)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
/*
|
|
* Timeout is calculated according to CFI data, if available.
|
|
* See more comments in cfi_cmdset_0002().
|
|
*/
|
|
unsigned long uWriteTimeout =
|
|
usecs_to_jiffies(chip->buffer_write_time_max);
|
|
int ret = -EIO;
|
|
unsigned long cmd_adr;
|
|
int z, words;
|
|
map_word datum;
|
|
|
|
adr += chip->start;
|
|
cmd_adr = adr;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_WRITING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
datum = map_word_load(map, buf);
|
|
|
|
pr_debug("MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
|
|
__func__, adr, datum.x[0]);
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, len);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, cmd_adr);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
|
|
/* Write Buffer Load */
|
|
map_write(map, CMD(0x25), cmd_adr);
|
|
|
|
chip->state = FL_WRITING_TO_BUFFER;
|
|
|
|
/* Write length of data to come */
|
|
words = len / map_bankwidth(map);
|
|
map_write(map, CMD(words - 1), cmd_adr);
|
|
/* Write data */
|
|
z = 0;
|
|
while(z < words * map_bankwidth(map)) {
|
|
datum = map_word_load(map, buf);
|
|
map_write(map, datum, adr + z);
|
|
|
|
z += map_bankwidth(map);
|
|
buf += map_bankwidth(map);
|
|
}
|
|
z -= map_bankwidth(map);
|
|
|
|
adr += z;
|
|
|
|
/* Write Buffer Program Confirm: GO GO GO */
|
|
map_write(map, CMD(0x29), cmd_adr);
|
|
chip->state = FL_WRITING;
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, map_bankwidth(map),
|
|
chip->word_write_time);
|
|
|
|
timeo = jiffies + uWriteTimeout;
|
|
|
|
for (;;) {
|
|
if (chip->state != FL_WRITING) {
|
|
/* Someone's suspended the write. Sleep */
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
timeo = jiffies + (HZ / 2); /* FIXME */
|
|
mutex_lock(&chip->mutex);
|
|
continue;
|
|
}
|
|
|
|
if (time_after(jiffies, timeo) && !chip_ready(map, adr))
|
|
break;
|
|
|
|
if (chip_good(map, adr, datum)) {
|
|
xip_enable(map, chip, adr);
|
|
goto op_done;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1);
|
|
}
|
|
|
|
/*
|
|
* Recovery from write-buffer programming failures requires
|
|
* the write-to-buffer-reset sequence. Since the last part
|
|
* of the sequence also works as a normal reset, we can run
|
|
* the same commands regardless of why we are here.
|
|
* See e.g.
|
|
* http://www.spansion.com/Support/Application%20Notes/MirrorBit_Write_Buffer_Prog_Page_Buffer_Read_AN.pdf
|
|
*/
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xF0, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
xip_enable(map, chip, adr);
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
printk(KERN_WARNING "MTD %s(): software timeout, address:0x%.8lx.\n",
|
|
__func__, adr);
|
|
|
|
ret = -EIO;
|
|
op_done:
|
|
chip->state = FL_READY;
|
|
DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
|
|
int ret = 0;
|
|
int chipnum;
|
|
unsigned long ofs;
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
|
|
/* If it's not bus-aligned, do the first word write */
|
|
if (ofs & (map_bankwidth(map)-1)) {
|
|
size_t local_len = (-ofs)&(map_bankwidth(map)-1);
|
|
if (local_len > len)
|
|
local_len = len;
|
|
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
|
|
local_len, retlen, buf);
|
|
if (ret)
|
|
return ret;
|
|
ofs += local_len;
|
|
buf += local_len;
|
|
len -= local_len;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Write buffer is worth it only if more than one word to write... */
|
|
while (len >= map_bankwidth(map) * 2) {
|
|
/* We must not cross write block boundaries */
|
|
int size = wbufsize - (ofs & (wbufsize-1));
|
|
|
|
if (size > len)
|
|
size = len;
|
|
if (size % map_bankwidth(map))
|
|
size -= size % map_bankwidth(map);
|
|
|
|
ret = do_write_buffer(map, &cfi->chips[chipnum],
|
|
ofs, buf, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += size;
|
|
buf += size;
|
|
(*retlen) += size;
|
|
len -= size;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum ++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (len) {
|
|
size_t retlen_dregs = 0;
|
|
|
|
ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
|
|
len, &retlen_dregs, buf);
|
|
|
|
*retlen += retlen_dregs;
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Wait for the flash chip to become ready to write data
|
|
*
|
|
* This is only called during the panic_write() path. When panic_write()
|
|
* is called, the kernel is in the process of a panic, and will soon be
|
|
* dead. Therefore we don't take any locks, and attempt to get access
|
|
* to the chip as soon as possible.
