mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-07 13:13:57 +08:00
103c19723c
The code used by btrfs_submit_bio only interacts with the rest of volumes.c through __btrfs_map_block (which itself is a more generic version of two exported helpers) and does not really have anything to do with volumes.c. Create a new bio.c file and a bio.h header going along with it for the btrfs_bio-based storage layer, which will grow even more going forward. Also update the file with my copyright notice given that a large part of the moved code was written or rewritten by me. Reviewed-by: Josef Bacik <josef@toxicpanda.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
6203 lines
168 KiB
C
6203 lines
168 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/sched/signal.h>
|
|
#include <linux/pagemap.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/rcupdate.h>
|
|
#include <linux/kthread.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/ratelimit.h>
|
|
#include <linux/percpu_counter.h>
|
|
#include <linux/lockdep.h>
|
|
#include <linux/crc32c.h>
|
|
#include "misc.h"
|
|
#include "tree-log.h"
|
|
#include "disk-io.h"
|
|
#include "print-tree.h"
|
|
#include "volumes.h"
|
|
#include "raid56.h"
|
|
#include "locking.h"
|
|
#include "free-space-cache.h"
|
|
#include "free-space-tree.h"
|
|
#include "sysfs.h"
|
|
#include "qgroup.h"
|
|
#include "ref-verify.h"
|
|
#include "space-info.h"
|
|
#include "block-rsv.h"
|
|
#include "delalloc-space.h"
|
|
#include "block-group.h"
|
|
#include "discard.h"
|
|
#include "rcu-string.h"
|
|
#include "zoned.h"
|
|
#include "dev-replace.h"
|
|
#include "fs.h"
|
|
#include "accessors.h"
|
|
#include "extent-tree.h"
|
|
#include "root-tree.h"
|
|
#include "file-item.h"
|
|
#include "orphan.h"
|
|
#include "tree-checker.h"
|
|
|
|
#undef SCRAMBLE_DELAYED_REFS
|
|
|
|
|
|
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node, u64 parent,
|
|
u64 root_objectid, u64 owner_objectid,
|
|
u64 owner_offset, int refs_to_drop,
|
|
struct btrfs_delayed_extent_op *extra_op);
|
|
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_extent_item *ei);
|
|
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, u64 owner, u64 offset,
|
|
struct btrfs_key *ins, int ref_mod);
|
|
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op);
|
|
static int find_next_key(struct btrfs_path *path, int level,
|
|
struct btrfs_key *key);
|
|
|
|
static int block_group_bits(struct btrfs_block_group *cache, u64 bits)
|
|
{
|
|
return (cache->flags & bits) == bits;
|
|
}
|
|
|
|
int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 num_bytes)
|
|
{
|
|
u64 end = start + num_bytes - 1;
|
|
set_extent_bits(&fs_info->excluded_extents, start, end,
|
|
EXTENT_UPTODATE);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_free_excluded_extents(struct btrfs_block_group *cache)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
u64 start, end;
|
|
|
|
start = cache->start;
|
|
end = start + cache->length - 1;
|
|
|
|
clear_extent_bits(&fs_info->excluded_extents, start, end,
|
|
EXTENT_UPTODATE);
|
|
}
|
|
|
|
/* simple helper to search for an existing data extent at a given offset */
|
|
int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
|
|
{
|
|
struct btrfs_root *root = btrfs_extent_root(fs_info, start);
|
|
int ret;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = start;
|
|
key.offset = len;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper function to lookup reference count and flags of a tree block.
|
|
*
|
|
* the head node for delayed ref is used to store the sum of all the
|
|
* reference count modifications queued up in the rbtree. the head
|
|
* node may also store the extent flags to set. This way you can check
|
|
* to see what the reference count and extent flags would be if all of
|
|
* the delayed refs are not processed.
|
|
*/
|
|
int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
|
|
struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 offset, int metadata, u64 *refs, u64 *flags)
|
|
{
|
|
struct btrfs_root *extent_root;
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_key key;
|
|
u32 item_size;
|
|
u64 num_refs;
|
|
u64 extent_flags;
|
|
int ret;
|
|
|
|
/*
|
|
* If we don't have skinny metadata, don't bother doing anything
|
|
* different
|
|
*/
|
|
if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
|
|
offset = fs_info->nodesize;
|
|
metadata = 0;
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
if (!trans) {
|
|
path->skip_locking = 1;
|
|
path->search_commit_root = 1;
|
|
}
|
|
|
|
search_again:
|
|
key.objectid = bytenr;
|
|
key.offset = offset;
|
|
if (metadata)
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
else
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
extent_root = btrfs_extent_root(fs_info, bytenr);
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out_free;
|
|
|
|
if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
|
|
if (path->slots[0]) {
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid == bytenr &&
|
|
key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key.offset == fs_info->nodesize)
|
|
ret = 0;
|
|
}
|
|
}
|
|
|
|
if (ret == 0) {
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
if (item_size >= sizeof(*ei)) {
|
|
ei = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
num_refs = btrfs_extent_refs(leaf, ei);
|
|
extent_flags = btrfs_extent_flags(leaf, ei);
|
|
} else {
|
|
ret = -EINVAL;
|
|
btrfs_print_v0_err(fs_info);
|
|
if (trans)
|
|
btrfs_abort_transaction(trans, ret);
|
|
else
|
|
btrfs_handle_fs_error(fs_info, ret, NULL);
|
|
|
|
goto out_free;
|
|
}
|
|
|
|
BUG_ON(num_refs == 0);
|
|
} else {
|
|
num_refs = 0;
|
|
extent_flags = 0;
|
|
ret = 0;
|
|
}
|
|
|
|
if (!trans)
|
|
goto out;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
|
|
if (head) {
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
refcount_inc(&head->refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Mutex was contended, block until it's released and try
|
|
* again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref_head(head);
|
|
goto search_again;
|
|
}
|
|
spin_lock(&head->lock);
|
|
if (head->extent_op && head->extent_op->update_flags)
|
|
extent_flags |= head->extent_op->flags_to_set;
|
|
else
|
|
BUG_ON(num_refs == 0);
|
|
|
|
num_refs += head->ref_mod;
|
|
spin_unlock(&head->lock);
|
|
mutex_unlock(&head->mutex);
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
out:
|
|
WARN_ON(num_refs == 0);
|
|
if (refs)
|
|
*refs = num_refs;
|
|
if (flags)
|
|
*flags = extent_flags;
|
|
out_free:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Back reference rules. Back refs have three main goals:
|
|
*
|
|
* 1) differentiate between all holders of references to an extent so that
|
|
* when a reference is dropped we can make sure it was a valid reference
|
|
* before freeing the extent.
|
|
*
|
|
* 2) Provide enough information to quickly find the holders of an extent
|
|
* if we notice a given block is corrupted or bad.
|
|
*
|
|
* 3) Make it easy to migrate blocks for FS shrinking or storage pool
|
|
* maintenance. This is actually the same as #2, but with a slightly
|
|
* different use case.
|
|
*
|
|
* There are two kinds of back refs. The implicit back refs is optimized
|
|
* for pointers in non-shared tree blocks. For a given pointer in a block,
|
|
* back refs of this kind provide information about the block's owner tree
|
|
* and the pointer's key. These information allow us to find the block by
|
|
* b-tree searching. The full back refs is for pointers in tree blocks not
|
|
* referenced by their owner trees. The location of tree block is recorded
|
|
* in the back refs. Actually the full back refs is generic, and can be
|
|
* used in all cases the implicit back refs is used. The major shortcoming
|
|
* of the full back refs is its overhead. Every time a tree block gets
|
|
* COWed, we have to update back refs entry for all pointers in it.
|
|
*
|
|
* For a newly allocated tree block, we use implicit back refs for
|
|
* pointers in it. This means most tree related operations only involve
|
|
* implicit back refs. For a tree block created in old transaction, the
|
|
* only way to drop a reference to it is COW it. So we can detect the
|
|
* event that tree block loses its owner tree's reference and do the
|
|
* back refs conversion.
|
|
*
|
|
* When a tree block is COWed through a tree, there are four cases:
|
|
*
|
|
* The reference count of the block is one and the tree is the block's
|
|
* owner tree. Nothing to do in this case.
|
|
*
|
|
* The reference count of the block is one and the tree is not the
|
|
* block's owner tree. In this case, full back refs is used for pointers
|
|
* in the block. Remove these full back refs, add implicit back refs for
|
|
* every pointers in the new block.
|
|
*
|
|
* The reference count of the block is greater than one and the tree is
|
|
* the block's owner tree. In this case, implicit back refs is used for
|
|
* pointers in the block. Add full back refs for every pointers in the
|
|
* block, increase lower level extents' reference counts. The original
|
|
* implicit back refs are entailed to the new block.
|
|
*
|
|
* The reference count of the block is greater than one and the tree is
|
|
* not the block's owner tree. Add implicit back refs for every pointer in
|
|
* the new block, increase lower level extents' reference count.
|
|
*
|
|
* Back Reference Key composing:
|
|
*
|
|
* The key objectid corresponds to the first byte in the extent,
|
|
* The key type is used to differentiate between types of back refs.
|
|
* There are different meanings of the key offset for different types
|
|
* of back refs.
|
|
*
|
|
* File extents can be referenced by:
|
|
*
|
|
* - multiple snapshots, subvolumes, or different generations in one subvol
|
|
* - different files inside a single subvolume
|
|
* - different offsets inside a file (bookend extents in file.c)
|
|
*
|
|
* The extent ref structure for the implicit back refs has fields for:
|
|
*
|
|
* - Objectid of the subvolume root
|
|
* - objectid of the file holding the reference
|
|
* - original offset in the file
|
|
* - how many bookend extents
|
|
*
|
|
* The key offset for the implicit back refs is hash of the first
|
|
* three fields.
|
|
*
|
|
* The extent ref structure for the full back refs has field for:
|
|
*
|
|
* - number of pointers in the tree leaf
|
|
*
|
|
* The key offset for the implicit back refs is the first byte of
|
|
* the tree leaf
|
|
*
|
|
* When a file extent is allocated, The implicit back refs is used.
|
|
* the fields are filled in:
|
|
*
|
|
* (root_key.objectid, inode objectid, offset in file, 1)
|
|
*
|
|
* When a file extent is removed file truncation, we find the
|
|
* corresponding implicit back refs and check the following fields:
|
|
*
|
|
* (btrfs_header_owner(leaf), inode objectid, offset in file)
|
|
*
|
|
* Btree extents can be referenced by:
|
|
*
|
|
* - Different subvolumes
|
|
*
|
|
* Both the implicit back refs and the full back refs for tree blocks
|
|
* only consist of key. The key offset for the implicit back refs is
|
|
* objectid of block's owner tree. The key offset for the full back refs
|
|
* is the first byte of parent block.
|
|
*
|
|
* When implicit back refs is used, information about the lowest key and
|
|
* level of the tree block are required. These information are stored in
|
|
* tree block info structure.
|
|
*/
|
|
|
|
/*
|
|
* is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
|
|
* is_data == BTRFS_REF_TYPE_DATA, data type is requiried,
|
|
* is_data == BTRFS_REF_TYPE_ANY, either type is OK.
|
|
*/
|
|
int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
enum btrfs_inline_ref_type is_data)
|
|
{
|
|
int type = btrfs_extent_inline_ref_type(eb, iref);
|
|
u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
|
|
|
|
if (type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
type == BTRFS_SHARED_BLOCK_REF_KEY ||
|
|
type == BTRFS_SHARED_DATA_REF_KEY ||
|
|
type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
if (is_data == BTRFS_REF_TYPE_BLOCK) {
|
|
if (type == BTRFS_TREE_BLOCK_REF_KEY)
|
|
return type;
|
|
if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
|
|
ASSERT(eb->fs_info);
|
|
/*
|
|
* Every shared one has parent tree block,
|
|
* which must be aligned to sector size.
|
|
*/
|
|
if (offset &&
|
|
IS_ALIGNED(offset, eb->fs_info->sectorsize))
|
|
return type;
|
|
}
|
|
} else if (is_data == BTRFS_REF_TYPE_DATA) {
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY)
|
|
return type;
|
|
if (type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
ASSERT(eb->fs_info);
|
|
/*
|
|
* Every shared one has parent tree block,
|
|
* which must be aligned to sector size.
|
|
*/
|
|
if (offset &&
|
|
IS_ALIGNED(offset, eb->fs_info->sectorsize))
|
|
return type;
|
|
}
|
|
} else {
|
|
ASSERT(is_data == BTRFS_REF_TYPE_ANY);
|
|
return type;
|
|
}
|
|
}
|
|
|
|
btrfs_print_leaf((struct extent_buffer *)eb);
|
|
btrfs_err(eb->fs_info,
|
|
"eb %llu iref 0x%lx invalid extent inline ref type %d",
|
|
eb->start, (unsigned long)iref, type);
|
|
WARN_ON(1);
|
|
|
|
return BTRFS_REF_TYPE_INVALID;
|
|
}
|
|
|
|
u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
u32 high_crc = ~(u32)0;
|
|
u32 low_crc = ~(u32)0;
|
|
__le64 lenum;
|
|
|
|
lenum = cpu_to_le64(root_objectid);
|
|
high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
|
|
lenum = cpu_to_le64(owner);
|
|
low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
|
|
lenum = cpu_to_le64(offset);
|
|
low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
|
|
|
|
return ((u64)high_crc << 31) ^ (u64)low_crc;
|
|
}
|
|
|
|
static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
|
|
struct btrfs_extent_data_ref *ref)
|
|
{
|
|
return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
|
|
btrfs_extent_data_ref_objectid(leaf, ref),
|
|
btrfs_extent_data_ref_offset(leaf, ref));
|
|
}
|
|
|
|
static int match_extent_data_ref(struct extent_buffer *leaf,
|
|
struct btrfs_extent_data_ref *ref,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
|
|
btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
|
|
btrfs_extent_data_ref_offset(leaf, ref) != offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid,
|
|
u64 owner, u64 offset)
|
|
{
|
|
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
|
|
struct btrfs_key key;
|
|
struct btrfs_extent_data_ref *ref;
|
|
struct extent_buffer *leaf;
|
|
u32 nritems;
|
|
int ret;
|
|
int recow;
|
|
int err = -ENOENT;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_DATA_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
key.offset = hash_extent_data_ref(root_objectid,
|
|
owner, offset);
|
|
}
|
|
again:
|
|
recow = 0;
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto fail;
|
|
}
|
|
|
|
if (parent) {
|
|
if (!ret)
|
|
return 0;
|
|
goto fail;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
while (1) {
|
|
if (path->slots[0] >= nritems) {
|
|
ret = btrfs_next_leaf(root, path);
|
|
if (ret < 0)
|
|
err = ret;
|
|
if (ret)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
nritems = btrfs_header_nritems(leaf);
|
|
recow = 1;
|
|
}
|
|
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
if (key.objectid != bytenr ||
|
|
key.type != BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto fail;
|
|
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
|
|
if (match_extent_data_ref(leaf, ref, root_objectid,
|
|
owner, offset)) {
|
|
if (recow) {
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
err = 0;
|
|
break;
|
|
}
|
|
path->slots[0]++;
|
|
}
|
|
fail:
|
|
return err;
|
|
}
|
|
|
|
static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, int refs_to_add)
|
|
{
|
|
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
u32 size;
|
|
u32 num_refs;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_DATA_REF_KEY;
|
|
key.offset = parent;
|
|
size = sizeof(struct btrfs_shared_data_ref);
|
|
} else {
|
|
key.type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
key.offset = hash_extent_data_ref(root_objectid,
|
|
owner, offset);
|
|
size = sizeof(struct btrfs_extent_data_ref);
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, size);
|
|
if (ret && ret != -EEXIST)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
if (parent) {
|
|
struct btrfs_shared_data_ref *ref;
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
if (ret == 0) {
|
|
btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
|
|
} else {
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref);
|
|
num_refs += refs_to_add;
|
|
btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
|
|
}
|
|
} else {
|
|
struct btrfs_extent_data_ref *ref;
|
|
while (ret == -EEXIST) {
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
if (match_extent_data_ref(leaf, ref, root_objectid,
|
|
owner, offset))
|
|
break;
|
|
btrfs_release_path(path);
|
|
key.offset++;
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key,
|
|
size);
|
|
if (ret && ret != -EEXIST)
|
|
goto fail;
|
|
|
|
leaf = path->nodes[0];
|
|
}
|
|
ref = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
if (ret == 0) {
|
|
btrfs_set_extent_data_ref_root(leaf, ref,
|
|
root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
|
|
} else {
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref);
|
|
num_refs += refs_to_add;
|
|
btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
|
|
}
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
ret = 0;
|
|
fail:
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
int refs_to_drop)
|
|
{
|
|
struct btrfs_key key;
|
|
struct btrfs_extent_data_ref *ref1 = NULL;
|
|
struct btrfs_shared_data_ref *ref2 = NULL;
|
|
struct extent_buffer *leaf;
|
|
u32 num_refs = 0;
|
|
int ret = 0;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
ref2 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
} else if (unlikely(key.type == BTRFS_EXTENT_REF_V0_KEY)) {
|
|
btrfs_print_v0_err(trans->fs_info);
|
|
btrfs_abort_transaction(trans, -EINVAL);
|
|
return -EINVAL;
|
|
} else {
|
|
BUG();
|
|
}
|
|
|
|
BUG_ON(num_refs < refs_to_drop);
|
|
num_refs -= refs_to_drop;
|
|
|
|
if (num_refs == 0) {
|
|
ret = btrfs_del_item(trans, root, path);
|
|
} else {
|
|
if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
|
|
btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
|
|
else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
|
|
btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static noinline u32 extent_data_ref_count(struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref)
|
|
{
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_data_ref *ref1;
|
|
struct btrfs_shared_data_ref *ref2;
|
|
u32 num_refs = 0;
|
|
int type;
|
|
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
|
|
if (iref) {
|
|
/*
|
|
* If type is invalid, we should have bailed out earlier than
|
|
* this call.
