2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 18:43:59 +08:00
linux-next/include/asm-sh/spinlock.h
Linus Torvalds 1da177e4c3 Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.

Let it rip!
2005-04-16 15:20:36 -07:00

125 lines
2.7 KiB
C

/*
* include/asm-sh/spinlock.h
*
* Copyright (C) 2002, 2003 Paul Mundt
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#ifndef __ASM_SH_SPINLOCK_H
#define __ASM_SH_SPINLOCK_H
#include <asm/atomic.h>
/*
* Your basic SMP spinlocks, allowing only a single CPU anywhere
*/
typedef struct {
volatile unsigned long lock;
#ifdef CONFIG_PREEMPT
unsigned int break_lock;
#endif
} spinlock_t;
#define SPIN_LOCK_UNLOCKED (spinlock_t) { 0 }
#define spin_lock_init(x) do { *(x) = SPIN_LOCK_UNLOCKED; } while(0)
#define spin_is_locked(x) ((x)->lock != 0)
#define spin_unlock_wait(x) do { barrier(); } while (spin_is_locked(x))
#define _raw_spin_lock_flags(lock, flags) _raw_spin_lock(lock)
/*
* Simple spin lock operations. There are two variants, one clears IRQ's
* on the local processor, one does not.
*
* We make no fairness assumptions. They have a cost.
*/
static inline void _raw_spin_lock(spinlock_t *lock)
{
__asm__ __volatile__ (
"1:\n\t"
"tas.b @%0\n\t"
"bf/s 1b\n\t"
"nop\n\t"
: "=r" (lock->lock)
: "r" (&lock->lock)
: "t", "memory"
);
}
static inline void _raw_spin_unlock(spinlock_t *lock)
{
assert_spin_locked(lock);
lock->lock = 0;
}
#define _raw_spin_trylock(x) (!test_and_set_bit(0, &(x)->lock))
/*
* Read-write spinlocks, allowing multiple readers but only one writer.
*
* NOTE! it is quite common to have readers in interrupts but no interrupt
* writers. For those circumstances we can "mix" irq-safe locks - any writer
* needs to get a irq-safe write-lock, but readers can get non-irqsafe
* read-locks.
*/
typedef struct {
spinlock_t lock;
atomic_t counter;
#ifdef CONFIG_PREEMPT
unsigned int break_lock;
#endif
} rwlock_t;
#define RW_LOCK_BIAS 0x01000000
#define RW_LOCK_UNLOCKED (rwlock_t) { { 0 }, { RW_LOCK_BIAS } }
#define rwlock_init(x) do { *(x) = RW_LOCK_UNLOCKED; } while (0)
static inline void _raw_read_lock(rwlock_t *rw)
{
_raw_spin_lock(&rw->lock);
atomic_inc(&rw->counter);
_raw_spin_unlock(&rw->lock);
}
static inline void _raw_read_unlock(rwlock_t *rw)
{
_raw_spin_lock(&rw->lock);
atomic_dec(&rw->counter);
_raw_spin_unlock(&rw->lock);
}
static inline void _raw_write_lock(rwlock_t *rw)
{
_raw_spin_lock(&rw->lock);
atomic_set(&rw->counter, -1);
}
static inline void _raw_write_unlock(rwlock_t *rw)
{
atomic_set(&rw->counter, 0);
_raw_spin_unlock(&rw->lock);
}
#define _raw_read_trylock(lock) generic_raw_read_trylock(lock)
static inline int _raw_write_trylock(rwlock_t *rw)
{
if (atomic_sub_and_test(RW_LOCK_BIAS, &rw->counter))
return 1;
atomic_add(RW_LOCK_BIAS, &rw->counter);
return 0;
}
#endif /* __ASM_SH_SPINLOCK_H */