|
|
*/
|
|
static int cfi_amdstd_panic_wait(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int retries = 10;
|
|
int i;
|
|
|
|
/*
|
|
* If the driver thinks the chip is idle, and no toggle bits
|
|
* are changing, then the chip is actually idle for sure.
|
|
*/
|
|
if (chip->state == FL_READY && chip_ready(map, adr))
|
|
return 0;
|
|
|
|
/*
|
|
* Try several times to reset the chip and then wait for it
|
|
* to become idle. The upper limit of a few milliseconds of
|
|
* delay isn't a big problem: the kernel is dying anyway. It
|
|
* is more important to save the messages.
|
|
*/
|
|
while (retries > 0) {
|
|
const unsigned long timeo = (HZ / 1000) + 1;
|
|
|
|
/* send the reset command */
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
|
|
/* wait for the chip to become ready */
|
|
for (i = 0; i < jiffies_to_usecs(timeo); i++) {
|
|
if (chip_ready(map, adr))
|
|
return 0;
|
|
|
|
udelay(1);
|
|
}
|
|
|
|
retries--;
|
|
}
|
|
|
|
/* the chip never became ready */
|
|
return -EBUSY;
|
|
}
|
|
|
|
/*
|
|
* Write out one word of data to a single flash chip during a kernel panic
|
|
*
|
|
* This is only called during the panic_write() path. When panic_write()
|
|
* is called, the kernel is in the process of a panic, and will soon be
|
|
* dead. Therefore we don't take any locks, and attempt to get access
|
|
* to the chip as soon as possible.
|
|
*
|
|
* The implementation of this routine is intentionally similar to
|
|
* do_write_oneword(), in order to ease code maintenance.
|
|
*/
|
|
static int do_panic_write_oneword(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, map_word datum)
|
|
{
|
|
const unsigned long uWriteTimeout = (HZ / 1000) + 1;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int retry_cnt = 0;
|
|
map_word oldd;
|
|
int ret = 0;
|
|
int i;
|
|
|
|
adr += chip->start;
|
|
|
|
ret = cfi_amdstd_panic_wait(map, chip, adr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
pr_debug("MTD %s(): PANIC WRITE 0x%.8lx(0x%.8lx)\n",
|
|
__func__, adr, datum.x[0]);
|
|
|
|
/*
|
|
* Check for a NOP for the case when the datum to write is already
|
|
* present - it saves time and works around buggy chips that corrupt
|
|
* data at other locations when 0xff is written to a location that
|
|
* already contains 0xff.
|
|
*/
|
|
oldd = map_read(map, adr);
|
|
if (map_word_equal(map, oldd, datum)) {
|
|
pr_debug("MTD %s(): NOP\n", __func__);
|
|
goto op_done;
|
|
}
|
|
|
|
ENABLE_VPP(map);
|
|
|
|
retry:
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
map_write(map, datum, adr);
|
|
|
|
for (i = 0; i < jiffies_to_usecs(uWriteTimeout); i++) {
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
udelay(1);
|
|
}
|
|
|
|
if (!chip_good(map, adr, datum)) {
|
|
/* reset on all failures. */
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
if (++retry_cnt <= MAX_RETRIES)
|
|
goto retry;
|
|
|
|
ret = -EIO;
|
|
}
|
|
|
|
op_done:
|
|
DISABLE_VPP(map);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Write out some data during a kernel panic
|
|
*
|
|
* This is used by the mtdoops driver to save the dying messages from a
|
|
* kernel which has panic'd.