|
|
*/
|
|
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
|
|
ASSERT(type != BTRFS_REF_TYPE_INVALID);
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else {
|
|
ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
}
|
|
} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ref1 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_data_ref);
|
|
num_refs = btrfs_extent_data_ref_count(leaf, ref1);
|
|
} else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
ref2 = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_shared_data_ref);
|
|
num_refs = btrfs_shared_data_ref_count(leaf, ref2);
|
|
} else {
|
|
WARN_ON(1);
|
|
}
|
|
return num_refs;
|
|
}
|
|
|
|
static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid)
|
|
{
|
|
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
key.offset = root_objectid;
|
|
}
|
|
|
|
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
|
|
if (ret > 0)
|
|
ret = -ENOENT;
|
|
return ret;
|
|
}
|
|
|
|
static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 parent,
|
|
u64 root_objectid)
|
|
{
|
|
struct btrfs_root *root = btrfs_extent_root(trans->fs_info, bytenr);
|
|
struct btrfs_key key;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
if (parent) {
|
|
key.type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
key.offset = parent;
|
|
} else {
|
|
key.type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
key.offset = root_objectid;
|
|
}
|
|
|
|
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
|
|
btrfs_release_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static inline int extent_ref_type(u64 parent, u64 owner)
|
|
{
|
|
int type;
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_BLOCK_REF_KEY;
|
|
else
|
|
type = BTRFS_TREE_BLOCK_REF_KEY;
|
|
} else {
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_DATA_REF_KEY;
|
|
else
|
|
type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
}
|
|
return type;
|
|
}
|
|
|
|
static int find_next_key(struct btrfs_path *path, int level,
|
|
struct btrfs_key *key)
|
|
|
|
{
|
|
for (; level < BTRFS_MAX_LEVEL; level++) {
|
|
if (!path->nodes[level])
|
|
break;
|
|
if (path->slots[level] + 1 >=
|
|
btrfs_header_nritems(path->nodes[level]))
|
|
continue;
|
|
if (level == 0)
|
|
btrfs_item_key_to_cpu(path->nodes[level], key,
|
|
path->slots[level] + 1);
|
|
else
|
|
btrfs_node_key_to_cpu(path->nodes[level], key,
|
|
path->slots[level] + 1);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look for inline back ref. if back ref is found, *ref_ret is set
|
|
* to the address of inline back ref, and 0 is returned.
|
|
*
|
|
* if back ref isn't found, *ref_ret is set to the address where it
|
|
* should be inserted, and -ENOENT is returned.
|
|
*
|
|
* if insert is true and there are too many inline back refs, the path
|
|
* points to the extent item, and -EAGAIN is returned.
|
|
*
|
|
* NOTE: inline back refs are ordered in the same way that back ref
|
|
* items in the tree are ordered.
|
|
*/
|
|
static noinline_for_stack
|
|
int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref **ref_ret,
|
|
u64 bytenr, u64 num_bytes,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int insert)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root = btrfs_extent_root(fs_info, bytenr);
|
|
struct btrfs_key key;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
u64 flags;
|
|
u64 item_size;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
int extra_size;
|
|
int type;
|
|
int want;
|
|
int ret;
|
|
int err = 0;
|
|
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
|
|
int needed;
|
|
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
want = extent_ref_type(parent, owner);
|
|
if (insert) {
|
|
extra_size = btrfs_extent_inline_ref_size(want);
|
|
path->search_for_extension = 1;
|
|
path->keep_locks = 1;
|
|
} else
|
|
extra_size = -1;
|
|
|
|
/*
|
|
* Owner is our level, so we can just add one to get the level for the
|
|
* block we are interested in.
|
|
*/
|
|
if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
key.offset = owner;
|
|
}
|
|
|
|
again:
|
|
ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* We may be a newly converted file system which still has the old fat
|
|
* extent entries for metadata, so try and see if we have one of those.
|
|
*/
|
|
if (ret > 0 && skinny_metadata) {
|
|
skinny_metadata = false;
|
|
if (path->slots[0]) {
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid == bytenr &&
|
|
key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key.offset == num_bytes)
|
|
ret = 0;
|
|
}
|
|
if (ret) {
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
btrfs_release_path(path);
|
|
goto again;
|
|
}
|
|
}
|
|
|
|
if (ret && !insert) {
|
|
err = -ENOENT;
|
|
goto out;
|
|
} else if (WARN_ON(ret)) {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
if (unlikely(item_size < sizeof(*ei))) {
|
|
err = -EINVAL;
|
|
btrfs_print_v0_err(fs_info);
|
|
btrfs_abort_transaction(trans, err);
|
|
goto out;
|
|
}
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
flags = btrfs_extent_flags(leaf, ei);
|
|
|
|
ptr = (unsigned long)(ei + 1);
|
|
end = (unsigned long)ei + item_size;
|
|
|
|
if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
|
|
ptr += sizeof(struct btrfs_tree_block_info);
|
|
BUG_ON(ptr > end);
|
|
}
|
|
|
|
if (owner >= BTRFS_FIRST_FREE_OBJECTID)
|
|
needed = BTRFS_REF_TYPE_DATA;
|
|
else
|
|
needed = BTRFS_REF_TYPE_BLOCK;
|
|
|
|
err = -ENOENT;
|
|
while (1) {
|
|
if (ptr >= end) {
|
|
if (ptr > end) {
|
|
err = -EUCLEAN;
|
|
btrfs_print_leaf(path->nodes[0]);
|
|
btrfs_crit(fs_info,
|
|
"overrun extent record at slot %d while looking for inline extent for root %llu owner %llu offset %llu parent %llu",
|
|
path->slots[0], root_objectid, owner, offset, parent);
|
|
}
|
|
break;
|
|
}
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
|
|
if (type == BTRFS_REF_TYPE_INVALID) {
|
|
err = -EUCLEAN;
|
|
goto out;
|
|
}
|
|
|
|
if (want < type)
|
|
break;
|
|
if (want > type) {
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
continue;
|
|
}
|
|
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
struct btrfs_extent_data_ref *dref;
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
if (match_extent_data_ref(leaf, dref, root_objectid,
|
|
owner, offset)) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (hash_extent_data_ref_item(leaf, dref) <
|
|
hash_extent_data_ref(root_objectid, owner, offset))
|
|
break;
|
|
} else {
|
|
u64 ref_offset;
|
|
ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
|
|
if (parent > 0) {
|
|
if (parent == ref_offset) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (ref_offset < parent)
|
|
break;
|
|
} else {
|
|
if (root_objectid == ref_offset) {
|
|
err = 0;
|
|
break;
|
|
}
|
|
if (ref_offset < root_objectid)
|
|
break;
|
|
}
|
|
}
|
|
ptr += btrfs_extent_inline_ref_size(type);
|
|
}
|
|
if (err == -ENOENT && insert) {
|
|
if (item_size + extra_size >=
|
|
BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
/*
|
|
* To add new inline back ref, we have to make sure
|
|
* there is no corresponding back ref item.
|
|
* For simplicity, we just do not add new inline back
|
|
* ref if there is any kind of item for this block
|
|
*/
|
|
if (find_next_key(path, 0, &key) == 0 &&
|
|
key.objectid == bytenr &&
|
|
key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
|
|
err = -EAGAIN;
|
|
goto out;
|
|
}
|
|
}
|
|
*ref_ret = (struct btrfs_extent_inline_ref *)ptr;
|
|
out:
|
|
if (insert) {
|
|
path->keep_locks = 0;
|
|
path->search_for_extension = 0;
|
|
btrfs_unlock_up_safe(path, 1);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* helper to add new inline back ref
|
|
*/
|
|
static noinline_for_stack
|
|
void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
unsigned long item_offset;
|
|
u64 refs;
|
|
int size;
|
|
int type;
|
|
|
|
leaf = path->nodes[0];
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
item_offset = (unsigned long)iref - (unsigned long)ei;
|
|
|
|
type = extent_ref_type(parent, owner);
|
|
size = btrfs_extent_inline_ref_size(type);
|
|
|
|
btrfs_extend_item(path, size);
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
refs += refs_to_add;
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
ptr = (unsigned long)ei + item_offset;
|
|
end = (unsigned long)ei + btrfs_item_size(leaf, path->slots[0]);
|
|
if (ptr < end - size)
|
|
memmove_extent_buffer(leaf, ptr + size, ptr,
|
|
end - size - ptr);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)ptr;
|
|
btrfs_set_extent_inline_ref_type(leaf, iref, type);
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
struct btrfs_extent_data_ref *dref;
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, dref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
|
|
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
struct btrfs_shared_data_ref *sref;
|
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
} else {
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
|
|
static int lookup_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref **ref_ret,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner, u64 offset)
|
|
{
|
|
int ret;
|
|
|
|
ret = lookup_inline_extent_backref(trans, path, ref_ret, bytenr,
|
|
num_bytes, parent, root_objectid,
|
|
owner, offset, 0);
|
|
if (ret != -ENOENT)
|
|
return ret;
|
|
|
|
btrfs_release_path(path);
|
|
*ref_ret = NULL;
|
|
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
ret = lookup_tree_block_ref(trans, path, bytenr, parent,
|
|
root_objectid);
|
|
} else {
|
|
ret = lookup_extent_data_ref(trans, path, bytenr, parent,
|
|
root_objectid, owner, offset);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to update/remove inline back ref
|
|
*/
|
|
static noinline_for_stack
|
|
void update_inline_extent_backref(struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
int refs_to_mod,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct extent_buffer *leaf = path->nodes[0];
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_data_ref *dref = NULL;
|
|
struct btrfs_shared_data_ref *sref = NULL;
|
|
unsigned long ptr;
|
|
unsigned long end;
|
|
u32 item_size;
|
|
int size;
|
|
int type;
|
|
u64 refs;
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
|
|
refs += refs_to_mod;
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
/*
|
|
* If type is invalid, we should have bailed out after
|
|
* lookup_inline_extent_backref().
|
|
*/
|
|
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
|
|
ASSERT(type != BTRFS_REF_TYPE_INVALID);
|
|
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY) {
|
|
dref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
refs = btrfs_extent_data_ref_count(leaf, dref);
|
|
} else if (type == BTRFS_SHARED_DATA_REF_KEY) {
|
|
sref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
refs = btrfs_shared_data_ref_count(leaf, sref);
|
|
} else {
|
|
refs = 1;
|
|
BUG_ON(refs_to_mod != -1);
|
|
}
|
|
|
|
BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
|
|
refs += refs_to_mod;
|
|
|
|
if (refs > 0) {
|
|
if (type == BTRFS_EXTENT_DATA_REF_KEY)
|
|
btrfs_set_extent_data_ref_count(leaf, dref, refs);
|
|
else
|
|
btrfs_set_shared_data_ref_count(leaf, sref, refs);
|
|
} else {
|
|
size = btrfs_extent_inline_ref_size(type);
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
ptr = (unsigned long)iref;
|
|
end = (unsigned long)ei + item_size;
|
|
if (ptr + size < end)
|
|
memmove_extent_buffer(leaf, ptr, ptr + size,
|
|
end - ptr - size);
|
|
item_size -= size;
|
|
btrfs_truncate_item(path, item_size, 1);
|
|
}
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
|
|
static noinline_for_stack
|
|
int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_path *path,
|
|
u64 bytenr, u64 num_bytes, u64 parent,
|
|
u64 root_objectid, u64 owner,
|
|
u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
|
|
ret = lookup_inline_extent_backref(trans, path, &iref, bytenr,
|
|
num_bytes, parent, root_objectid,
|
|
owner, offset, 1);
|
|
if (ret == 0) {
|
|
/*
|
|
* We're adding refs to a tree block we already own, this
|
|
* should not happen at all.
|
|
*/
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
btrfs_crit(trans->fs_info,
|
|
"adding refs to an existing tree ref, bytenr %llu num_bytes %llu root_objectid %llu",
|
|
bytenr, num_bytes, root_objectid);
|
|
if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
|
|
WARN_ON(1);
|
|
btrfs_crit(trans->fs_info,
|
|
"path->slots[0]=%d path->nodes[0]:", path->slots[0]);
|
|
btrfs_print_leaf(path->nodes[0]);
|
|
}
|
|
return -EUCLEAN;
|
|
}
|
|
update_inline_extent_backref(path, iref, refs_to_add, extent_op);
|
|
} else if (ret == -ENOENT) {
|
|
setup_inline_extent_backref(trans->fs_info, path, iref, parent,
|
|
root_objectid, owner, offset,
|
|
refs_to_add, extent_op);
|
|
ret = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int remove_extent_backref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct btrfs_extent_inline_ref *iref,
|
|
int refs_to_drop, int is_data)
|
|
{
|
|
int ret = 0;
|
|
|
|
BUG_ON(!is_data && refs_to_drop != 1);
|
|
if (iref)
|
|
update_inline_extent_backref(path, iref, -refs_to_drop, NULL);
|
|
else if (is_data)
|
|
ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
|
|
else
|
|
ret = btrfs_del_item(trans, root, path);
|
|
return ret;
|
|
}
|
|
|
|
static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
|
|
u64 *discarded_bytes)
|
|
{
|
|
int j, ret = 0;
|
|
u64 bytes_left, end;
|
|
u64 aligned_start = ALIGN(start, 1 << 9);
|
|
|
|
if (WARN_ON(start != aligned_start)) {
|
|
len -= aligned_start - start;
|
|
len = round_down(len, 1 << 9);
|
|
start = aligned_start;
|
|
}
|
|
|
|
*discarded_bytes = 0;
|
|
|
|
if (!len)
|
|
return 0;
|
|
|
|
end = start + len;
|
|
bytes_left = len;
|
|
|
|
/* Skip any superblocks on this device. */
|
|
for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
|
|
u64 sb_start = btrfs_sb_offset(j);
|
|
u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
|
|
u64 size = sb_start - start;
|
|
|
|
if (!in_range(sb_start, start, bytes_left) &&
|
|
!in_range(sb_end, start, bytes_left) &&
|
|
!in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
|
|
continue;
|
|
|
|
/*
|
|
* Superblock spans beginning of range. Adjust start and
|
|
* try again.
|
|
*/
|
|
if (sb_start <= start) {
|
|
start += sb_end - start;
|
|
if (start > end) {
|
|
bytes_left = 0;
|
|
break;
|
|
}
|
|
bytes_left = end - start;
|
|
continue;
|
|
}
|
|
|
|
if (size) {
|
|
ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
|
|
GFP_NOFS);
|
|
if (!ret)
|
|
*discarded_bytes += size;
|
|
else if (ret != -EOPNOTSUPP)
|
|
return ret;
|
|
}
|
|
|
|
start = sb_end;
|
|
if (start > end) {
|
|
bytes_left = 0;
|
|
break;
|
|
}
|
|
bytes_left = end - start;
|
|
}
|
|
|
|
if (bytes_left) {
|
|
ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
|
|
GFP_NOFS);
|
|
if (!ret)
|
|
*discarded_bytes += bytes_left;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int do_discard_extent(struct btrfs_discard_stripe *stripe, u64 *bytes)
|
|
{
|
|
struct btrfs_device *dev = stripe->dev;
|
|
struct btrfs_fs_info *fs_info = dev->fs_info;
|
|
struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
|
|
u64 phys = stripe->physical;
|
|
u64 len = stripe->length;
|
|
u64 discarded = 0;
|
|
int ret = 0;
|
|
|
|
/* Zone reset on a zoned filesystem */
|
|
if (btrfs_can_zone_reset(dev, phys, len)) {
|
|
u64 src_disc;
|
|
|
|
ret = btrfs_reset_device_zone(dev, phys, len, &discarded);
|
|
if (ret)
|
|
goto out;
|
|
|
|
if (!btrfs_dev_replace_is_ongoing(dev_replace) ||
|
|
dev != dev_replace->srcdev)
|
|
goto out;
|
|
|
|
src_disc = discarded;
|
|
|
|
/* Send to replace target as well */
|
|
ret = btrfs_reset_device_zone(dev_replace->tgtdev, phys, len,
|
|
&discarded);
|
|
discarded += src_disc;
|
|
} else if (bdev_max_discard_sectors(stripe->dev->bdev)) {
|
|
ret = btrfs_issue_discard(dev->bdev, phys, len, &discarded);
|
|
} else {
|
|
ret = 0;
|
|
*bytes = 0;
|
|
}
|
|
|
|
out:
|
|
*bytes = discarded;
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
|
|
u64 num_bytes, u64 *actual_bytes)
|
|
{
|
|
int ret = 0;
|
|
u64 discarded_bytes = 0;
|
|
u64 end = bytenr + num_bytes;
|
|
u64 cur = bytenr;
|
|
|
|
/*
|
|
* Avoid races with device replace and make sure the devices in the
|
|
* stripes don't go away while we are discarding.
|
|
*/
|
|
btrfs_bio_counter_inc_blocked(fs_info);
|
|
while (cur < end) {
|
|
struct btrfs_discard_stripe *stripes;
|
|
unsigned int num_stripes;
|
|
int i;
|
|
|
|
num_bytes = end - cur;
|
|
stripes = btrfs_map_discard(fs_info, cur, &num_bytes, &num_stripes);
|
|
if (IS_ERR(stripes)) {
|
|
ret = PTR_ERR(stripes);
|
|
if (ret == -EOPNOTSUPP)
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
for (i = 0; i < num_stripes; i++) {
|
|
struct btrfs_discard_stripe *stripe = stripes + i;
|
|
u64 bytes;
|
|
|
|
if (!stripe->dev->bdev) {
|
|
ASSERT(btrfs_test_opt(fs_info, DEGRADED));
|
|
continue;
|
|
}
|
|
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE,
|
|
&stripe->dev->dev_state))
|
|
continue;
|
|
|
|
ret = do_discard_extent(stripe, &bytes);
|
|
if (ret) {
|
|
/*
|
|
* Keep going if discard is not supported by the
|
|
* device.
|
|
*/
|
|
if (ret != -EOPNOTSUPP)
|
|
break;
|
|
ret = 0;
|
|
} else {
|
|
discarded_bytes += bytes;
|
|
}
|
|
}
|
|
kfree(stripes);
|
|
if (ret)
|
|
break;
|
|
cur += num_bytes;
|
|
}
|
|
btrfs_bio_counter_dec(fs_info);
|
|
if (actual_bytes)
|
|
*actual_bytes = discarded_bytes;
|
|
return ret;
|
|
}
|
|
|
|
/* Can return -ENOMEM */
|
|
int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_ref *generic_ref)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
int ret;
|
|
|
|
ASSERT(generic_ref->type != BTRFS_REF_NOT_SET &&
|
|
generic_ref->action);
|
|
BUG_ON(generic_ref->type == BTRFS_REF_METADATA &&
|
|
generic_ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
if (generic_ref->type == BTRFS_REF_METADATA)
|
|
ret = btrfs_add_delayed_tree_ref(trans, generic_ref, NULL);
|
|
else
|
|
ret = btrfs_add_delayed_data_ref(trans, generic_ref, 0);
|
|
|
|
btrfs_ref_tree_mod(fs_info, generic_ref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* __btrfs_inc_extent_ref - insert backreference for a given extent
|
|
*
|
|
* The counterpart is in __btrfs_free_extent(), with examples and more details
|
|
* how it works.
|
|
*
|
|
* @trans: Handle of transaction
|
|
*
|
|
* @node: The delayed ref node used to get the bytenr/length for
|
|
* extent whose references are incremented.