|
|
*
|
|
* This routine ignores all of the locking used throughout the rest of the
|
|
* driver, in order to ensure that the data gets written out no matter what
|
|
* state this driver (and the flash chip itself) was in when the kernel crashed.
|
|
*
|
|
* The implementation of this routine is intentionally similar to
|
|
* cfi_amdstd_write_words(), in order to ease code maintenance.
|
|
*/
|
|
static int cfi_amdstd_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const u_char *buf)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long ofs, chipstart;
|
|
int ret = 0;
|
|
int chipnum;
|
|
|
|
chipnum = to >> cfi->chipshift;
|
|
ofs = to - (chipnum << cfi->chipshift);
|
|
chipstart = cfi->chips[chipnum].start;
|
|
|
|
/* If it's not bus aligned, do the first byte write */
|
|
if (ofs & (map_bankwidth(map) - 1)) {
|
|
unsigned long bus_ofs = ofs & ~(map_bankwidth(map) - 1);
|
|
int i = ofs - bus_ofs;
|
|
int n = 0;
|
|
map_word tmp_buf;
|
|
|
|
ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], bus_ofs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Load 'tmp_buf' with old contents of flash */
|
|
tmp_buf = map_read(map, bus_ofs + chipstart);
|
|
|
|
/* Number of bytes to copy from buffer */
|
|
n = min_t(int, len, map_bankwidth(map) - i);
|
|
|
|
tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
|
|
|
|
ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
|
|
bus_ofs, tmp_buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += n;
|
|
buf += n;
|
|
(*retlen) += n;
|
|
len -= n;
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* We are now aligned, write as much as possible */
|
|
while (len >= map_bankwidth(map)) {
|
|
map_word datum;
|
|
|
|
datum = map_word_load(map, buf);
|
|
|
|
ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, datum);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ofs += map_bankwidth(map);
|
|
buf += map_bankwidth(map);
|
|
(*retlen) += map_bankwidth(map);
|
|
len -= map_bankwidth(map);
|
|
|
|
if (ofs >> cfi->chipshift) {
|
|
chipnum++;
|
|
ofs = 0;
|
|
if (chipnum == cfi->numchips)
|
|
return 0;
|
|
|
|
chipstart = cfi->chips[chipnum].start;
|
|
}
|
|
}
|
|
|
|
/* Write the trailing bytes if any */
|
|
if (len & (map_bankwidth(map) - 1)) {
|
|
map_word tmp_buf;
|
|
|
|
ret = cfi_amdstd_panic_wait(map, &cfi->chips[chipnum], ofs);
|
|
if (ret)
|
|
return ret;
|
|
|
|
tmp_buf = map_read(map, ofs + chipstart);
|
|
|
|
tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
|
|
|
|
ret = do_panic_write_oneword(map, &cfi->chips[chipnum],
|
|
ofs, tmp_buf);
|
|
if (ret)
|
|
return ret;
|
|
|
|
(*retlen) += len;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle devices with one erase region, that only implement
|
|
* the chip erase command.
|
|
*/
|
|
static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
unsigned long int adr;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int ret = 0;
|
|
int retry_cnt = 0;
|
|
|
|
adr = cfi->addr_unlock1;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_WRITING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
pr_debug("MTD %s(): ERASE 0x%.8lx\n",
|
|
__func__, chip->start);
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, map->size);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
|
|
retry:
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
|
|
chip->state = FL_ERASING;
|
|
chip->erase_suspended = 0;
|
|
chip->in_progress_block_addr = adr;
|
|
chip->in_progress_block_mask = ~(map->size - 1);
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, map->size,
|
|
chip->erase_time*500);
|
|
|
|
timeo = jiffies + (HZ*20);
|
|
|
|
for (;;) {
|
|
if (chip->state != FL_ERASING) {
|
|
/* Someone's suspended the erase. Sleep */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
continue;
|
|
}
|
|
if (chip->erase_suspended) {
|
|
/* This erase was suspended and resumed.
|
|
Adjust the timeout */
|
|
timeo = jiffies + (HZ*20); /* FIXME */
|
|
chip->erase_suspended = 0;
|
|
}
|
|
|
|
if (chip_good(map, adr, map_word_ff(map)))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
printk(KERN_WARNING "MTD %s(): software timeout\n",
|
|
__func__);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1000000/HZ);
|
|
}
|
|
/* Did we succeed? */
|
|
if (ret) {
|
|
/* reset on all failures. */
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
if (++retry_cnt <= MAX_RETRIES) {
|
|
ret = 0;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
chip->state = FL_READY;
|
|
xip_enable(map, chip, adr);
|
|
DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo = jiffies + HZ;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
int ret = 0;
|
|
int retry_cnt = 0;
|
|
|
|
adr += chip->start;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_ERASING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
pr_debug("MTD %s(): ERASE 0x%.8lx\n",
|
|
__func__, adr);
|
|
|
|
XIP_INVAL_CACHED_RANGE(map, adr, len);
|
|
ENABLE_VPP(map);
|
|
xip_disable(map, chip, adr);
|
|
|
|
retry:
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
|
|
map_write(map, cfi->sector_erase_cmd, adr);
|
|
|
|
chip->state = FL_ERASING;
|
|
chip->erase_suspended = 0;
|
|
chip->in_progress_block_addr = adr;
|
|
chip->in_progress_block_mask = ~(len - 1);
|
|
|
|
INVALIDATE_CACHE_UDELAY(map, chip,
|
|
adr, len,
|
|
chip->erase_time*500);
|
|
|
|
timeo = jiffies + (HZ*20);
|
|
|
|
for (;;) {
|
|
if (chip->state != FL_ERASING) {
|
|
/* Someone's suspended the erase. Sleep */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
mutex_unlock(&chip->mutex);
|
|
schedule();
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
mutex_lock(&chip->mutex);
|
|
continue;
|
|
}
|
|
if (chip->erase_suspended) {
|
|
/* This erase was suspended and resumed.
|
|
Adjust the timeout */
|
|
timeo = jiffies + (HZ*20); /* FIXME */
|
|
chip->erase_suspended = 0;
|
|
}
|
|
|
|
if (chip_good(map, adr, map_word_ff(map)))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
printk(KERN_WARNING "MTD %s(): software timeout\n",
|
|
__func__);
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
/* Latency issues. Drop the lock, wait a while and retry */
|
|
UDELAY(map, chip, adr, 1000000/HZ);
|
|
}
|
|
/* Did we succeed? */
|
|
if (ret) {
|
|
/* reset on all failures. */
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
/* FIXME - should have reset delay before continuing */
|
|
|
|
if (++retry_cnt <= MAX_RETRIES) {
|
|
ret = 0;
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
chip->state = FL_READY;
|
|
xip_enable(map, chip, adr);
|
|
DISABLE_VPP(map);
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
return cfi_varsize_frob(mtd, do_erase_oneblock, instr->addr,
|
|
instr->len, NULL);
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
if (instr->addr != 0)
|
|
return -EINVAL;
|
|
|
|
if (instr->len != mtd->size)
|
|
return -EINVAL;
|
|
|
|
return do_erase_chip(map, &cfi->chips[0]);
|
|
}
|
|
|
|
static int do_atmel_lock(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
|
|
if (ret)
|
|
goto out_unlock;
|
|
chip->state = FL_LOCKING;
|
|
|
|
pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
map_write(map, CMD(0x40), chip->start + adr);
|
|
|
|
chip->state = FL_READY;
|
|
put_chip(map, chip, adr + chip->start);
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
|
|
unsigned long adr, int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int ret;