|
|
*
|
|
* @parent: If this is a shared extent (BTRFS_SHARED_DATA_REF_KEY/
|
|
* BTRFS_SHARED_BLOCK_REF_KEY) then it holds the logical
|
|
* bytenr of the parent block. Since new extents are always
|
|
* created with indirect references, this will only be the case
|
|
* when relocating a shared extent. In that case, root_objectid
|
|
* will be BTRFS_TREE_RELOC_OBJECTID. Otherwise, parent must
|
|
* be 0
|
|
*
|
|
* @root_objectid: The id of the root where this modification has originated,
|
|
* this can be either one of the well-known metadata trees or
|
|
* the subvolume id which references this extent.
|
|
*
|
|
* @owner: For data extents it is the inode number of the owning file.
|
|
* For metadata extents this parameter holds the level in the
|
|
* tree of the extent.
|
|
*
|
|
* @offset: For metadata extents the offset is ignored and is currently
|
|
* always passed as 0. For data extents it is the fileoffset
|
|
* this extent belongs to.
|
|
*
|
|
* @refs_to_add Number of references to add
|
|
*
|
|
* @extent_op Pointer to a structure, holding information necessary when
|
|
* updating a tree block's flags
|
|
*
|
|
*/
|
|
static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node,
|
|
u64 parent, u64 root_objectid,
|
|
u64 owner, u64 offset, int refs_to_add,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *item;
|
|
struct btrfs_key key;
|
|
u64 bytenr = node->bytenr;
|
|
u64 num_bytes = node->num_bytes;
|
|
u64 refs;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
/* this will setup the path even if it fails to insert the back ref */
|
|
ret = insert_inline_extent_backref(trans, path, bytenr, num_bytes,
|
|
parent, root_objectid, owner,
|
|
offset, refs_to_add, extent_op);
|
|
if ((ret < 0 && ret != -EAGAIN) || !ret)
|
|
goto out;
|
|
|
|
/*
|
|
* Ok we had -EAGAIN which means we didn't have space to insert and
|
|
* inline extent ref, so just update the reference count and add a
|
|
* normal backref.
|
|
*/
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
refs = btrfs_extent_refs(leaf, item);
|
|
btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, item);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_release_path(path);
|
|
|
|
/* now insert the actual backref */
|
|
if (owner < BTRFS_FIRST_FREE_OBJECTID) {
|
|
BUG_ON(refs_to_add != 1);
|
|
ret = insert_tree_block_ref(trans, path, bytenr, parent,
|
|
root_objectid);
|
|
} else {
|
|
ret = insert_extent_data_ref(trans, path, bytenr, parent,
|
|
root_objectid, owner, offset,
|
|
refs_to_add);
|
|
}
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_delayed_data_ref *ref;
|
|
struct btrfs_key ins;
|
|
u64 parent = 0;
|
|
u64 ref_root = 0;
|
|
u64 flags = 0;
|
|
|
|
ins.objectid = node->bytenr;
|
|
ins.offset = node->num_bytes;
|
|
ins.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ref = btrfs_delayed_node_to_data_ref(node);
|
|
trace_run_delayed_data_ref(trans->fs_info, node, ref, node->action);
|
|
|
|
if (node->type == BTRFS_SHARED_DATA_REF_KEY)
|
|
parent = ref->parent;
|
|
ref_root = ref->root;
|
|
|
|
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
|
|
if (extent_op)
|
|
flags |= extent_op->flags_to_set;
|
|
ret = alloc_reserved_file_extent(trans, parent, ref_root,
|
|
flags, ref->objectid,
|
|
ref->offset, &ins,
|
|
node->ref_mod);
|
|
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
|
|
ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
|
|
ref->objectid, ref->offset,
|
|
node->ref_mod, extent_op);
|
|
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
|
|
ret = __btrfs_free_extent(trans, node, parent,
|
|
ref_root, ref->objectid,
|
|
ref->offset, node->ref_mod,
|
|
extent_op);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
|
|
struct extent_buffer *leaf,
|
|
struct btrfs_extent_item *ei)
|
|
{
|
|
u64 flags = btrfs_extent_flags(leaf, ei);
|
|
if (extent_op->update_flags) {
|
|
flags |= extent_op->flags_to_set;
|
|
btrfs_set_extent_flags(leaf, ei, flags);
|
|
}
|
|
|
|
if (extent_op->update_key) {
|
|
struct btrfs_tree_block_info *bi;
|
|
BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
|
|
bi = (struct btrfs_tree_block_info *)(ei + 1);
|
|
btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
|
|
}
|
|
}
|
|
|
|
static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_head *head,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *root;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_item *ei;
|
|
struct extent_buffer *leaf;
|
|
u32 item_size;
|
|
int ret;
|
|
int err = 0;
|
|
int metadata = 1;
|
|
|
|
if (TRANS_ABORTED(trans))
|
|
return 0;
|
|
|
|
if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
|
|
metadata = 0;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
key.objectid = head->bytenr;
|
|
|
|
if (metadata) {
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
key.offset = extent_op->level;
|
|
} else {
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = head->num_bytes;
|
|
}
|
|
|
|
root = btrfs_extent_root(fs_info, key.objectid);
|
|
again:
|
|
ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out;
|
|
}
|
|
if (ret > 0) {
|
|
if (metadata) {
|
|
if (path->slots[0] > 0) {
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid == head->bytenr &&
|
|
key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key.offset == head->num_bytes)
|
|
ret = 0;
|
|
}
|
|
if (ret > 0) {
|
|
btrfs_release_path(path);
|
|
metadata = 0;
|
|
|
|
key.objectid = head->bytenr;
|
|
key.offset = head->num_bytes;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
goto again;
|
|
}
|
|
} else {
|
|
err = -EIO;
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
|
|
if (unlikely(item_size < sizeof(*ei))) {
|
|
err = -EINVAL;
|
|
btrfs_print_v0_err(fs_info);
|
|
btrfs_abort_transaction(trans, err);
|
|
goto out;
|
|
}
|
|
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
out:
|
|
btrfs_free_path(path);
|
|
return err;
|
|
}
|
|
|
|
static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret = 0;
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
u64 parent = 0;
|
|
u64 ref_root = 0;
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
trace_run_delayed_tree_ref(trans->fs_info, node, ref, node->action);
|
|
|
|
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
parent = ref->parent;
|
|
ref_root = ref->root;
|
|
|
|
if (node->ref_mod != 1) {
|
|
btrfs_err(trans->fs_info,
|
|
"btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
|
|
node->bytenr, node->ref_mod, node->action, ref_root,
|
|
parent);
|
|
return -EIO;
|
|
}
|
|
if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
|
|
BUG_ON(!extent_op || !extent_op->update_flags);
|
|
ret = alloc_reserved_tree_block(trans, node, extent_op);
|
|
} else if (node->action == BTRFS_ADD_DELAYED_REF) {
|
|
ret = __btrfs_inc_extent_ref(trans, node, parent, ref_root,
|
|
ref->level, 0, 1, extent_op);
|
|
} else if (node->action == BTRFS_DROP_DELAYED_REF) {
|
|
ret = __btrfs_free_extent(trans, node, parent, ref_root,
|
|
ref->level, 0, 1, extent_op);
|
|
} else {
|
|
BUG();
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/* helper function to actually process a single delayed ref entry */
|
|
static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op,
|
|
int insert_reserved)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (TRANS_ABORTED(trans)) {
|
|
if (insert_reserved)
|
|
btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
|
|
return 0;
|
|
}
|
|
|
|
if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
|
|
node->type == BTRFS_SHARED_BLOCK_REF_KEY)
|
|
ret = run_delayed_tree_ref(trans, node, extent_op,
|
|
insert_reserved);
|
|
else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
|
|
node->type == BTRFS_SHARED_DATA_REF_KEY)
|
|
ret = run_delayed_data_ref(trans, node, extent_op,
|
|
insert_reserved);
|
|
else
|
|
BUG();
|
|
if (ret && insert_reserved)
|
|
btrfs_pin_extent(trans, node->bytenr, node->num_bytes, 1);
|
|
return ret;
|
|
}
|
|
|
|
static inline struct btrfs_delayed_ref_node *
|
|
select_delayed_ref(struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct btrfs_delayed_ref_node *ref;
|
|
|
|
if (RB_EMPTY_ROOT(&head->ref_tree.rb_root))
|
|
return NULL;
|
|
|
|
/*
|
|
* Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
|
|
* This is to prevent a ref count from going down to zero, which deletes
|
|
* the extent item from the extent tree, when there still are references
|
|
* to add, which would fail because they would not find the extent item.
|
|
*/
|
|
if (!list_empty(&head->ref_add_list))
|
|
return list_first_entry(&head->ref_add_list,
|
|
struct btrfs_delayed_ref_node, add_list);
|
|
|
|
ref = rb_entry(rb_first_cached(&head->ref_tree),
|
|
struct btrfs_delayed_ref_node, ref_node);
|
|
ASSERT(list_empty(&ref->add_list));
|
|
return ref;
|
|
}
|
|
|
|
static void unselect_delayed_ref_head(struct btrfs_delayed_ref_root *delayed_refs,
|
|
struct btrfs_delayed_ref_head *head)
|
|
{
|
|
spin_lock(&delayed_refs->lock);
|
|
head->processing = 0;
|
|
delayed_refs->num_heads_ready++;
|
|
spin_unlock(&delayed_refs->lock);
|
|
btrfs_delayed_ref_unlock(head);
|
|
}
|
|
|
|
static struct btrfs_delayed_extent_op *cleanup_extent_op(
|
|
struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct btrfs_delayed_extent_op *extent_op = head->extent_op;
|
|
|
|
if (!extent_op)
|
|
return NULL;
|
|
|
|
if (head->must_insert_reserved) {
|
|
head->extent_op = NULL;
|
|
btrfs_free_delayed_extent_op(extent_op);
|
|
return NULL;
|
|
}
|
|
return extent_op;
|
|
}
|
|
|
|
static int run_and_cleanup_extent_op(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_head *head)
|
|
{
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
int ret;
|
|
|
|
extent_op = cleanup_extent_op(head);
|
|
if (!extent_op)
|
|
return 0;
|
|
head->extent_op = NULL;
|
|
spin_unlock(&head->lock);
|
|
ret = run_delayed_extent_op(trans, head, extent_op);
|
|
btrfs_free_delayed_extent_op(extent_op);
|
|
return ret ? ret : 1;
|
|
}
|
|
|
|
void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_delayed_ref_root *delayed_refs,
|
|
struct btrfs_delayed_ref_head *head)
|
|
{
|
|
int nr_items = 1; /* Dropping this ref head update. */
|
|
|
|
/*
|
|
* We had csum deletions accounted for in our delayed refs rsv, we need
|
|
* to drop the csum leaves for this update from our delayed_refs_rsv.
|
|
*/
|
|
if (head->total_ref_mod < 0 && head->is_data) {
|
|
spin_lock(&delayed_refs->lock);
|
|
delayed_refs->pending_csums -= head->num_bytes;
|
|
spin_unlock(&delayed_refs->lock);
|
|
nr_items += btrfs_csum_bytes_to_leaves(fs_info, head->num_bytes);
|
|
}
|
|
|
|
btrfs_delayed_refs_rsv_release(fs_info, nr_items);
|
|
}
|
|
|
|
static int cleanup_ref_head(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_head *head)
|
|
{
|
|
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
int ret;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
|
|
ret = run_and_cleanup_extent_op(trans, head);
|
|
if (ret < 0) {
|
|
unselect_delayed_ref_head(delayed_refs, head);
|
|
btrfs_debug(fs_info, "run_delayed_extent_op returned %d", ret);
|
|
return ret;
|
|
} else if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Need to drop our head ref lock and re-acquire the delayed ref lock
|
|
* and then re-check to make sure nobody got added.
|
|
*/
|
|
spin_unlock(&head->lock);
|
|
spin_lock(&delayed_refs->lock);
|
|
spin_lock(&head->lock);
|
|
if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root) || head->extent_op) {
|
|
spin_unlock(&head->lock);
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 1;
|
|
}
|
|
btrfs_delete_ref_head(delayed_refs, head);
|
|
spin_unlock(&head->lock);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
if (head->must_insert_reserved) {
|
|
btrfs_pin_extent(trans, head->bytenr, head->num_bytes, 1);
|
|
if (head->is_data) {
|
|
struct btrfs_root *csum_root;
|
|
|
|
csum_root = btrfs_csum_root(fs_info, head->bytenr);
|
|
ret = btrfs_del_csums(trans, csum_root, head->bytenr,
|
|
head->num_bytes);
|
|
}
|
|
}
|
|
|
|
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
|
|
|
|
trace_run_delayed_ref_head(fs_info, head, 0);
|
|
btrfs_delayed_ref_unlock(head);
|
|
btrfs_put_delayed_ref_head(head);
|
|
return ret;
|
|
}
|
|
|
|
static struct btrfs_delayed_ref_head *btrfs_obtain_ref_head(
|
|
struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_delayed_ref_root *delayed_refs =
|
|
&trans->transaction->delayed_refs;
|
|
struct btrfs_delayed_ref_head *head = NULL;
|
|
int ret;
|
|
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_select_ref_head(delayed_refs);
|
|
if (!head) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
return head;
|
|
}
|
|
|
|
/*
|
|
* Grab the lock that says we are going to process all the refs for
|
|
* this head
|
|
*/
|
|
ret = btrfs_delayed_ref_lock(delayed_refs, head);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
/*
|
|
* We may have dropped the spin lock to get the head mutex lock, and
|
|
* that might have given someone else time to free the head. If that's
|
|
* true, it has been removed from our list and we can move on.
|
|
*/
|
|
if (ret == -EAGAIN)
|
|
head = ERR_PTR(-EAGAIN);
|
|
|
|
return head;
|
|
}
|
|
|
|
static int btrfs_run_delayed_refs_for_head(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_head *locked_ref,
|
|
unsigned long *run_refs)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
int must_insert_reserved = 0;
|
|
int ret;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
|
|
lockdep_assert_held(&locked_ref->mutex);
|
|
lockdep_assert_held(&locked_ref->lock);
|
|
|
|
while ((ref = select_delayed_ref(locked_ref))) {
|
|
if (ref->seq &&
|
|
btrfs_check_delayed_seq(fs_info, ref->seq)) {
|
|
spin_unlock(&locked_ref->lock);
|
|
unselect_delayed_ref_head(delayed_refs, locked_ref);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
(*run_refs)++;
|
|
ref->in_tree = 0;
|
|
rb_erase_cached(&ref->ref_node, &locked_ref->ref_tree);
|
|
RB_CLEAR_NODE(&ref->ref_node);
|
|
if (!list_empty(&ref->add_list))
|
|
list_del(&ref->add_list);
|
|
/*
|
|
* When we play the delayed ref, also correct the ref_mod on
|
|
* head
|
|
*/
|
|
switch (ref->action) {
|
|
case BTRFS_ADD_DELAYED_REF:
|
|
case BTRFS_ADD_DELAYED_EXTENT:
|
|
locked_ref->ref_mod -= ref->ref_mod;
|
|
break;
|
|
case BTRFS_DROP_DELAYED_REF:
|
|
locked_ref->ref_mod += ref->ref_mod;
|
|
break;
|
|
default:
|
|
WARN_ON(1);
|
|
}
|
|
atomic_dec(&delayed_refs->num_entries);
|
|
|
|
/*
|
|
* Record the must_insert_reserved flag before we drop the
|
|
* spin lock.
|
|
*/
|
|
must_insert_reserved = locked_ref->must_insert_reserved;
|
|
locked_ref->must_insert_reserved = 0;
|
|
|
|
extent_op = locked_ref->extent_op;
|
|
locked_ref->extent_op = NULL;
|
|
spin_unlock(&locked_ref->lock);
|
|
|
|
ret = run_one_delayed_ref(trans, ref, extent_op,
|
|
must_insert_reserved);
|
|
|
|
btrfs_free_delayed_extent_op(extent_op);
|
|
if (ret) {
|
|
unselect_delayed_ref_head(delayed_refs, locked_ref);
|
|
btrfs_put_delayed_ref(ref);
|
|
btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
|
|
ret);
|
|
return ret;
|
|
}
|
|
|
|
btrfs_put_delayed_ref(ref);
|
|
cond_resched();
|
|
|
|
spin_lock(&locked_ref->lock);
|
|
btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Returns 0 on success or if called with an already aborted transaction.
|
|
* Returns -ENOMEM or -EIO on failure and will abort the transaction.
|
|
*/
|
|
static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
|
|
unsigned long nr)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_head *locked_ref = NULL;
|
|
ktime_t start = ktime_get();
|
|
int ret;
|
|
unsigned long count = 0;
|
|
unsigned long actual_count = 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
do {
|
|
if (!locked_ref) {
|
|
locked_ref = btrfs_obtain_ref_head(trans);
|
|
if (IS_ERR_OR_NULL(locked_ref)) {
|
|
if (PTR_ERR(locked_ref) == -EAGAIN) {
|
|
continue;
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
count++;
|
|
}
|
|
/*
|
|
* We need to try and merge add/drops of the same ref since we
|
|
* can run into issues with relocate dropping the implicit ref
|
|
* and then it being added back again before the drop can
|
|
* finish. If we merged anything we need to re-loop so we can
|
|
* get a good ref.
|
|
* Or we can get node references of the same type that weren't
|
|
* merged when created due to bumps in the tree mod seq, and
|
|
* we need to merge them to prevent adding an inline extent
|
|
* backref before dropping it (triggering a BUG_ON at
|
|
* insert_inline_extent_backref()).
|
|
*/
|
|
spin_lock(&locked_ref->lock);
|
|
btrfs_merge_delayed_refs(trans, delayed_refs, locked_ref);
|
|
|
|
ret = btrfs_run_delayed_refs_for_head(trans, locked_ref,
|
|
&actual_count);
|
|
if (ret < 0 && ret != -EAGAIN) {
|
|
/*
|
|
* Error, btrfs_run_delayed_refs_for_head already
|
|
* unlocked everything so just bail out
|
|
*/
|
|
return ret;
|
|
} else if (!ret) {
|
|
/*
|
|
* Success, perform the usual cleanup of a processed
|
|
* head
|
|
*/
|
|
ret = cleanup_ref_head(trans, locked_ref);
|
|
if (ret > 0 ) {
|
|
/* We dropped our lock, we need to loop. */
|
|
ret = 0;
|
|
continue;
|
|
} else if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Either success case or btrfs_run_delayed_refs_for_head
|
|
* returned -EAGAIN, meaning we need to select another head
|
|
*/
|
|
|
|
locked_ref = NULL;
|
|
cond_resched();
|
|
} while ((nr != -1 && count < nr) || locked_ref);
|
|
|
|
/*
|
|
* We don't want to include ref heads since we can have empty ref heads
|
|
* and those will drastically skew our runtime down since we just do
|
|
* accounting, no actual extent tree updates.