|
|
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
|
|
if (ret)
|
|
goto out_unlock;
|
|
chip->state = FL_UNLOCKING;
|
|
|
|
pr_debug("MTD %s(): LOCK 0x%08lx len %d\n", __func__, adr, len);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
map_write(map, CMD(0x70), adr);
|
|
|
|
chip->state = FL_READY;
|
|
put_chip(map, chip, adr + chip->start);
|
|
ret = 0;
|
|
|
|
out_unlock:
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
|
|
}
|
|
|
|
static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
|
|
}
|
|
|
|
/*
|
|
* Advanced Sector Protection - PPB (Persistent Protection Bit) locking
|
|
*/
|
|
|
|
struct ppb_lock {
|
|
struct flchip *chip;
|
|
unsigned long adr;
|
|
int locked;
|
|
};
|
|
|
|
#define MAX_SECTORS 512
|
|
|
|
#define DO_XXLOCK_ONEBLOCK_LOCK ((void *)1)
|
|
#define DO_XXLOCK_ONEBLOCK_UNLOCK ((void *)2)
|
|
#define DO_XXLOCK_ONEBLOCK_GETLOCK ((void *)3)
|
|
|
|
static int __maybe_unused do_ppb_xxlock(struct map_info *map,
|
|
struct flchip *chip,
|
|
unsigned long adr, int len, void *thunk)
|
|
{
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
unsigned long timeo;
|
|
int ret;
|
|
|
|
adr += chip->start;
|
|
mutex_lock(&chip->mutex);
|
|
ret = get_chip(map, chip, adr, FL_LOCKING);
|
|
if (ret) {
|
|
mutex_unlock(&chip->mutex);
|
|
return ret;
|
|
}
|
|
|
|
pr_debug("MTD %s(): XXLOCK 0x%08lx len %d\n", __func__, adr, len);
|
|
|
|
cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
/* PPB entry command */
|
|
cfi_send_gen_cmd(0xC0, cfi->addr_unlock1, chip->start, map, cfi,
|
|
cfi->device_type, NULL);
|
|
|
|
if (thunk == DO_XXLOCK_ONEBLOCK_LOCK) {
|
|
chip->state = FL_LOCKING;
|
|
map_write(map, CMD(0xA0), adr);
|
|
map_write(map, CMD(0x00), adr);
|
|
} else if (thunk == DO_XXLOCK_ONEBLOCK_UNLOCK) {
|
|
/*
|
|
* Unlocking of one specific sector is not supported, so we
|
|
* have to unlock all sectors of this device instead
|
|
*/
|
|
chip->state = FL_UNLOCKING;
|
|
map_write(map, CMD(0x80), chip->start);
|
|
map_write(map, CMD(0x30), chip->start);
|
|
} else if (thunk == DO_XXLOCK_ONEBLOCK_GETLOCK) {
|
|
chip->state = FL_JEDEC_QUERY;
|
|
/* Return locked status: 0->locked, 1->unlocked */
|
|
ret = !cfi_read_query(map, adr);
|
|
} else
|
|
BUG();
|
|
|
|
/*
|
|
* Wait for some time as unlocking of all sectors takes quite long
|
|
*/
|
|
timeo = jiffies + msecs_to_jiffies(2000); /* 2s max (un)locking */
|
|
for (;;) {
|
|
if (chip_ready(map, adr))
|
|
break;
|
|
|
|
if (time_after(jiffies, timeo)) {
|
|
printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
|
|
ret = -EIO;
|
|
break;
|
|
}
|
|
|
|
UDELAY(map, chip, adr, 1);
|
|
}
|
|
|
|
/* Exit BC commands */
|
|
map_write(map, CMD(0x90), chip->start);
|
|
map_write(map, CMD(0x00), chip->start);
|
|
|
|
chip->state = FL_READY;
|
|
put_chip(map, chip, adr);
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused cfi_ppb_lock(struct mtd_info *mtd, loff_t ofs,
|
|
uint64_t len)
|
|
{
|
|
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
|
|
DO_XXLOCK_ONEBLOCK_LOCK);
|
|
}
|
|
|
|
static int __maybe_unused cfi_ppb_unlock(struct mtd_info *mtd, loff_t ofs,
|
|
uint64_t len)
|
|
{
|
|
struct mtd_erase_region_info *regions = mtd->eraseregions;
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
struct ppb_lock *sect;
|
|
unsigned long adr;
|
|
loff_t offset;
|
|
uint64_t length;
|
|
int chipnum;
|
|
int i;
|
|
int sectors;
|
|
int ret;
|
|
|
|
/*
|
|
* PPB unlocking always unlocks all sectors of the flash chip.
|
|
* We need to re-lock all previously locked sectors. So lets
|
|
* first check the locking status of all sectors and save
|
|
* it for future use.
|
|
*/
|
|
sect = kcalloc(MAX_SECTORS, sizeof(struct ppb_lock), GFP_KERNEL);
|
|
if (!sect)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* This code to walk all sectors is a slightly modified version
|
|
* of the cfi_varsize_frob() code.
|
|
*/
|
|
i = 0;
|
|
chipnum = 0;
|
|
adr = 0;
|
|
sectors = 0;
|
|
offset = 0;
|
|
length = mtd->size;
|
|
|
|
while (length) {
|
|
int size = regions[i].erasesize;
|
|
|
|
/*
|
|
* Only test sectors that shall not be unlocked. The other
|
|
* sectors shall be unlocked, so lets keep their locking
|
|
* status at "unlocked" (locked=0) for the final re-locking.
|
|
*/
|
|
if ((offset < ofs) || (offset >= (ofs + len))) {
|
|
sect[sectors].chip = &cfi->chips[chipnum];
|
|
sect[sectors].adr = adr;
|
|
sect[sectors].locked = do_ppb_xxlock(
|
|
map, &cfi->chips[chipnum], adr, 0,
|
|
DO_XXLOCK_ONEBLOCK_GETLOCK);
|
|
}
|
|
|
|
adr += size;
|
|
offset += size;
|
|
length -= size;
|
|
|
|
if (offset == regions[i].offset + size * regions[i].numblocks)
|
|
i++;
|
|
|
|
if (adr >> cfi->chipshift) {
|
|
if (offset >= (ofs + len))
|
|
break;
|
|
adr = 0;
|
|
chipnum++;
|
|
|
|
if (chipnum >= cfi->numchips)
|
|
break;
|
|
}
|
|
|
|
sectors++;
|
|
if (sectors >= MAX_SECTORS) {
|
|
printk(KERN_ERR "Only %d sectors for PPB locking supported!\n",
|
|
MAX_SECTORS);
|
|
kfree(sect);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* Now unlock the whole chip */
|
|
ret = cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
|
|
DO_XXLOCK_ONEBLOCK_UNLOCK);
|
|
if (ret) {
|
|
kfree(sect);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* PPB unlocking always unlocks all sectors of the flash chip.
|
|
* We need to re-lock all previously locked sectors.