|
|
*/
|
|
if (actual_count > 0) {
|
|
u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
|
|
u64 avg;
|
|
|
|
/*
|
|
* We weigh the current average higher than our current runtime
|
|
* to avoid large swings in the average.
|
|
*/
|
|
spin_lock(&delayed_refs->lock);
|
|
avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
|
|
fs_info->avg_delayed_ref_runtime = avg >> 2; /* div by 4 */
|
|
spin_unlock(&delayed_refs->lock);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifdef SCRAMBLE_DELAYED_REFS
|
|
/*
|
|
* Normally delayed refs get processed in ascending bytenr order. This
|
|
* correlates in most cases to the order added. To expose dependencies on this
|
|
* order, we start to process the tree in the middle instead of the beginning
|
|
*/
|
|
static u64 find_middle(struct rb_root *root)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct btrfs_delayed_ref_node *entry;
|
|
int alt = 1;
|
|
u64 middle;
|
|
u64 first = 0, last = 0;
|
|
|
|
n = rb_first(root);
|
|
if (n) {
|
|
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
|
|
first = entry->bytenr;
|
|
}
|
|
n = rb_last(root);
|
|
if (n) {
|
|
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
|
|
last = entry->bytenr;
|
|
}
|
|
n = root->rb_node;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
|
|
WARN_ON(!entry->in_tree);
|
|
|
|
middle = entry->bytenr;
|
|
|
|
if (alt)
|
|
n = n->rb_left;
|
|
else
|
|
n = n->rb_right;
|
|
|
|
alt = 1 - alt;
|
|
}
|
|
return middle;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* this starts processing the delayed reference count updates and
|
|
* extent insertions we have queued up so far. count can be
|
|
* 0, which means to process everything in the tree at the start
|
|
* of the run (but not newly added entries), or it can be some target
|
|
* number you'd like to process.
|
|
*
|
|
* Returns 0 on success or if called with an aborted transaction
|
|
* Returns <0 on error and aborts the transaction
|
|
*/
|
|
int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
|
|
unsigned long count)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct rb_node *node;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_delayed_ref_head *head;
|
|
int ret;
|
|
int run_all = count == (unsigned long)-1;
|
|
|
|
/* We'll clean this up in btrfs_cleanup_transaction */
|
|
if (TRANS_ABORTED(trans))
|
|
return 0;
|
|
|
|
if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
|
|
return 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
if (count == 0)
|
|
count = delayed_refs->num_heads_ready;
|
|
|
|
again:
|
|
#ifdef SCRAMBLE_DELAYED_REFS
|
|
delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
|
|
#endif
|
|
ret = __btrfs_run_delayed_refs(trans, count);
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
if (run_all) {
|
|
btrfs_create_pending_block_groups(trans);
|
|
|
|
spin_lock(&delayed_refs->lock);
|
|
node = rb_first_cached(&delayed_refs->href_root);
|
|
if (!node) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
goto out;
|
|
}
|
|
head = rb_entry(node, struct btrfs_delayed_ref_head,
|
|
href_node);
|
|
refcount_inc(&head->refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
/* Mutex was contended, block until it's released and retry. */
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
|
|
btrfs_put_delayed_ref_head(head);
|
|
cond_resched();
|
|
goto again;
|
|
}
|
|
out:
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
|
|
struct extent_buffer *eb, u64 flags,
|
|
int level)
|
|
{
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
int ret;
|
|
|
|
extent_op = btrfs_alloc_delayed_extent_op();
|
|
if (!extent_op)
|
|
return -ENOMEM;
|
|
|
|
extent_op->flags_to_set = flags;
|
|
extent_op->update_flags = true;
|
|
extent_op->update_key = false;
|
|
extent_op->level = level;
|
|
|
|
ret = btrfs_add_delayed_extent_op(trans, eb->start, eb->len, extent_op);
|
|
if (ret)
|
|
btrfs_free_delayed_extent_op(extent_op);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int check_delayed_ref(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 objectid, u64 offset, u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_node *ref;
|
|
struct btrfs_delayed_data_ref *data_ref;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
struct btrfs_transaction *cur_trans;
|
|
struct rb_node *node;
|
|
int ret = 0;
|
|
|
|
spin_lock(&root->fs_info->trans_lock);
|
|
cur_trans = root->fs_info->running_transaction;
|
|
if (cur_trans)
|
|
refcount_inc(&cur_trans->use_count);
|
|
spin_unlock(&root->fs_info->trans_lock);
|
|
if (!cur_trans)
|
|
return 0;
|
|
|
|
delayed_refs = &cur_trans->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
|
|
if (!head) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
btrfs_put_transaction(cur_trans);
|
|
return 0;
|
|
}
|
|
|
|
if (!mutex_trylock(&head->mutex)) {
|
|
if (path->nowait) {
|
|
spin_unlock(&delayed_refs->lock);
|
|
btrfs_put_transaction(cur_trans);
|
|
return -EAGAIN;
|
|
}
|
|
|
|
refcount_inc(&head->refs);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
btrfs_release_path(path);
|
|
|
|
/*
|
|
* Mutex was contended, block until it's released and let
|
|
* caller try again
|
|
*/
|
|
mutex_lock(&head->mutex);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref_head(head);
|
|
btrfs_put_transaction(cur_trans);
|
|
return -EAGAIN;
|
|
}
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
spin_lock(&head->lock);
|
|
/*
|
|
* XXX: We should replace this with a proper search function in the
|
|
* future.
|
|
*/
|
|
for (node = rb_first_cached(&head->ref_tree); node;
|
|
node = rb_next(node)) {
|
|
ref = rb_entry(node, struct btrfs_delayed_ref_node, ref_node);
|
|
/* If it's a shared ref we know a cross reference exists */
|
|
if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
|
|
data_ref = btrfs_delayed_node_to_data_ref(ref);
|
|
|
|
/*
|
|
* If our ref doesn't match the one we're currently looking at
|
|
* then we have a cross reference.
|
|
*/
|
|
if (data_ref->root != root->root_key.objectid ||
|
|
data_ref->objectid != objectid ||
|
|
data_ref->offset != offset) {
|
|
ret = 1;
|
|
break;
|
|
}
|
|
}
|
|
spin_unlock(&head->lock);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_transaction(cur_trans);
|
|
return ret;
|
|
}
|
|
|
|
static noinline int check_committed_ref(struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
u64 objectid, u64 offset, u64 bytenr,
|
|
bool strict)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_root *extent_root = btrfs_extent_root(fs_info, bytenr);
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_data_ref *ref;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_key key;
|
|
u32 item_size;
|
|
int type;
|
|
int ret;
|
|
|
|
key.objectid = bytenr;
|
|
key.offset = (u64)-1;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
|
|
ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
|
|
if (ret < 0)
|
|
goto out;
|
|
BUG_ON(ret == 0); /* Corruption */
|
|
|
|
ret = -ENOENT;
|
|
if (path->slots[0] == 0)
|
|
goto out;
|
|
|
|
path->slots[0]--;
|
|
leaf = path->nodes[0];
|
|
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
|
|
|
|
if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
|
|
goto out;
|
|
|
|
ret = 1;
|
|
item_size = btrfs_item_size(leaf, path->slots[0]);
|
|
ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
|
|
|
|
/* If extent item has more than 1 inline ref then it's shared */
|
|
if (item_size != sizeof(*ei) +
|
|
btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
|
|
goto out;
|
|
|
|
/*
|
|
* If extent created before last snapshot => it's shared unless the
|
|
* snapshot has been deleted. Use the heuristic if strict is false.
|
|
*/
|
|
if (!strict &&
|
|
(btrfs_extent_generation(leaf, ei) <=
|
|
btrfs_root_last_snapshot(&root->root_item)))
|
|
goto out;
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(ei + 1);
|
|
|
|
/* If this extent has SHARED_DATA_REF then it's shared */
|
|
type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
|
|
if (type != BTRFS_EXTENT_DATA_REF_KEY)
|
|
goto out;
|
|
|
|
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
if (btrfs_extent_refs(leaf, ei) !=
|
|
btrfs_extent_data_ref_count(leaf, ref) ||
|
|
btrfs_extent_data_ref_root(leaf, ref) !=
|
|
root->root_key.objectid ||
|
|
btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
|
|
btrfs_extent_data_ref_offset(leaf, ref) != offset)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
|
|
u64 bytenr, bool strict, struct btrfs_path *path)
|
|
{
|
|
int ret;
|
|
|
|
do {
|
|
ret = check_committed_ref(root, path, objectid,
|
|
offset, bytenr, strict);
|
|
if (ret && ret != -ENOENT)
|
|
goto out;
|
|
|
|
ret = check_delayed_ref(root, path, objectid, offset, bytenr);
|
|
} while (ret == -EAGAIN);
|
|
|
|
out:
|
|
btrfs_release_path(path);
|
|
if (btrfs_is_data_reloc_root(root))
|
|
WARN_ON(ret > 0);
|
|
return ret;
|
|
}
|
|
|
|
static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *buf,
|
|
int full_backref, int inc)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 bytenr;
|
|
u64 num_bytes;
|
|
u64 parent;
|
|
u64 ref_root;
|
|
u32 nritems;
|
|
struct btrfs_key key;
|
|
struct btrfs_file_extent_item *fi;
|
|
struct btrfs_ref generic_ref = { 0 };
|
|
bool for_reloc = btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC);
|
|
int i;
|
|
int action;
|
|
int level;
|
|
int ret = 0;
|
|
|
|
if (btrfs_is_testing(fs_info))
|
|
return 0;
|
|
|
|
ref_root = btrfs_header_owner(buf);
|
|
nritems = btrfs_header_nritems(buf);
|
|
level = btrfs_header_level(buf);
|
|
|
|
if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && level == 0)
|
|
return 0;
|
|
|
|
if (full_backref)
|
|
parent = buf->start;
|
|
else
|
|
parent = 0;
|
|
if (inc)
|
|
action = BTRFS_ADD_DELAYED_REF;
|
|
else
|
|
action = BTRFS_DROP_DELAYED_REF;
|
|
|
|
for (i = 0; i < nritems; i++) {
|
|
if (level == 0) {
|
|
btrfs_item_key_to_cpu(buf, &key, i);
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
fi = btrfs_item_ptr(buf, i,
|
|
struct btrfs_file_extent_item);
|
|
if (btrfs_file_extent_type(buf, fi) ==
|
|
BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
|
|
if (bytenr == 0)
|
|
continue;
|
|
|
|
num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
|
|
key.offset -= btrfs_file_extent_offset(buf, fi);
|
|
btrfs_init_generic_ref(&generic_ref, action, bytenr,
|
|
num_bytes, parent);
|
|
btrfs_init_data_ref(&generic_ref, ref_root, key.objectid,
|
|
key.offset, root->root_key.objectid,
|
|
for_reloc);
|
|
if (inc)
|
|
ret = btrfs_inc_extent_ref(trans, &generic_ref);
|
|
else
|
|
ret = btrfs_free_extent(trans, &generic_ref);
|
|
if (ret)
|
|
goto fail;
|
|
} else {
|
|
bytenr = btrfs_node_blockptr(buf, i);
|
|
num_bytes = fs_info->nodesize;
|
|
btrfs_init_generic_ref(&generic_ref, action, bytenr,
|
|
num_bytes, parent);
|
|
btrfs_init_tree_ref(&generic_ref, level - 1, ref_root,
|
|
root->root_key.objectid, for_reloc);
|
|
if (inc)
|
|
ret = btrfs_inc_extent_ref(trans, &generic_ref);
|
|
else
|
|
ret = btrfs_free_extent(trans, &generic_ref);
|
|
if (ret)
|
|
goto fail;
|
|
}
|
|
}
|
|
return 0;
|
|
fail:
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, int full_backref)
|
|
{
|
|
return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
|
|
}
|
|
|
|
int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
struct extent_buffer *buf, int full_backref)
|
|
{
|
|
return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
|
|
}
|
|
|
|
static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 flags;
|
|
u64 ret;
|
|
|
|
if (data)
|
|
flags = BTRFS_BLOCK_GROUP_DATA;
|
|
else if (root == fs_info->chunk_root)
|
|
flags = BTRFS_BLOCK_GROUP_SYSTEM;
|
|
else
|
|
flags = BTRFS_BLOCK_GROUP_METADATA;
|
|
|
|
ret = btrfs_get_alloc_profile(fs_info, flags);
|
|
return ret;
|
|
}
|
|
|
|
static u64 first_logical_byte(struct btrfs_fs_info *fs_info)
|
|
{
|
|
struct rb_node *leftmost;
|
|
u64 bytenr = 0;
|
|
|
|
read_lock(&fs_info->block_group_cache_lock);
|
|
/* Get the block group with the lowest logical start address. */
|
|
leftmost = rb_first_cached(&fs_info->block_group_cache_tree);
|
|
if (leftmost) {
|
|
struct btrfs_block_group *bg;
|
|
|
|
bg = rb_entry(leftmost, struct btrfs_block_group, cache_node);
|
|
bytenr = bg->start;
|
|
}
|
|
read_unlock(&fs_info->block_group_cache_lock);
|
|
|
|
return bytenr;
|
|
}
|
|
|
|
static int pin_down_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_block_group *cache,
|
|
u64 bytenr, u64 num_bytes, int reserved)
|
|
{
|
|
struct btrfs_fs_info *fs_info = cache->fs_info;
|
|
|
|
spin_lock(&cache->space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned += num_bytes;
|
|
btrfs_space_info_update_bytes_pinned(fs_info, cache->space_info,
|
|
num_bytes);
|
|
if (reserved) {
|
|
cache->reserved -= num_bytes;
|
|
cache->space_info->bytes_reserved -= num_bytes;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
spin_unlock(&cache->space_info->lock);
|
|
|
|
set_extent_dirty(&trans->transaction->pinned_extents, bytenr,
|
|
bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_pin_extent(struct btrfs_trans_handle *trans,
|
|
u64 bytenr, u64 num_bytes, int reserved)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
|
|
cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
|
|
BUG_ON(!cache); /* Logic error */
|
|
|
|
pin_down_extent(trans, cache, bytenr, num_bytes, reserved);
|
|
|
|
btrfs_put_block_group(cache);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* this function must be called within transaction
|
|
*/
|
|
int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
|
|
u64 bytenr, u64 num_bytes)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
int ret;
|
|
|
|
cache = btrfs_lookup_block_group(trans->fs_info, bytenr);
|
|
if (!cache)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Fully cache the free space first so that our pin removes the free space
|
|
* from the cache.
|
|
*/
|
|
ret = btrfs_cache_block_group(cache, true);
|
|
if (ret)
|
|
goto out;
|
|
|
|
pin_down_extent(trans, cache, bytenr, num_bytes, 0);
|
|
|
|
/* remove us from the free space cache (if we're there at all) */
|
|
ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
|
|
out:
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 num_bytes)
|
|
{
|
|
int ret;
|
|
struct btrfs_block_group *block_group;
|
|
|
|
block_group = btrfs_lookup_block_group(fs_info, start);
|
|
if (!block_group)
|
|
return -EINVAL;
|
|
|
|
ret = btrfs_cache_block_group(block_group, true);
|
|
if (ret)
|
|
goto out;
|
|
|
|
ret = btrfs_remove_free_space(block_group, start, num_bytes);
|
|
out:
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_exclude_logged_extents(struct extent_buffer *eb)
|
|
{
|
|
struct btrfs_fs_info *fs_info = eb->fs_info;
|
|
struct btrfs_file_extent_item *item;
|
|
struct btrfs_key key;
|
|
int found_type;
|
|
int i;
|
|
int ret = 0;
|
|
|
|
if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
|
|
return 0;
|
|
|
|
for (i = 0; i < btrfs_header_nritems(eb); i++) {
|
|
btrfs_item_key_to_cpu(eb, &key, i);
|
|
if (key.type != BTRFS_EXTENT_DATA_KEY)
|
|
continue;
|
|
item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
|
|
found_type = btrfs_file_extent_type(eb, item);
|
|
if (found_type == BTRFS_FILE_EXTENT_INLINE)
|
|
continue;
|
|
if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
|
|
continue;
|
|
key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
|
|
key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
|
|
ret = __exclude_logged_extent(fs_info, key.objectid, key.offset);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void
|
|
btrfs_inc_block_group_reservations(struct btrfs_block_group *bg)
|
|
{
|
|
atomic_inc(&bg->reservations);
|
|
}
|
|
|
|
/*
|
|
* Returns the free cluster for the given space info and sets empty_cluster to
|
|
* what it should be based on the mount options.
|
|
*/
|
|
static struct btrfs_free_cluster *
|
|
fetch_cluster_info(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_space_info *space_info, u64 *empty_cluster)
|
|
{
|
|
struct btrfs_free_cluster *ret = NULL;
|
|
|
|
*empty_cluster = 0;
|
|
if (btrfs_mixed_space_info(space_info))
|
|
return ret;
|
|
|
|
if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
|
|
ret = &fs_info->meta_alloc_cluster;
|
|
if (btrfs_test_opt(fs_info, SSD))
|
|
*empty_cluster = SZ_2M;
|
|
else
|
|
*empty_cluster = SZ_64K;
|
|
} else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
|
|
btrfs_test_opt(fs_info, SSD_SPREAD)) {
|
|
*empty_cluster = SZ_2M;
|
|
ret = &fs_info->data_alloc_cluster;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int unpin_extent_range(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 end,
|
|
const bool return_free_space)
|
|
{
|
|
struct btrfs_block_group *cache = NULL;
|
|
struct btrfs_space_info *space_info;
|
|
struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
|
|
struct btrfs_free_cluster *cluster = NULL;
|
|
u64 len;
|
|
u64 total_unpinned = 0;
|
|
u64 empty_cluster = 0;
|
|
bool readonly;
|
|
|
|
while (start <= end) {
|
|
readonly = false;
|
|
if (!cache ||
|
|
start >= cache->start + cache->length) {
|
|
if (cache)
|
|
btrfs_put_block_group(cache);
|
|
total_unpinned = 0;
|
|
cache = btrfs_lookup_block_group(fs_info, start);
|
|
BUG_ON(!cache); /* Logic error */
|
|
|
|
cluster = fetch_cluster_info(fs_info,
|
|
cache->space_info,
|
|
&empty_cluster);
|
|
empty_cluster <<= 1;
|
|
}
|
|
|
|
len = cache->start + cache->length - start;
|
|
len = min(len, end + 1 - start);
|
|
|
|
if (return_free_space)
|
|
btrfs_add_free_space(cache, start, len);
|
|
|
|
start += len;
|
|
total_unpinned += len;
|
|
space_info = cache->space_info;
|
|
|
|
/*
|
|
* If this space cluster has been marked as fragmented and we've
|
|
* unpinned enough in this block group to potentially allow a
|
|
* cluster to be created inside of it go ahead and clear the
|
|
* fragmented check.
|
|
*/
|
|
if (cluster && cluster->fragmented &&
|
|
total_unpinned > empty_cluster) {
|
|
spin_lock(&cluster->lock);
|
|
cluster->fragmented = 0;
|
|
spin_unlock(&cluster->lock);
|
|
}
|
|
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&cache->lock);
|
|
cache->pinned -= len;
|
|
btrfs_space_info_update_bytes_pinned(fs_info, space_info, -len);
|
|
space_info->max_extent_size = 0;
|
|
if (cache->ro) {
|
|
space_info->bytes_readonly += len;
|
|
readonly = true;
|
|
} else if (btrfs_is_zoned(fs_info)) {
|
|
/* Need reset before reusing in a zoned block group */
|
|
space_info->bytes_zone_unusable += len;
|
|
readonly = true;
|
|
}
|
|
spin_unlock(&cache->lock);
|
|
if (!readonly && return_free_space &&
|
|
global_rsv->space_info == space_info) {
|
|
spin_lock(&global_rsv->lock);
|
|
if (!global_rsv->full) {
|
|
u64 to_add = min(len, global_rsv->size -
|
|
global_rsv->reserved);
|
|
|
|
global_rsv->reserved += to_add;
|
|
btrfs_space_info_update_bytes_may_use(fs_info,
|
|
space_info, to_add);
|
|
if (global_rsv->reserved >= global_rsv->size)
|
|
global_rsv->full = 1;
|
|
len -= to_add;
|
|
}
|
|
spin_unlock(&global_rsv->lock);
|
|
}
|
|
/* Add to any tickets we may have */
|
|
if (!readonly && return_free_space && len)
|
|
btrfs_try_granting_tickets(fs_info, space_info);
|
|
spin_unlock(&space_info->lock);
|
|
}
|
|
|
|
if (cache)
|
|
btrfs_put_block_group(cache);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_block_group *block_group, *tmp;
|
|
struct list_head *deleted_bgs;
|
|
struct extent_io_tree *unpin;
|
|
u64 start;
|
|
u64 end;
|
|
int ret;
|
|
|
|
unpin = &trans->transaction->pinned_extents;
|
|
|
|
while (!TRANS_ABORTED(trans)) {
|
|
struct extent_state *cached_state = NULL;
|
|
|
|
mutex_lock(&fs_info->unused_bg_unpin_mutex);
|
|
ret = find_first_extent_bit(unpin, 0, &start, &end,
|
|
EXTENT_DIRTY, &cached_state);
|
|
if (ret) {
|
|
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
|
|
break;
|
|
}
|
|
|
|
if (btrfs_test_opt(fs_info, DISCARD_SYNC))
|
|
ret = btrfs_discard_extent(fs_info, start,
|
|
end + 1 - start, NULL);
|
|
|
|
clear_extent_dirty(unpin, start, end, &cached_state);
|
|
unpin_extent_range(fs_info, start, end, true);
|
|
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
|
|
free_extent_state(cached_state);
|
|
cond_resched();
|
|
}
|
|
|
|
if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) {
|
|
btrfs_discard_calc_delay(&fs_info->discard_ctl);
|
|
btrfs_discard_schedule_work(&fs_info->discard_ctl, true);
|
|
}
|
|
|
|
/*
|
|
* Transaction is finished. We don't need the lock anymore. We
|
|
* do need to clean up the block groups in case of a transaction
|
|
* abort.
|
|
*/
|
|
deleted_bgs = &trans->transaction->deleted_bgs;
|
|
list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
|
|
u64 trimmed = 0;
|
|
|
|
ret = -EROFS;
|
|
if (!TRANS_ABORTED(trans))
|
|
ret = btrfs_discard_extent(fs_info,
|
|
block_group->start,
|
|
block_group->length,
|
|
&trimmed);
|
|
|
|
list_del_init(&block_group->bg_list);
|
|
btrfs_unfreeze_block_group(block_group);
|
|
btrfs_put_block_group(block_group);
|
|
|
|
if (ret) {
|
|
const char *errstr = btrfs_decode_error(ret);
|
|
btrfs_warn(fs_info,
|
|
"discard failed while removing blockgroup: errno=%d %s",
|
|
ret, errstr);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int do_free_extent_accounting(struct btrfs_trans_handle *trans,
|
|
u64 bytenr, u64 num_bytes, bool is_data)
|
|
{
|
|
int ret;
|
|
|
|
if (is_data) {
|
|
struct btrfs_root *csum_root;
|
|
|
|
csum_root = btrfs_csum_root(trans->fs_info, bytenr);
|
|
ret = btrfs_del_csums(trans, csum_root, bytenr, num_bytes);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
ret = add_to_free_space_tree(trans, bytenr, num_bytes);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_update_block_group(trans, bytenr, num_bytes, false);
|
|
if (ret)
|
|
btrfs_abort_transaction(trans, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Drop one or more refs of @node.
|
|
*
|
|
* 1. Locate the extent refs.
|
|
* It's either inline in EXTENT/METADATA_ITEM or in keyed SHARED_* item.
|
|
* Locate it, then reduce the refs number or remove the ref line completely.
|
|
*
|
|
* 2. Update the refs count in EXTENT/METADATA_ITEM
|
|
*
|
|
* Inline backref case:
|
|
*
|
|
* in extent tree we have:
|
|
*
|
|
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
|
|
* refs 2 gen 6 flags DATA
|
|
* extent data backref root FS_TREE objectid 258 offset 0 count 1
|
|
* extent data backref root FS_TREE objectid 257 offset 0 count 1
|
|
*
|
|
* This function gets called with:
|
|
*
|
|
* node->bytenr = 13631488
|
|
* node->num_bytes = 1048576
|
|
* root_objectid = FS_TREE
|
|
* owner_objectid = 257
|
|
* owner_offset = 0
|
|
* refs_to_drop = 1
|
|
*
|
|
* Then we should get some like:
|
|
*
|
|
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 16201 itemsize 82
|
|
* refs 1 gen 6 flags DATA
|
|
* extent data backref root FS_TREE objectid 258 offset 0 count 1
|
|
*
|
|
* Keyed backref case:
|
|
*
|
|
* in extent tree we have:
|
|
*
|
|
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
|
|
* refs 754 gen 6 flags DATA
|
|
* [...]
|
|
* item 2 key (13631488 EXTENT_DATA_REF <HASH>) itemoff 3915 itemsize 28
|
|
* extent data backref root FS_TREE objectid 866 offset 0 count 1
|
|
*
|
|
* This function get called with:
|
|
*
|
|
* node->bytenr = 13631488
|
|
* node->num_bytes = 1048576
|
|
* root_objectid = FS_TREE
|
|
* owner_objectid = 866
|
|
* owner_offset = 0
|
|
* refs_to_drop = 1
|
|
*
|
|
* Then we should get some like:
|
|
*
|
|
* item 0 key (13631488 EXTENT_ITEM 1048576) itemoff 3971 itemsize 24
|
|
* refs 753 gen 6 flags DATA
|
|
*
|
|
* And that (13631488 EXTENT_DATA_REF <HASH>) gets removed.
|
|
*/
|
|
static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node, u64 parent,
|
|
u64 root_objectid, u64 owner_objectid,
|
|
u64 owner_offset, int refs_to_drop,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_fs_info *info = trans->fs_info;
|
|
struct btrfs_key key;
|
|
struct btrfs_path *path;
|
|
struct btrfs_root *extent_root;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_extent_item *ei;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
int is_data;
|
|
int extent_slot = 0;
|
|
int found_extent = 0;
|
|
int num_to_del = 1;
|
|
u32 item_size;
|
|
u64 refs;
|
|
u64 bytenr = node->bytenr;
|
|
u64 num_bytes = node->num_bytes;
|
|
bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
|
|
|
|
extent_root = btrfs_extent_root(info, bytenr);
|
|
ASSERT(extent_root);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
|
|
|
|
if (!is_data && refs_to_drop != 1) {
|
|
btrfs_crit(info,
|
|
"invalid refs_to_drop, dropping more than 1 refs for tree block %llu refs_to_drop %u",
|
|
node->bytenr, refs_to_drop);
|
|
ret = -EINVAL;
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
if (is_data)
|
|
skinny_metadata = false;
|
|
|
|
ret = lookup_extent_backref(trans, path, &iref, bytenr, num_bytes,
|
|
parent, root_objectid, owner_objectid,
|
|
owner_offset);
|
|
if (ret == 0) {
|
|
/*
|
|
* Either the inline backref or the SHARED_DATA_REF/
|
|
* SHARED_BLOCK_REF is found
|
|
*
|
|
* Here is a quick path to locate EXTENT/METADATA_ITEM.
|
|
* It's possible the EXTENT/METADATA_ITEM is near current slot.
|
|
*/
|
|
extent_slot = path->slots[0];
|
|
while (extent_slot >= 0) {
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
extent_slot);
|
|
if (key.objectid != bytenr)
|
|
break;
|
|
if (key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key.offset == num_bytes) {
|
|
found_extent = 1;
|
|
break;
|
|
}
|
|
if (key.type == BTRFS_METADATA_ITEM_KEY &&
|
|
key.offset == owner_objectid) {
|
|
found_extent = 1;
|
|
break;
|
|
}
|
|
|
|
/* Quick path didn't find the EXTEMT/METADATA_ITEM */
|
|
if (path->slots[0] - extent_slot > 5)
|
|
break;
|
|
extent_slot--;
|
|
}
|
|
|
|
if (!found_extent) {
|
|
if (iref) {
|
|
btrfs_crit(info,
|
|
"invalid iref, no EXTENT/METADATA_ITEM found but has inline extent ref");
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
goto err_dump;
|
|
}
|
|
/* Must be SHARED_* item, remove the backref first */
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
NULL, refs_to_drop, is_data);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
/* Slow path to locate EXTENT/METADATA_ITEM */
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
|
|
if (!is_data && skinny_metadata) {
|
|
key.type = BTRFS_METADATA_ITEM_KEY;
|
|
key.offset = owner_objectid;
|
|
}
|
|
|
|
ret = btrfs_search_slot(trans, extent_root,
|
|
&key, path, -1, 1);
|
|
if (ret > 0 && skinny_metadata && path->slots[0]) {
|
|
/*
|
|
* Couldn't find our skinny metadata item,
|
|
* see if we have ye olde extent item.
|
|
*/
|
|
path->slots[0]--;
|
|
btrfs_item_key_to_cpu(path->nodes[0], &key,
|
|
path->slots[0]);
|
|
if (key.objectid == bytenr &&
|
|
key.type == BTRFS_EXTENT_ITEM_KEY &&
|
|
key.offset == num_bytes)
|
|
ret = 0;
|
|
}
|
|
|
|
if (ret > 0 && skinny_metadata) {
|
|
skinny_metadata = false;
|
|
key.objectid = bytenr;
|
|
key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
key.offset = num_bytes;
|
|
btrfs_release_path(path);
|
|
ret = btrfs_search_slot(trans, extent_root,
|
|
&key, path, -1, 1);
|
|
}
|
|
|
|
if (ret) {
|
|
btrfs_err(info,
|
|
"umm, got %d back from search, was looking for %llu",
|
|
ret, bytenr);
|
|
if (ret > 0)
|
|
btrfs_print_leaf(path->nodes[0]);
|
|
}
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
extent_slot = path->slots[0];
|
|
}
|
|
} else if (WARN_ON(ret == -ENOENT)) {
|
|
btrfs_print_leaf(path->nodes[0]);
|
|
btrfs_err(info,
|
|
"unable to find ref byte nr %llu parent %llu root %llu owner %llu offset %llu",
|
|
bytenr, parent, root_objectid, owner_objectid,
|
|
owner_offset);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
} else {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
item_size = btrfs_item_size(leaf, extent_slot);
|
|
if (unlikely(item_size < sizeof(*ei))) {
|
|
ret = -EINVAL;
|
|
btrfs_print_v0_err(info);
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
ei = btrfs_item_ptr(leaf, extent_slot,
|
|
struct btrfs_extent_item);
|
|
if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
|
|
key.type == BTRFS_EXTENT_ITEM_KEY) {
|
|
struct btrfs_tree_block_info *bi;
|
|
if (item_size < sizeof(*ei) + sizeof(*bi)) {
|
|
btrfs_crit(info,
|
|
"invalid extent item size for key (%llu, %u, %llu) owner %llu, has %u expect >= %zu",
|
|
key.objectid, key.type, key.offset,
|
|
owner_objectid, item_size,
|
|
sizeof(*ei) + sizeof(*bi));
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
goto err_dump;
|
|
}
|
|
bi = (struct btrfs_tree_block_info *)(ei + 1);
|
|
WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
|
|
}
|
|
|
|
refs = btrfs_extent_refs(leaf, ei);
|
|
if (refs < refs_to_drop) {
|
|
btrfs_crit(info,
|
|
"trying to drop %d refs but we only have %llu for bytenr %llu",
|
|
refs_to_drop, refs, bytenr);
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
goto err_dump;
|
|
}
|
|
refs -= refs_to_drop;
|
|
|
|
if (refs > 0) {
|
|
if (extent_op)
|
|
__run_delayed_extent_op(extent_op, leaf, ei);
|
|
/*
|
|
* In the case of inline back ref, reference count will
|
|
* be updated by remove_extent_backref
|
|
*/
|
|
if (iref) {
|
|
if (!found_extent) {
|
|
btrfs_crit(info,
|
|
"invalid iref, got inlined extent ref but no EXTENT/METADATA_ITEM found");
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
goto err_dump;
|
|
}
|
|
} else {
|
|
btrfs_set_extent_refs(leaf, ei, refs);
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
}
|
|
if (found_extent) {
|
|
ret = remove_extent_backref(trans, extent_root, path,
|
|
iref, refs_to_drop, is_data);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
}
|
|
} else {
|
|
/* In this branch refs == 1 */
|
|
if (found_extent) {
|
|
if (is_data && refs_to_drop !=
|
|
extent_data_ref_count(path, iref)) {
|
|
btrfs_crit(info,
|
|
"invalid refs_to_drop, current refs %u refs_to_drop %u",
|
|
extent_data_ref_count(path, iref),
|
|
refs_to_drop);
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
goto err_dump;
|
|
}
|
|
if (iref) {
|
|
if (path->slots[0] != extent_slot) {
|
|
btrfs_crit(info,
|
|
"invalid iref, extent item key (%llu %u %llu) doesn't have wanted iref",
|
|
key.objectid, key.type,
|
|
key.offset);
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
goto err_dump;
|
|
}
|
|
} else {
|
|
/*
|
|
* No inline ref, we must be at SHARED_* item,
|
|
* And it's single ref, it must be:
|
|
* | extent_slot ||extent_slot + 1|
|
|
* [ EXTENT/METADATA_ITEM ][ SHARED_* ITEM ]
|
|
*/
|
|
if (path->slots[0] != extent_slot + 1) {
|
|
btrfs_crit(info,
|
|
"invalid SHARED_* item, previous item is not EXTENT/METADATA_ITEM");
|
|
btrfs_abort_transaction(trans, -EUCLEAN);
|
|
goto err_dump;
|
|
}
|
|
path->slots[0] = extent_slot;
|
|
num_to_del = 2;
|
|
}
|
|
}
|
|
|
|
ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
|
|
num_to_del);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
goto out;
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
ret = do_free_extent_accounting(trans, bytenr, num_bytes, is_data);
|
|
}
|
|
btrfs_release_path(path);
|
|
|
|
out:
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
err_dump:
|
|
/*
|
|
* Leaf dump can take up a lot of log buffer, so we only do full leaf
|
|
* dump for debug build.
|
|
*/
|
|
if (IS_ENABLED(CONFIG_BTRFS_DEBUG)) {
|
|
btrfs_crit(info, "path->slots[0]=%d extent_slot=%d",
|
|
path->slots[0], extent_slot);
|
|
btrfs_print_leaf(path->nodes[0]);
|
|
}
|
|
|
|
btrfs_free_path(path);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
/*
|
|
* when we free an block, it is possible (and likely) that we free the last
|
|
* delayed ref for that extent as well. This searches the delayed ref tree for
|
|
* a given extent, and if there are no other delayed refs to be processed, it
|
|
* removes it from the tree.
|
|
*/
|
|
static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
|
|
u64 bytenr)
|
|
{
|
|
struct btrfs_delayed_ref_head *head;
|
|
struct btrfs_delayed_ref_root *delayed_refs;
|
|
int ret = 0;
|
|
|
|
delayed_refs = &trans->transaction->delayed_refs;
|
|
spin_lock(&delayed_refs->lock);
|
|
head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
|
|
if (!head)
|
|
goto out_delayed_unlock;
|
|
|
|
spin_lock(&head->lock);
|
|
if (!RB_EMPTY_ROOT(&head->ref_tree.rb_root))
|
|
goto out;
|
|
|
|
if (cleanup_extent_op(head) != NULL)
|
|
goto out;
|
|
|
|
/*
|
|
* waiting for the lock here would deadlock. If someone else has it
|
|
* locked they are already in the process of dropping it anyway
|
|
*/
|
|
if (!mutex_trylock(&head->mutex))
|
|
goto out;
|
|
|
|
btrfs_delete_ref_head(delayed_refs, head);
|
|
head->processing = 0;
|
|
|
|
spin_unlock(&head->lock);
|
|
spin_unlock(&delayed_refs->lock);
|
|
|
|
BUG_ON(head->extent_op);
|
|
if (head->must_insert_reserved)
|
|
ret = 1;
|
|
|
|
btrfs_cleanup_ref_head_accounting(trans->fs_info, delayed_refs, head);
|
|
mutex_unlock(&head->mutex);
|
|
btrfs_put_delayed_ref_head(head);
|
|
return ret;
|
|
out:
|
|
spin_unlock(&head->lock);
|
|
|
|
out_delayed_unlock:
|
|
spin_unlock(&delayed_refs->lock);
|
|
return 0;
|
|
}
|
|
|
|
void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
|
|
u64 root_id,
|
|
struct extent_buffer *buf,
|
|
u64 parent, int last_ref)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_ref generic_ref = { 0 };
|
|
int ret;
|
|
|
|
btrfs_init_generic_ref(&generic_ref, BTRFS_DROP_DELAYED_REF,
|
|
buf->start, buf->len, parent);
|
|
btrfs_init_tree_ref(&generic_ref, btrfs_header_level(buf),
|
|
root_id, 0, false);
|
|
|
|
if (root_id != BTRFS_TREE_LOG_OBJECTID) {
|
|
btrfs_ref_tree_mod(fs_info, &generic_ref);
|
|
ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, NULL);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
}
|
|
|
|
if (last_ref && btrfs_header_generation(buf) == trans->transid) {
|
|
struct btrfs_block_group *cache;
|
|
bool must_pin = false;
|
|
|
|
if (root_id != BTRFS_TREE_LOG_OBJECTID) {
|
|
ret = check_ref_cleanup(trans, buf->start);
|
|
if (!ret) {
|
|
btrfs_redirty_list_add(trans->transaction, buf);
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, buf->start);
|
|
|
|
if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
|
|
pin_down_extent(trans, cache, buf->start, buf->len, 1);
|
|
btrfs_put_block_group(cache);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If there are tree mod log users we may have recorded mod log
|
|
* operations for this node. If we re-allocate this node we
|
|
* could replay operations on this node that happened when it
|
|
* existed in a completely different root. For example if it
|
|
* was part of root A, then was reallocated to root B, and we
|
|
* are doing a btrfs_old_search_slot(root b), we could replay
|
|
* operations that happened when the block was part of root A,
|
|
* giving us an inconsistent view of the btree.