|
|
*/
|
|
for (i = 0; i < sectors; i++) {
|
|
if (sect[i].locked)
|
|
do_ppb_xxlock(map, sect[i].chip, sect[i].adr, 0,
|
|
DO_XXLOCK_ONEBLOCK_LOCK);
|
|
}
|
|
|
|
kfree(sect);
|
|
return ret;
|
|
}
|
|
|
|
static int __maybe_unused cfi_ppb_is_locked(struct mtd_info *mtd, loff_t ofs,
|
|
uint64_t len)
|
|
{
|
|
return cfi_varsize_frob(mtd, do_ppb_xxlock, ofs, len,
|
|
DO_XXLOCK_ONEBLOCK_GETLOCK) ? 1 : 0;
|
|
}
|
|
|
|
static void cfi_amdstd_sync (struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
DECLARE_WAITQUEUE(wait, current);
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
retry:
|
|
mutex_lock(&chip->mutex);
|
|
|
|
switch(chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_SYNCING;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
case FL_SYNCING:
|
|
mutex_unlock(&chip->mutex);
|
|
break;
|
|
|
|
default:
|
|
/* Not an idle state */
|
|
set_current_state(TASK_UNINTERRUPTIBLE);
|
|
add_wait_queue(&chip->wq, &wait);
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
|
|
schedule();
|
|
|
|
remove_wait_queue(&chip->wq, &wait);
|
|
|
|
goto retry;
|
|
}
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state == FL_SYNCING) {
|
|
chip->state = chip->oldstate;
|
|
wake_up(&chip->wq);
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_suspend(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
int ret = 0;
|
|
|
|
for (i=0; !ret && i<cfi->numchips; i++) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
switch(chip->state) {
|
|
case FL_READY:
|
|
case FL_STATUS:
|
|
case FL_CFI_QUERY:
|
|
case FL_JEDEC_QUERY:
|
|
chip->oldstate = chip->state;
|
|
chip->state = FL_PM_SUSPENDED;
|
|
/* No need to wake_up() on this state change -
|
|
* as the whole point is that nobody can do anything
|
|
* with the chip now anyway.
|
|
*/
|
|
case FL_PM_SUSPENDED:
|
|
break;
|
|
|
|
default:
|
|
ret = -EAGAIN;
|
|
break;
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
/* Unlock the chips again */
|
|
|
|
if (ret) {
|
|
for (i--; i >=0; i--) {
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
chip->state = chip->oldstate;
|
|
wake_up(&chip->wq);
|
|
}
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
static void cfi_amdstd_resume(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i;
|
|
struct flchip *chip;
|
|
|
|
for (i=0; i<cfi->numchips; i++) {
|
|
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
if (chip->state == FL_PM_SUSPENDED) {
|
|
chip->state = FL_READY;
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
wake_up(&chip->wq);
|
|
}
|
|
else
|
|
printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Ensure that the flash device is put back into read array mode before
|
|
* unloading the driver or rebooting. On some systems, rebooting while
|
|
* the flash is in query/program/erase mode will prevent the CPU from
|
|
* fetching the bootloader code, requiring a hard reset or power cycle.
|
|
*/
|
|
static int cfi_amdstd_reset(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
int i, ret;
|
|
struct flchip *chip;
|
|
|
|
for (i = 0; i < cfi->numchips; i++) {
|
|
|
|
chip = &cfi->chips[i];
|
|
|
|
mutex_lock(&chip->mutex);
|
|
|
|
ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
|
|
if (!ret) {
|
|
map_write(map, CMD(0xF0), chip->start);
|
|
chip->state = FL_SHUTDOWN;
|
|
put_chip(map, chip, chip->start);
|
|
}
|
|
|
|
mutex_unlock(&chip->mutex);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
|
|
void *v)
|
|
{
|
|
struct mtd_info *mtd;
|
|
|
|
mtd = container_of(nb, struct mtd_info, reboot_notifier);
|
|
cfi_amdstd_reset(mtd);
|
|
return NOTIFY_DONE;
|
|
}
|
|
|
|
|
|
static void cfi_amdstd_destroy(struct mtd_info *mtd)
|
|
{
|
|
struct map_info *map = mtd->priv;
|
|
struct cfi_private *cfi = map->fldrv_priv;
|
|
|
|
cfi_amdstd_reset(mtd);
|
|
unregister_reboot_notifier(&mtd->reboot_notifier);
|
|
kfree(cfi->cmdset_priv);
|
|
kfree(cfi->cfiq);
|
|
kfree(cfi);
|
|
kfree(mtd->eraseregions);
|
|
}
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
|
|
MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
|
|
MODULE_ALIAS("cfi_cmdset_0006");
|
|
MODULE_ALIAS("cfi_cmdset_0701");
|