|
|
*
|
|
* We are safe from races here because at this point no other
|
|
* node or root points to this extent buffer, so if after this
|
|
* check a new tree mod log user joins we will not have an
|
|
* existing log of operations on this node that we have to
|
|
* contend with.
|
|
*/
|
|
if (test_bit(BTRFS_FS_TREE_MOD_LOG_USERS, &fs_info->flags))
|
|
must_pin = true;
|
|
|
|
if (must_pin || btrfs_is_zoned(fs_info)) {
|
|
btrfs_redirty_list_add(trans->transaction, buf);
|
|
pin_down_extent(trans, cache, buf->start, buf->len, 1);
|
|
btrfs_put_block_group(cache);
|
|
goto out;
|
|
}
|
|
|
|
WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
|
|
|
|
btrfs_add_free_space(cache, buf->start, buf->len);
|
|
btrfs_free_reserved_bytes(cache, buf->len, 0);
|
|
btrfs_put_block_group(cache);
|
|
trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
|
|
}
|
|
out:
|
|
if (last_ref) {
|
|
/*
|
|
* Deleting the buffer, clear the corrupt flag since it doesn't
|
|
* matter anymore.
|
|
*/
|
|
clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
|
|
}
|
|
}
|
|
|
|
/* Can return -ENOMEM */
|
|
int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
int ret;
|
|
|
|
if (btrfs_is_testing(fs_info))
|
|
return 0;
|
|
|
|
/*
|
|
* tree log blocks never actually go into the extent allocation
|
|
* tree, just update pinning info and exit early.
|
|
*/
|
|
if ((ref->type == BTRFS_REF_METADATA &&
|
|
ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
|
|
(ref->type == BTRFS_REF_DATA &&
|
|
ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)) {
|
|
/* unlocks the pinned mutex */
|
|
btrfs_pin_extent(trans, ref->bytenr, ref->len, 1);
|
|
ret = 0;
|
|
} else if (ref->type == BTRFS_REF_METADATA) {
|
|
ret = btrfs_add_delayed_tree_ref(trans, ref, NULL);
|
|
} else {
|
|
ret = btrfs_add_delayed_data_ref(trans, ref, 0);
|
|
}
|
|
|
|
if (!((ref->type == BTRFS_REF_METADATA &&
|
|
ref->tree_ref.owning_root == BTRFS_TREE_LOG_OBJECTID) ||
|
|
(ref->type == BTRFS_REF_DATA &&
|
|
ref->data_ref.owning_root == BTRFS_TREE_LOG_OBJECTID)))
|
|
btrfs_ref_tree_mod(fs_info, ref);
|
|
|
|
return ret;
|
|
}
|
|
|
|
enum btrfs_loop_type {
|
|
LOOP_CACHING_NOWAIT,
|
|
LOOP_CACHING_WAIT,
|
|
LOOP_ALLOC_CHUNK,
|
|
LOOP_NO_EMPTY_SIZE,
|
|
};
|
|
|
|
static inline void
|
|
btrfs_lock_block_group(struct btrfs_block_group *cache,
|
|
int delalloc)
|
|
{
|
|
if (delalloc)
|
|
down_read(&cache->data_rwsem);
|
|
}
|
|
|
|
static inline void btrfs_grab_block_group(struct btrfs_block_group *cache,
|
|
int delalloc)
|
|
{
|
|
btrfs_get_block_group(cache);
|
|
if (delalloc)
|
|
down_read(&cache->data_rwsem);
|
|
}
|
|
|
|
static struct btrfs_block_group *btrfs_lock_cluster(
|
|
struct btrfs_block_group *block_group,
|
|
struct btrfs_free_cluster *cluster,
|
|
int delalloc)
|
|
__acquires(&cluster->refill_lock)
|
|
{
|
|
struct btrfs_block_group *used_bg = NULL;
|
|
|
|
spin_lock(&cluster->refill_lock);
|
|
while (1) {
|
|
used_bg = cluster->block_group;
|
|
if (!used_bg)
|
|
return NULL;
|
|
|
|
if (used_bg == block_group)
|
|
return used_bg;
|
|
|
|
btrfs_get_block_group(used_bg);
|
|
|
|
if (!delalloc)
|
|
return used_bg;
|
|
|
|
if (down_read_trylock(&used_bg->data_rwsem))
|
|
return used_bg;
|
|
|
|
spin_unlock(&cluster->refill_lock);
|
|
|
|
/* We should only have one-level nested. */
|
|
down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
|
|
|
|
spin_lock(&cluster->refill_lock);
|
|
if (used_bg == cluster->block_group)
|
|
return used_bg;
|
|
|
|
up_read(&used_bg->data_rwsem);
|
|
btrfs_put_block_group(used_bg);
|
|
}
|
|
}
|
|
|
|
static inline void
|
|
btrfs_release_block_group(struct btrfs_block_group *cache,
|
|
int delalloc)
|
|
{
|
|
if (delalloc)
|
|
up_read(&cache->data_rwsem);
|
|
btrfs_put_block_group(cache);
|
|
}
|
|
|
|
enum btrfs_extent_allocation_policy {
|
|
BTRFS_EXTENT_ALLOC_CLUSTERED,
|
|
BTRFS_EXTENT_ALLOC_ZONED,
|
|
};
|
|
|
|
/*
|
|
* Structure used internally for find_free_extent() function. Wraps needed
|
|
* parameters.
|
|
*/
|
|
struct find_free_extent_ctl {
|
|
/* Basic allocation info */
|
|
u64 ram_bytes;
|
|
u64 num_bytes;
|
|
u64 min_alloc_size;
|
|
u64 empty_size;
|
|
u64 flags;
|
|
int delalloc;
|
|
|
|
/* Where to start the search inside the bg */
|
|
u64 search_start;
|
|
|
|
/* For clustered allocation */
|
|
u64 empty_cluster;
|
|
struct btrfs_free_cluster *last_ptr;
|
|
bool use_cluster;
|
|
|
|
bool have_caching_bg;
|
|
bool orig_have_caching_bg;
|
|
|
|
/* Allocation is called for tree-log */
|
|
bool for_treelog;
|
|
|
|
/* Allocation is called for data relocation */
|
|
bool for_data_reloc;
|
|
|
|
/* RAID index, converted from flags */
|
|
int index;
|
|
|
|
/*
|
|
* Current loop number, check find_free_extent_update_loop() for details
|
|
*/
|
|
int loop;
|
|
|
|
/*
|
|
* Whether we're refilling a cluster, if true we need to re-search
|
|
* current block group but don't try to refill the cluster again.
|
|
*/
|
|
bool retry_clustered;
|
|
|
|
/*
|
|
* Whether we're updating free space cache, if true we need to re-search
|
|
* current block group but don't try updating free space cache again.
|
|
*/
|
|
bool retry_unclustered;
|
|
|
|
/* If current block group is cached */
|
|
int cached;
|
|
|
|
/* Max contiguous hole found */
|
|
u64 max_extent_size;
|
|
|
|
/* Total free space from free space cache, not always contiguous */
|
|
u64 total_free_space;
|
|
|
|
/* Found result */
|
|
u64 found_offset;
|
|
|
|
/* Hint where to start looking for an empty space */
|
|
u64 hint_byte;
|
|
|
|
/* Allocation policy */
|
|
enum btrfs_extent_allocation_policy policy;
|
|
};
|
|
|
|
|
|
/*
|
|
* Helper function for find_free_extent().
|
|
*
|
|
* Return -ENOENT to inform caller that we need fallback to unclustered mode.
|
|
* Return -EAGAIN to inform caller that we need to re-search this block group
|
|
* Return >0 to inform caller that we find nothing
|
|
* Return 0 means we have found a location and set ffe_ctl->found_offset.
|
|
*/
|
|
static int find_free_extent_clustered(struct btrfs_block_group *bg,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_block_group **cluster_bg_ret)
|
|
{
|
|
struct btrfs_block_group *cluster_bg;
|
|
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
|
|
u64 aligned_cluster;
|
|
u64 offset;
|
|
int ret;
|
|
|
|
cluster_bg = btrfs_lock_cluster(bg, last_ptr, ffe_ctl->delalloc);
|
|
if (!cluster_bg)
|
|
goto refill_cluster;
|
|
if (cluster_bg != bg && (cluster_bg->ro ||
|
|
!block_group_bits(cluster_bg, ffe_ctl->flags)))
|
|
goto release_cluster;
|
|
|
|
offset = btrfs_alloc_from_cluster(cluster_bg, last_ptr,
|
|
ffe_ctl->num_bytes, cluster_bg->start,
|
|
&ffe_ctl->max_extent_size);
|
|
if (offset) {
|
|
/* We have a block, we're done */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
trace_btrfs_reserve_extent_cluster(cluster_bg,
|
|
ffe_ctl->search_start, ffe_ctl->num_bytes);
|
|
*cluster_bg_ret = cluster_bg;
|
|
ffe_ctl->found_offset = offset;
|
|
return 0;
|
|
}
|
|
WARN_ON(last_ptr->block_group != cluster_bg);
|
|
|
|
release_cluster:
|
|
/*
|
|
* If we are on LOOP_NO_EMPTY_SIZE, we can't set up a new clusters, so
|
|
* lets just skip it and let the allocator find whatever block it can
|
|
* find. If we reach this point, we will have tried the cluster
|
|
* allocator plenty of times and not have found anything, so we are
|
|
* likely way too fragmented for the clustering stuff to find anything.
|
|
*
|
|
* However, if the cluster is taken from the current block group,
|
|
* release the cluster first, so that we stand a better chance of
|
|
* succeeding in the unclustered allocation.
|
|
*/
|
|
if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE && cluster_bg != bg) {
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
|
|
return -ENOENT;
|
|
}
|
|
|
|
/* This cluster didn't work out, free it and start over */
|
|
btrfs_return_cluster_to_free_space(NULL, last_ptr);
|
|
|
|
if (cluster_bg != bg)
|
|
btrfs_release_block_group(cluster_bg, ffe_ctl->delalloc);
|
|
|
|
refill_cluster:
|
|
if (ffe_ctl->loop >= LOOP_NO_EMPTY_SIZE) {
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
return -ENOENT;
|
|
}
|
|
|
|
aligned_cluster = max_t(u64,
|
|
ffe_ctl->empty_cluster + ffe_ctl->empty_size,
|
|
bg->full_stripe_len);
|
|
ret = btrfs_find_space_cluster(bg, last_ptr, ffe_ctl->search_start,
|
|
ffe_ctl->num_bytes, aligned_cluster);
|
|
if (ret == 0) {
|
|
/* Now pull our allocation out of this cluster */
|
|
offset = btrfs_alloc_from_cluster(bg, last_ptr,
|
|
ffe_ctl->num_bytes, ffe_ctl->search_start,
|
|
&ffe_ctl->max_extent_size);
|
|
if (offset) {
|
|
/* We found one, proceed */
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
trace_btrfs_reserve_extent_cluster(bg,
|
|
ffe_ctl->search_start,
|
|
ffe_ctl->num_bytes);
|
|
ffe_ctl->found_offset = offset;
|
|
return 0;
|
|
}
|
|
} else if (!ffe_ctl->cached && ffe_ctl->loop > LOOP_CACHING_NOWAIT &&
|
|
!ffe_ctl->retry_clustered) {
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
|
|
ffe_ctl->retry_clustered = true;
|
|
btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
|
|
ffe_ctl->empty_cluster + ffe_ctl->empty_size);
|
|
return -EAGAIN;
|
|
}
|
|
/*
|
|
* At this point we either didn't find a cluster or we weren't able to
|
|
* allocate a block from our cluster. Free the cluster we've been
|
|
* trying to use, and go to the next block group.
|
|
*/
|
|
btrfs_return_cluster_to_free_space(NULL, last_ptr);
|
|
spin_unlock(&last_ptr->refill_lock);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Return >0 to inform caller that we find nothing
|
|
* Return 0 when we found an free extent and set ffe_ctrl->found_offset
|
|
* Return -EAGAIN to inform caller that we need to re-search this block group
|
|
*/
|
|
static int find_free_extent_unclustered(struct btrfs_block_group *bg,
|
|
struct find_free_extent_ctl *ffe_ctl)
|
|
{
|
|
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
|
|
u64 offset;
|
|
|
|
/*
|
|
* We are doing an unclustered allocation, set the fragmented flag so
|
|
* we don't bother trying to setup a cluster again until we get more
|
|
* space.
|
|
*/
|
|
if (unlikely(last_ptr)) {
|
|
spin_lock(&last_ptr->lock);
|
|
last_ptr->fragmented = 1;
|
|
spin_unlock(&last_ptr->lock);
|
|
}
|
|
if (ffe_ctl->cached) {
|
|
struct btrfs_free_space_ctl *free_space_ctl;
|
|
|
|
free_space_ctl = bg->free_space_ctl;
|
|
spin_lock(&free_space_ctl->tree_lock);
|
|
if (free_space_ctl->free_space <
|
|
ffe_ctl->num_bytes + ffe_ctl->empty_cluster +
|
|
ffe_ctl->empty_size) {
|
|
ffe_ctl->total_free_space = max_t(u64,
|
|
ffe_ctl->total_free_space,
|
|
free_space_ctl->free_space);
|
|
spin_unlock(&free_space_ctl->tree_lock);
|
|
return 1;
|
|
}
|
|
spin_unlock(&free_space_ctl->tree_lock);
|
|
}
|
|
|
|
offset = btrfs_find_space_for_alloc(bg, ffe_ctl->search_start,
|
|
ffe_ctl->num_bytes, ffe_ctl->empty_size,
|
|
&ffe_ctl->max_extent_size);
|
|
|
|
/*
|
|
* If we didn't find a chunk, and we haven't failed on this block group
|
|
* before, and this block group is in the middle of caching and we are
|
|
* ok with waiting, then go ahead and wait for progress to be made, and
|
|
* set @retry_unclustered to true.
|
|
*
|
|
* If @retry_unclustered is true then we've already waited on this
|
|
* block group once and should move on to the next block group.
|
|
*/
|
|
if (!offset && !ffe_ctl->retry_unclustered && !ffe_ctl->cached &&
|
|
ffe_ctl->loop > LOOP_CACHING_NOWAIT) {
|
|
btrfs_wait_block_group_cache_progress(bg, ffe_ctl->num_bytes +
|
|
ffe_ctl->empty_size);
|
|
ffe_ctl->retry_unclustered = true;
|
|
return -EAGAIN;
|
|
} else if (!offset) {
|
|
return 1;
|
|
}
|
|
ffe_ctl->found_offset = offset;
|
|
return 0;
|
|
}
|
|
|
|
static int do_allocation_clustered(struct btrfs_block_group *block_group,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_block_group **bg_ret)
|
|
{
|
|
int ret;
|
|
|
|
/* We want to try and use the cluster allocator, so lets look there */
|
|
if (ffe_ctl->last_ptr && ffe_ctl->use_cluster) {
|
|
ret = find_free_extent_clustered(block_group, ffe_ctl, bg_ret);
|
|
if (ret >= 0 || ret == -EAGAIN)
|
|
return ret;
|
|
/* ret == -ENOENT case falls through */
|
|
}
|
|
|
|
return find_free_extent_unclustered(block_group, ffe_ctl);
|
|
}
|
|
|
|
/*
|
|
* Tree-log block group locking
|
|
* ============================
|
|
*
|
|
* fs_info::treelog_bg_lock protects the fs_info::treelog_bg which
|
|
* indicates the starting address of a block group, which is reserved only
|
|
* for tree-log metadata.
|
|
*
|
|
* Lock nesting
|
|
* ============
|
|
*
|
|
* space_info::lock
|
|
* block_group::lock
|
|
* fs_info::treelog_bg_lock
|
|
*/
|
|
|
|
/*
|
|
* Simple allocator for sequential-only block group. It only allows sequential
|
|
* allocation. No need to play with trees. This function also reserves the
|
|
* bytes as in btrfs_add_reserved_bytes.
|
|
*/
|
|
static int do_allocation_zoned(struct btrfs_block_group *block_group,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_block_group **bg_ret)
|
|
{
|
|
struct btrfs_fs_info *fs_info = block_group->fs_info;
|
|
struct btrfs_space_info *space_info = block_group->space_info;
|
|
struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
|
|
u64 start = block_group->start;
|
|
u64 num_bytes = ffe_ctl->num_bytes;
|
|
u64 avail;
|
|
u64 bytenr = block_group->start;
|
|
u64 log_bytenr;
|
|
u64 data_reloc_bytenr;
|
|
int ret = 0;
|
|
bool skip = false;
|
|
|
|
ASSERT(btrfs_is_zoned(block_group->fs_info));
|
|
|
|
/*
|
|
* Do not allow non-tree-log blocks in the dedicated tree-log block
|
|
* group, and vice versa.
|
|
*/
|
|
spin_lock(&fs_info->treelog_bg_lock);
|
|
log_bytenr = fs_info->treelog_bg;
|
|
if (log_bytenr && ((ffe_ctl->for_treelog && bytenr != log_bytenr) ||
|
|
(!ffe_ctl->for_treelog && bytenr == log_bytenr)))
|
|
skip = true;
|
|
spin_unlock(&fs_info->treelog_bg_lock);
|
|
if (skip)
|
|
return 1;
|
|
|
|
/*
|
|
* Do not allow non-relocation blocks in the dedicated relocation block
|
|
* group, and vice versa.
|
|
*/
|
|
spin_lock(&fs_info->relocation_bg_lock);
|
|
data_reloc_bytenr = fs_info->data_reloc_bg;
|
|
if (data_reloc_bytenr &&
|
|
((ffe_ctl->for_data_reloc && bytenr != data_reloc_bytenr) ||
|
|
(!ffe_ctl->for_data_reloc && bytenr == data_reloc_bytenr)))
|
|
skip = true;
|
|
spin_unlock(&fs_info->relocation_bg_lock);
|
|
if (skip)
|
|
return 1;
|
|
|
|
/* Check RO and no space case before trying to activate it */
|
|
spin_lock(&block_group->lock);
|
|
if (block_group->ro || btrfs_zoned_bg_is_full(block_group)) {
|
|
ret = 1;
|
|
/*
|
|
* May need to clear fs_info->{treelog,data_reloc}_bg.
|
|
* Return the error after taking the locks.
|
|
*/
|
|
}
|
|
spin_unlock(&block_group->lock);
|
|
|
|
if (!ret && !btrfs_zone_activate(block_group)) {
|
|
ret = 1;
|
|
/*
|
|
* May need to clear fs_info->{treelog,data_reloc}_bg.
|
|
* Return the error after taking the locks.
|
|
*/
|
|
}
|
|
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&block_group->lock);
|
|
spin_lock(&fs_info->treelog_bg_lock);
|
|
spin_lock(&fs_info->relocation_bg_lock);
|
|
|
|
if (ret)
|
|
goto out;
|
|
|
|
ASSERT(!ffe_ctl->for_treelog ||
|
|
block_group->start == fs_info->treelog_bg ||
|
|
fs_info->treelog_bg == 0);
|
|
ASSERT(!ffe_ctl->for_data_reloc ||
|
|
block_group->start == fs_info->data_reloc_bg ||
|
|
fs_info->data_reloc_bg == 0);
|
|
|
|
if (block_group->ro ||
|
|
test_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Do not allow currently using block group to be tree-log dedicated
|
|
* block group.
|
|
*/
|
|
if (ffe_ctl->for_treelog && !fs_info->treelog_bg &&
|
|
(block_group->used || block_group->reserved)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Do not allow currently used block group to be the data relocation
|
|
* dedicated block group.
|
|
*/
|
|
if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg &&
|
|
(block_group->used || block_group->reserved)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
WARN_ON_ONCE(block_group->alloc_offset > block_group->zone_capacity);
|
|
avail = block_group->zone_capacity - block_group->alloc_offset;
|
|
if (avail < num_bytes) {
|
|
if (ffe_ctl->max_extent_size < avail) {
|
|
/*
|
|
* With sequential allocator, free space is always
|
|
* contiguous
|
|
*/
|
|
ffe_ctl->max_extent_size = avail;
|
|
ffe_ctl->total_free_space = avail;
|
|
}
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (ffe_ctl->for_treelog && !fs_info->treelog_bg)
|
|
fs_info->treelog_bg = block_group->start;
|
|
|
|
if (ffe_ctl->for_data_reloc && !fs_info->data_reloc_bg)
|
|
fs_info->data_reloc_bg = block_group->start;
|
|
|
|
ffe_ctl->found_offset = start + block_group->alloc_offset;
|
|
block_group->alloc_offset += num_bytes;
|
|
spin_lock(&ctl->tree_lock);
|
|
ctl->free_space -= num_bytes;
|
|
spin_unlock(&ctl->tree_lock);
|
|
|
|
/*
|
|
* We do not check if found_offset is aligned to stripesize. The
|
|
* address is anyway rewritten when using zone append writing.
|
|
*/
|
|
|
|
ffe_ctl->search_start = ffe_ctl->found_offset;
|
|
|
|
out:
|
|
if (ret && ffe_ctl->for_treelog)
|
|
fs_info->treelog_bg = 0;
|
|
if (ret && ffe_ctl->for_data_reloc &&
|
|
fs_info->data_reloc_bg == block_group->start) {
|
|
/*
|
|
* Do not allow further allocations from this block group.
|
|
* Compared to increasing the ->ro, setting the
|
|
* ->zoned_data_reloc_ongoing flag still allows nocow
|
|
* writers to come in. See btrfs_inc_nocow_writers().
|
|
*
|
|
* We need to disable an allocation to avoid an allocation of
|
|
* regular (non-relocation data) extent. With mix of relocation
|
|
* extents and regular extents, we can dispatch WRITE commands
|
|
* (for relocation extents) and ZONE APPEND commands (for
|
|
* regular extents) at the same time to the same zone, which
|
|
* easily break the write pointer.
|
|
*/
|
|
set_bit(BLOCK_GROUP_FLAG_ZONED_DATA_RELOC, &block_group->runtime_flags);
|
|
fs_info->data_reloc_bg = 0;
|
|
}
|
|
spin_unlock(&fs_info->relocation_bg_lock);
|
|
spin_unlock(&fs_info->treelog_bg_lock);
|
|
spin_unlock(&block_group->lock);
|
|
spin_unlock(&space_info->lock);
|
|
return ret;
|
|
}
|
|
|
|
static int do_allocation(struct btrfs_block_group *block_group,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_block_group **bg_ret)
|
|
{
|
|
switch (ffe_ctl->policy) {
|
|
case BTRFS_EXTENT_ALLOC_CLUSTERED:
|
|
return do_allocation_clustered(block_group, ffe_ctl, bg_ret);
|
|
case BTRFS_EXTENT_ALLOC_ZONED:
|
|
return do_allocation_zoned(block_group, ffe_ctl, bg_ret);
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static void release_block_group(struct btrfs_block_group *block_group,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
int delalloc)
|
|
{
|
|
switch (ffe_ctl->policy) {
|
|
case BTRFS_EXTENT_ALLOC_CLUSTERED:
|
|
ffe_ctl->retry_clustered = false;
|
|
ffe_ctl->retry_unclustered = false;
|
|
break;
|
|
case BTRFS_EXTENT_ALLOC_ZONED:
|
|
/* Nothing to do */
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
|
|
BUG_ON(btrfs_bg_flags_to_raid_index(block_group->flags) !=
|
|
ffe_ctl->index);
|
|
btrfs_release_block_group(block_group, delalloc);
|
|
}
|
|
|
|
static void found_extent_clustered(struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_key *ins)
|
|
{
|
|
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
|
|
|
|
if (!ffe_ctl->use_cluster && last_ptr) {
|
|
spin_lock(&last_ptr->lock);
|
|
last_ptr->window_start = ins->objectid;
|
|
spin_unlock(&last_ptr->lock);
|
|
}
|
|
}
|
|
|
|
static void found_extent(struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_key *ins)
|
|
{
|
|
switch (ffe_ctl->policy) {
|
|
case BTRFS_EXTENT_ALLOC_CLUSTERED:
|
|
found_extent_clustered(ffe_ctl, ins);
|
|
break;
|
|
case BTRFS_EXTENT_ALLOC_ZONED:
|
|
/* Nothing to do */
|
|
break;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int can_allocate_chunk_zoned(struct btrfs_fs_info *fs_info,
|
|
struct find_free_extent_ctl *ffe_ctl)
|
|
{
|
|
/* If we can activate new zone, just allocate a chunk and use it */
|
|
if (btrfs_can_activate_zone(fs_info->fs_devices, ffe_ctl->flags))
|
|
return 0;
|
|
|
|
/*
|
|
* We already reached the max active zones. Try to finish one block
|
|
* group to make a room for a new block group. This is only possible
|
|
* for a data block group because btrfs_zone_finish() may need to wait
|
|
* for a running transaction which can cause a deadlock for metadata
|
|
* allocation.
|
|
*/
|
|
if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA) {
|
|
int ret = btrfs_zone_finish_one_bg(fs_info);
|
|
|
|
if (ret == 1)
|
|
return 0;
|
|
else if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* If we have enough free space left in an already active block group
|
|
* and we can't activate any other zone now, do not allow allocating a
|
|
* new chunk and let find_free_extent() retry with a smaller size.
|
|
*/
|
|
if (ffe_ctl->max_extent_size >= ffe_ctl->min_alloc_size)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* Even min_alloc_size is not left in any block groups. Since we cannot
|
|
* activate a new block group, allocating it may not help. Let's tell a
|
|
* caller to try again and hope it progress something by writing some
|
|
* parts of the region. That is only possible for data block groups,
|
|
* where a part of the region can be written.
|
|
*/
|
|
if (ffe_ctl->flags & BTRFS_BLOCK_GROUP_DATA)
|
|
return -EAGAIN;
|
|
|
|
/*
|
|
* We cannot activate a new block group and no enough space left in any
|
|
* block groups. So, allocating a new block group may not help. But,
|
|
* there is nothing to do anyway, so let's go with it.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
static int can_allocate_chunk(struct btrfs_fs_info *fs_info,
|
|
struct find_free_extent_ctl *ffe_ctl)
|
|
{
|
|
switch (ffe_ctl->policy) {
|
|
case BTRFS_EXTENT_ALLOC_CLUSTERED:
|
|
return 0;
|
|
case BTRFS_EXTENT_ALLOC_ZONED:
|
|
return can_allocate_chunk_zoned(fs_info, ffe_ctl);
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static int chunk_allocation_failed(struct find_free_extent_ctl *ffe_ctl)
|
|
{
|
|
switch (ffe_ctl->policy) {
|
|
case BTRFS_EXTENT_ALLOC_CLUSTERED:
|
|
/*
|
|
* If we can't allocate a new chunk we've already looped through
|
|
* at least once, move on to the NO_EMPTY_SIZE case.
|
|
*/
|
|
ffe_ctl->loop = LOOP_NO_EMPTY_SIZE;
|
|
return 0;
|
|
case BTRFS_EXTENT_ALLOC_ZONED:
|
|
/* Give up here */
|
|
return -ENOSPC;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return >0 means caller needs to re-search for free extent
|
|
* Return 0 means we have the needed free extent.
|
|
* Return <0 means we failed to locate any free extent.
|
|
*/
|
|
static int find_free_extent_update_loop(struct btrfs_fs_info *fs_info,
|
|
struct btrfs_key *ins,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
bool full_search)
|
|
{
|
|
struct btrfs_root *root = fs_info->chunk_root;
|
|
int ret;
|
|
|
|
if ((ffe_ctl->loop == LOOP_CACHING_NOWAIT) &&
|
|
ffe_ctl->have_caching_bg && !ffe_ctl->orig_have_caching_bg)
|
|
ffe_ctl->orig_have_caching_bg = true;
|
|
|
|
if (ins->objectid) {
|
|
found_extent(ffe_ctl, ins);
|
|
return 0;
|
|
}
|
|
|
|
if (ffe_ctl->loop >= LOOP_CACHING_WAIT && ffe_ctl->have_caching_bg)
|
|
return 1;
|
|
|
|
ffe_ctl->index++;
|
|
if (ffe_ctl->index < BTRFS_NR_RAID_TYPES)
|
|
return 1;
|
|
|
|
/*
|
|
* LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
|
|
* caching kthreads as we move along
|
|
* LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
|
|
* LOOP_ALLOC_CHUNK, force a chunk allocation and try again
|
|
* LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
|
|
* again
|
|
*/
|
|
if (ffe_ctl->loop < LOOP_NO_EMPTY_SIZE) {
|
|
ffe_ctl->index = 0;
|
|
if (ffe_ctl->loop == LOOP_CACHING_NOWAIT) {
|
|
/*
|
|
* We want to skip the LOOP_CACHING_WAIT step if we
|
|
* don't have any uncached bgs and we've already done a
|
|
* full search through.
|
|
*/
|
|
if (ffe_ctl->orig_have_caching_bg || !full_search)
|
|
ffe_ctl->loop = LOOP_CACHING_WAIT;
|
|
else
|
|
ffe_ctl->loop = LOOP_ALLOC_CHUNK;
|
|
} else {
|
|
ffe_ctl->loop++;
|
|
}
|
|
|
|
if (ffe_ctl->loop == LOOP_ALLOC_CHUNK) {
|
|
struct btrfs_trans_handle *trans;
|
|
int exist = 0;
|
|
|
|
/*Check if allocation policy allows to create a new chunk */
|
|
ret = can_allocate_chunk(fs_info, ffe_ctl);
|
|
if (ret)
|
|
return ret;
|
|
|
|
trans = current->journal_info;
|
|
if (trans)
|
|
exist = 1;
|
|
else
|
|
trans = btrfs_join_transaction(root);
|
|
|
|
if (IS_ERR(trans)) {
|
|
ret = PTR_ERR(trans);
|
|
return ret;
|
|
}
|
|
|
|
ret = btrfs_chunk_alloc(trans, ffe_ctl->flags,
|
|
CHUNK_ALLOC_FORCE_FOR_EXTENT);
|
|
|
|
/* Do not bail out on ENOSPC since we can do more. */
|
|
if (ret == -ENOSPC)
|
|
ret = chunk_allocation_failed(ffe_ctl);
|
|
else if (ret < 0)
|
|
btrfs_abort_transaction(trans, ret);
|
|
else
|
|
ret = 0;
|
|
if (!exist)
|
|
btrfs_end_transaction(trans);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
if (ffe_ctl->loop == LOOP_NO_EMPTY_SIZE) {
|
|
if (ffe_ctl->policy != BTRFS_EXTENT_ALLOC_CLUSTERED)
|
|
return -ENOSPC;
|
|
|
|
/*
|
|
* Don't loop again if we already have no empty_size and
|
|
* no empty_cluster.
|
|
*/
|
|
if (ffe_ctl->empty_size == 0 &&
|
|
ffe_ctl->empty_cluster == 0)
|
|
return -ENOSPC;
|
|
ffe_ctl->empty_size = 0;
|
|
ffe_ctl->empty_cluster = 0;
|
|
}
|
|
return 1;
|
|
}
|
|
return -ENOSPC;
|
|
}
|
|
|
|
static int prepare_allocation_clustered(struct btrfs_fs_info *fs_info,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_space_info *space_info,
|
|
struct btrfs_key *ins)
|
|
{
|
|
/*
|
|
* If our free space is heavily fragmented we may not be able to make
|
|
* big contiguous allocations, so instead of doing the expensive search
|
|
* for free space, simply return ENOSPC with our max_extent_size so we
|
|
* can go ahead and search for a more manageable chunk.
|
|
*
|
|
* If our max_extent_size is large enough for our allocation simply
|
|
* disable clustering since we will likely not be able to find enough
|
|
* space to create a cluster and induce latency trying.
|
|
*/
|
|
if (space_info->max_extent_size) {
|
|
spin_lock(&space_info->lock);
|
|
if (space_info->max_extent_size &&
|
|
ffe_ctl->num_bytes > space_info->max_extent_size) {
|
|
ins->offset = space_info->max_extent_size;
|
|
spin_unlock(&space_info->lock);
|
|
return -ENOSPC;
|
|
} else if (space_info->max_extent_size) {
|
|
ffe_ctl->use_cluster = false;
|
|
}
|
|
spin_unlock(&space_info->lock);
|
|
}
|
|
|
|
ffe_ctl->last_ptr = fetch_cluster_info(fs_info, space_info,
|
|
&ffe_ctl->empty_cluster);
|
|
if (ffe_ctl->last_ptr) {
|
|
struct btrfs_free_cluster *last_ptr = ffe_ctl->last_ptr;
|
|
|
|
spin_lock(&last_ptr->lock);
|
|
if (last_ptr->block_group)
|
|
ffe_ctl->hint_byte = last_ptr->window_start;
|
|
if (last_ptr->fragmented) {
|
|
/*
|
|
* We still set window_start so we can keep track of the
|
|
* last place we found an allocation to try and save
|
|
* some time.
|
|
*/
|
|
ffe_ctl->hint_byte = last_ptr->window_start;
|
|
ffe_ctl->use_cluster = false;
|
|
}
|
|
spin_unlock(&last_ptr->lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int prepare_allocation(struct btrfs_fs_info *fs_info,
|
|
struct find_free_extent_ctl *ffe_ctl,
|
|
struct btrfs_space_info *space_info,
|
|
struct btrfs_key *ins)
|
|
{
|
|
switch (ffe_ctl->policy) {
|
|
case BTRFS_EXTENT_ALLOC_CLUSTERED:
|
|
return prepare_allocation_clustered(fs_info, ffe_ctl,
|
|
space_info, ins);
|
|
case BTRFS_EXTENT_ALLOC_ZONED:
|
|
if (ffe_ctl->for_treelog) {
|
|
spin_lock(&fs_info->treelog_bg_lock);
|
|
if (fs_info->treelog_bg)
|
|
ffe_ctl->hint_byte = fs_info->treelog_bg;
|
|
spin_unlock(&fs_info->treelog_bg_lock);
|
|
}
|
|
if (ffe_ctl->for_data_reloc) {
|
|
spin_lock(&fs_info->relocation_bg_lock);
|
|
if (fs_info->data_reloc_bg)
|
|
ffe_ctl->hint_byte = fs_info->data_reloc_bg;
|
|
spin_unlock(&fs_info->relocation_bg_lock);
|
|
}
|
|
return 0;
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* walks the btree of allocated extents and find a hole of a given size.
|
|
* The key ins is changed to record the hole:
|
|
* ins->objectid == start position
|
|
* ins->flags = BTRFS_EXTENT_ITEM_KEY
|
|
* ins->offset == the size of the hole.
|
|
* Any available blocks before search_start are skipped.
|
|
*
|
|
* If there is no suitable free space, we will record the max size of
|
|
* the free space extent currently.
|
|
*
|
|
* The overall logic and call chain:
|
|
*
|
|
* find_free_extent()
|
|
* |- Iterate through all block groups
|
|
* | |- Get a valid block group
|
|
* | |- Try to do clustered allocation in that block group
|
|
* | |- Try to do unclustered allocation in that block group
|
|
* | |- Check if the result is valid
|
|
* | | |- If valid, then exit
|
|
* | |- Jump to next block group
|
|
* |
|
|
* |- Push harder to find free extents
|
|
* |- If not found, re-iterate all block groups
|
|
*/
|
|
static noinline int find_free_extent(struct btrfs_root *root,
|
|
struct btrfs_key *ins,
|
|
struct find_free_extent_ctl *ffe_ctl)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret = 0;
|
|
int cache_block_group_error = 0;
|
|
struct btrfs_block_group *block_group = NULL;
|
|
struct btrfs_space_info *space_info;
|
|
bool full_search = false;
|
|
|
|
WARN_ON(ffe_ctl->num_bytes < fs_info->sectorsize);
|
|
|
|
ffe_ctl->search_start = 0;
|
|
/* For clustered allocation */
|
|
ffe_ctl->empty_cluster = 0;
|
|
ffe_ctl->last_ptr = NULL;
|
|
ffe_ctl->use_cluster = true;
|
|
ffe_ctl->have_caching_bg = false;
|
|
ffe_ctl->orig_have_caching_bg = false;
|
|
ffe_ctl->index = btrfs_bg_flags_to_raid_index(ffe_ctl->flags);
|
|
ffe_ctl->loop = 0;
|
|
/* For clustered allocation */
|
|
ffe_ctl->retry_clustered = false;
|
|
ffe_ctl->retry_unclustered = false;
|
|
ffe_ctl->cached = 0;
|
|
ffe_ctl->max_extent_size = 0;
|
|
ffe_ctl->total_free_space = 0;
|
|
ffe_ctl->found_offset = 0;
|
|
ffe_ctl->policy = BTRFS_EXTENT_ALLOC_CLUSTERED;
|
|
|
|
if (btrfs_is_zoned(fs_info))
|
|
ffe_ctl->policy = BTRFS_EXTENT_ALLOC_ZONED;
|
|
|
|
ins->type = BTRFS_EXTENT_ITEM_KEY;
|
|
ins->objectid = 0;
|
|
ins->offset = 0;
|
|
|
|
trace_find_free_extent(root, ffe_ctl->num_bytes, ffe_ctl->empty_size,
|
|
ffe_ctl->flags);
|
|
|
|
space_info = btrfs_find_space_info(fs_info, ffe_ctl->flags);
|
|
if (!space_info) {
|
|
btrfs_err(fs_info, "No space info for %llu", ffe_ctl->flags);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ret = prepare_allocation(fs_info, ffe_ctl, space_info, ins);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ffe_ctl->search_start = max(ffe_ctl->search_start,
|
|
first_logical_byte(fs_info));
|
|
ffe_ctl->search_start = max(ffe_ctl->search_start, ffe_ctl->hint_byte);
|
|
if (ffe_ctl->search_start == ffe_ctl->hint_byte) {
|
|
block_group = btrfs_lookup_block_group(fs_info,
|
|
ffe_ctl->search_start);
|
|
/*
|
|
* we don't want to use the block group if it doesn't match our
|
|
* allocation bits, or if its not cached.
|
|
*
|
|
* However if we are re-searching with an ideal block group
|
|
* picked out then we don't care that the block group is cached.
|
|
*/
|
|
if (block_group && block_group_bits(block_group, ffe_ctl->flags) &&
|
|
block_group->cached != BTRFS_CACHE_NO) {
|
|
down_read(&space_info->groups_sem);
|
|
if (list_empty(&block_group->list) ||
|
|
block_group->ro) {
|
|
/*
|
|
* someone is removing this block group,
|
|
* we can't jump into the have_block_group
|
|
* target because our list pointers are not
|
|
* valid
|
|
*/
|
|
btrfs_put_block_group(block_group);
|
|
up_read(&space_info->groups_sem);
|
|
} else {
|
|
ffe_ctl->index = btrfs_bg_flags_to_raid_index(
|
|
block_group->flags);
|
|
btrfs_lock_block_group(block_group,
|
|
ffe_ctl->delalloc);
|
|
goto have_block_group;
|
|
}
|
|
} else if (block_group) {
|
|
btrfs_put_block_group(block_group);
|
|
}
|
|
}
|
|
search:
|
|
ffe_ctl->have_caching_bg = false;
|
|
if (ffe_ctl->index == btrfs_bg_flags_to_raid_index(ffe_ctl->flags) ||
|
|
ffe_ctl->index == 0)
|
|
full_search = true;
|
|
down_read(&space_info->groups_sem);
|
|
list_for_each_entry(block_group,
|
|
&space_info->block_groups[ffe_ctl->index], list) {
|
|
struct btrfs_block_group *bg_ret;
|
|
|
|
/* If the block group is read-only, we can skip it entirely. */
|
|
if (unlikely(block_group->ro)) {
|
|
if (ffe_ctl->for_treelog)
|
|
btrfs_clear_treelog_bg(block_group);
|
|
if (ffe_ctl->for_data_reloc)
|
|
btrfs_clear_data_reloc_bg(block_group);
|
|
continue;
|
|
}
|
|
|
|
btrfs_grab_block_group(block_group, ffe_ctl->delalloc);
|
|
ffe_ctl->search_start = block_group->start;
|
|
|
|
/*
|
|
* this can happen if we end up cycling through all the
|
|
* raid types, but we want to make sure we only allocate
|
|
* for the proper type.
|
|
*/
|
|
if (!block_group_bits(block_group, ffe_ctl->flags)) {
|
|
u64 extra = BTRFS_BLOCK_GROUP_DUP |
|
|
BTRFS_BLOCK_GROUP_RAID1_MASK |
|
|
BTRFS_BLOCK_GROUP_RAID56_MASK |
|
|
BTRFS_BLOCK_GROUP_RAID10;
|
|
|
|
/*
|
|
* if they asked for extra copies and this block group
|
|
* doesn't provide them, bail. This does allow us to
|
|
* fill raid0 from raid1.
|
|
*/
|
|
if ((ffe_ctl->flags & extra) && !(block_group->flags & extra))
|
|
goto loop;
|
|
|
|
/*
|
|
* This block group has different flags than we want.
|
|
* It's possible that we have MIXED_GROUP flag but no
|
|
* block group is mixed. Just skip such block group.
|
|
*/
|
|
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
|
|
continue;
|
|
}
|
|
|
|
have_block_group:
|
|
ffe_ctl->cached = btrfs_block_group_done(block_group);
|
|
if (unlikely(!ffe_ctl->cached)) {
|
|
ffe_ctl->have_caching_bg = true;
|
|
ret = btrfs_cache_block_group(block_group, false);
|
|
|
|
/*
|
|
* If we get ENOMEM here or something else we want to
|
|
* try other block groups, because it may not be fatal.
|
|
* However if we can't find anything else we need to
|
|
* save our return here so that we return the actual
|
|
* error that caused problems, not ENOSPC.
|
|
*/
|
|
if (ret < 0) {
|
|
if (!cache_block_group_error)
|
|
cache_block_group_error = ret;
|
|
ret = 0;
|
|
goto loop;
|
|
}
|
|
ret = 0;
|
|
}
|
|
|
|
if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
|
|
goto loop;
|
|
|
|
bg_ret = NULL;
|
|
ret = do_allocation(block_group, ffe_ctl, &bg_ret);
|
|
if (ret == 0) {
|
|
if (bg_ret && bg_ret != block_group) {
|
|
btrfs_release_block_group(block_group,
|
|
ffe_ctl->delalloc);
|
|
block_group = bg_ret;
|
|
}
|
|
} else if (ret == -EAGAIN) {
|
|
goto have_block_group;
|
|
} else if (ret > 0) {
|
|
goto loop;
|
|
}
|
|
|
|
/* Checks */
|
|
ffe_ctl->search_start = round_up(ffe_ctl->found_offset,
|
|
fs_info->stripesize);
|
|
|
|
/* move on to the next group */
|
|
if (ffe_ctl->search_start + ffe_ctl->num_bytes >
|
|
block_group->start + block_group->length) {
|
|
btrfs_add_free_space_unused(block_group,
|
|
ffe_ctl->found_offset,
|
|
ffe_ctl->num_bytes);
|
|
goto loop;
|
|
}
|
|
|
|
if (ffe_ctl->found_offset < ffe_ctl->search_start)
|
|
btrfs_add_free_space_unused(block_group,
|
|
ffe_ctl->found_offset,
|
|
ffe_ctl->search_start - ffe_ctl->found_offset);
|
|
|
|
ret = btrfs_add_reserved_bytes(block_group, ffe_ctl->ram_bytes,
|
|
ffe_ctl->num_bytes,
|
|
ffe_ctl->delalloc);
|
|
if (ret == -EAGAIN) {
|
|
btrfs_add_free_space_unused(block_group,
|
|
ffe_ctl->found_offset,
|
|
ffe_ctl->num_bytes);
|
|
goto loop;
|
|
}
|
|
btrfs_inc_block_group_reservations(block_group);
|
|
|
|
/* we are all good, lets return */
|
|
ins->objectid = ffe_ctl->search_start;
|
|
ins->offset = ffe_ctl->num_bytes;
|
|
|
|
trace_btrfs_reserve_extent(block_group, ffe_ctl->search_start,
|
|
ffe_ctl->num_bytes);
|
|
btrfs_release_block_group(block_group, ffe_ctl->delalloc);
|
|
break;
|
|
loop:
|
|
release_block_group(block_group, ffe_ctl, ffe_ctl->delalloc);
|
|
cond_resched();
|
|
}
|
|
up_read(&space_info->groups_sem);
|
|
|
|
ret = find_free_extent_update_loop(fs_info, ins, ffe_ctl, full_search);
|
|
if (ret > 0)
|
|
goto search;
|
|
|
|
if (ret == -ENOSPC && !cache_block_group_error) {
|
|
/*
|
|
* Use ffe_ctl->total_free_space as fallback if we can't find
|
|
* any contiguous hole.
|
|
*/
|
|
if (!ffe_ctl->max_extent_size)
|
|
ffe_ctl->max_extent_size = ffe_ctl->total_free_space;
|
|
spin_lock(&space_info->lock);
|
|
space_info->max_extent_size = ffe_ctl->max_extent_size;
|
|
spin_unlock(&space_info->lock);
|
|
ins->offset = ffe_ctl->max_extent_size;
|
|
} else if (ret == -ENOSPC) {
|
|
ret = cache_block_group_error;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* btrfs_reserve_extent - entry point to the extent allocator. Tries to find a
|
|
* hole that is at least as big as @num_bytes.
|
|
*
|
|
* @root - The root that will contain this extent
|
|
*
|
|
* @ram_bytes - The amount of space in ram that @num_bytes take. This
|
|
* is used for accounting purposes. This value differs
|
|
* from @num_bytes only in the case of compressed extents.
|
|
*
|
|
* @num_bytes - Number of bytes to allocate on-disk.
|
|
*
|
|
* @min_alloc_size - Indicates the minimum amount of space that the
|
|
* allocator should try to satisfy. In some cases
|
|
* @num_bytes may be larger than what is required and if
|
|
* the filesystem is fragmented then allocation fails.
|
|
* However, the presence of @min_alloc_size gives a
|
|
* chance to try and satisfy the smaller allocation.
|
|
*
|
|
* @empty_size - A hint that you plan on doing more COW. This is the
|
|
* size in bytes the allocator should try to find free
|
|
* next to the block it returns. This is just a hint and
|
|
* may be ignored by the allocator.
|
|
*
|
|
* @hint_byte - Hint to the allocator to start searching above the byte
|
|
* address passed. It might be ignored.
|
|
*
|
|
* @ins - This key is modified to record the found hole. It will
|
|
* have the following values:
|
|
* ins->objectid == start position
|
|
* ins->flags = BTRFS_EXTENT_ITEM_KEY
|
|
* ins->offset == the size of the hole.
|
|
*
|
|
* @is_data - Boolean flag indicating whether an extent is
|
|
* allocated for data (true) or metadata (false)
|
|
*
|
|
* @delalloc - Boolean flag indicating whether this allocation is for
|
|
* delalloc or not. If 'true' data_rwsem of block groups
|
|
* is going to be acquired.
|
|
*
|
|
*
|
|
* Returns 0 when an allocation succeeded or < 0 when an error occurred. In
|
|
* case -ENOSPC is returned then @ins->offset will contain the size of the
|
|
* largest available hole the allocator managed to find.
|
|
*/
|
|
int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
|
|
u64 num_bytes, u64 min_alloc_size,
|
|
u64 empty_size, u64 hint_byte,
|
|
struct btrfs_key *ins, int is_data, int delalloc)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct find_free_extent_ctl ffe_ctl = {};
|
|
bool final_tried = num_bytes == min_alloc_size;
|
|
u64 flags;
|
|
int ret;
|
|
bool for_treelog = (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
bool for_data_reloc = (btrfs_is_data_reloc_root(root) && is_data);
|
|
|
|
flags = get_alloc_profile_by_root(root, is_data);
|
|
again:
|
|
WARN_ON(num_bytes < fs_info->sectorsize);
|
|
|
|
ffe_ctl.ram_bytes = ram_bytes;
|
|
ffe_ctl.num_bytes = num_bytes;
|
|
ffe_ctl.min_alloc_size = min_alloc_size;
|
|
ffe_ctl.empty_size = empty_size;
|
|
ffe_ctl.flags = flags;
|
|
ffe_ctl.delalloc = delalloc;
|
|
ffe_ctl.hint_byte = hint_byte;
|
|
ffe_ctl.for_treelog = for_treelog;
|
|
ffe_ctl.for_data_reloc = for_data_reloc;
|
|
|
|
ret = find_free_extent(root, ins, &ffe_ctl);
|
|
if (!ret && !is_data) {
|
|
btrfs_dec_block_group_reservations(fs_info, ins->objectid);
|
|
} else if (ret == -ENOSPC) {
|
|
if (!final_tried && ins->offset) {
|
|
num_bytes = min(num_bytes >> 1, ins->offset);
|
|
num_bytes = round_down(num_bytes,
|
|
fs_info->sectorsize);
|
|
num_bytes = max(num_bytes, min_alloc_size);
|
|
ram_bytes = num_bytes;
|
|
if (num_bytes == min_alloc_size)
|
|
final_tried = true;
|
|
goto again;
|
|
} else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
|
|
struct btrfs_space_info *sinfo;
|
|
|
|
sinfo = btrfs_find_space_info(fs_info, flags);
|
|
btrfs_err(fs_info,
|
|
"allocation failed flags %llu, wanted %llu tree-log %d, relocation: %d",
|
|
flags, num_bytes, for_treelog, for_data_reloc);
|
|
if (sinfo)
|
|
btrfs_dump_space_info(fs_info, sinfo,
|
|
num_bytes, 1);
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 len, int delalloc)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
|
|
cache = btrfs_lookup_block_group(fs_info, start);
|
|
if (!cache) {
|
|
btrfs_err(fs_info, "Unable to find block group for %llu",
|
|
start);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
btrfs_add_free_space(cache, start, len);
|
|
btrfs_free_reserved_bytes(cache, len, delalloc);
|
|
trace_btrfs_reserved_extent_free(fs_info, start, len);
|
|
|
|
btrfs_put_block_group(cache);
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
|
|
u64 len)
|
|
{
|
|
struct btrfs_block_group *cache;
|
|
int ret = 0;
|
|
|
|
cache = btrfs_lookup_block_group(trans->fs_info, start);
|
|
if (!cache) {
|
|
btrfs_err(trans->fs_info, "unable to find block group for %llu",
|
|
start);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
ret = pin_down_extent(trans, cache, start, len, 1);
|
|
btrfs_put_block_group(cache);
|
|
return ret;
|
|
}
|
|
|
|
static int alloc_reserved_extent(struct btrfs_trans_handle *trans, u64 bytenr,
|
|
u64 num_bytes)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
int ret;
|
|
|
|
ret = remove_from_free_space_tree(trans, bytenr, num_bytes);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = btrfs_update_block_group(trans, bytenr, num_bytes, true);
|
|
if (ret) {
|
|
ASSERT(!ret);
|
|
btrfs_err(fs_info, "update block group failed for %llu %llu",
|
|
bytenr, num_bytes);
|
|
return ret;
|
|
}
|
|
|
|
trace_btrfs_reserved_extent_alloc(fs_info, bytenr, num_bytes);
|
|
return 0;
|
|
}
|
|
|
|
static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
u64 parent, u64 root_objectid,
|
|
u64 flags, u64 owner, u64 offset,
|
|
struct btrfs_key *ins, int ref_mod)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *extent_root;
|
|
int ret;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
int type;
|
|
u32 size;
|
|
|
|
if (parent > 0)
|
|
type = BTRFS_SHARED_DATA_REF_KEY;
|
|
else
|
|
type = BTRFS_EXTENT_DATA_REF_KEY;
|
|
|
|
size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
extent_root = btrfs_extent_root(fs_info, ins->objectid);
|
|
ret = btrfs_insert_empty_item(trans, extent_root, path, ins, size);
|
|
if (ret) {
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
extent_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, extent_item, ref_mod);
|
|
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
|
|
btrfs_set_extent_flags(leaf, extent_item,
|
|
flags | BTRFS_EXTENT_FLAG_DATA);
|
|
|
|
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
|
|
btrfs_set_extent_inline_ref_type(leaf, iref, type);
|
|
if (parent > 0) {
|
|
struct btrfs_shared_data_ref *ref;
|
|
ref = (struct btrfs_shared_data_ref *)(iref + 1);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
|
|
btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
|
|
} else {
|
|
struct btrfs_extent_data_ref *ref;
|
|
ref = (struct btrfs_extent_data_ref *)(&iref->offset);
|
|
btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
|
|
btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
|
|
btrfs_set_extent_data_ref_offset(leaf, ref, offset);
|
|
btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(path->nodes[0]);
|
|
btrfs_free_path(path);
|
|
|
|
return alloc_reserved_extent(trans, ins->objectid, ins->offset);
|
|
}
|
|
|
|
static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_delayed_ref_node *node,
|
|
struct btrfs_delayed_extent_op *extent_op)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
struct btrfs_root *extent_root;
|
|
int ret;
|
|
struct btrfs_extent_item *extent_item;
|
|
struct btrfs_key extent_key;
|
|
struct btrfs_tree_block_info *block_info;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
struct btrfs_path *path;
|
|
struct extent_buffer *leaf;
|
|
struct btrfs_delayed_tree_ref *ref;
|
|
u32 size = sizeof(*extent_item) + sizeof(*iref);
|
|
u64 flags = extent_op->flags_to_set;
|
|
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
|
|
|
|
ref = btrfs_delayed_node_to_tree_ref(node);
|
|
|
|
extent_key.objectid = node->bytenr;
|
|
if (skinny_metadata) {
|
|
extent_key.offset = ref->level;
|
|
extent_key.type = BTRFS_METADATA_ITEM_KEY;
|
|
} else {
|
|
extent_key.offset = node->num_bytes;
|
|
extent_key.type = BTRFS_EXTENT_ITEM_KEY;
|
|
size += sizeof(*block_info);
|
|
}
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
extent_root = btrfs_extent_root(fs_info, extent_key.objectid);
|
|
ret = btrfs_insert_empty_item(trans, extent_root, path, &extent_key,
|
|
size);
|
|
if (ret) {
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
leaf = path->nodes[0];
|
|
extent_item = btrfs_item_ptr(leaf, path->slots[0],
|
|
struct btrfs_extent_item);
|
|
btrfs_set_extent_refs(leaf, extent_item, 1);
|
|
btrfs_set_extent_generation(leaf, extent_item, trans->transid);
|
|
btrfs_set_extent_flags(leaf, extent_item,
|
|
flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
|
|
|
|
if (skinny_metadata) {
|
|
iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
|
|
} else {
|
|
block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
|
|
btrfs_set_tree_block_key(leaf, block_info, &extent_op->key);
|
|
btrfs_set_tree_block_level(leaf, block_info, ref->level);
|
|
iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
|
|
}
|
|
|
|
if (node->type == BTRFS_SHARED_BLOCK_REF_KEY) {
|
|
btrfs_set_extent_inline_ref_type(leaf, iref,
|
|
BTRFS_SHARED_BLOCK_REF_KEY);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, ref->parent);
|
|
} else {
|
|
btrfs_set_extent_inline_ref_type(leaf, iref,
|
|
BTRFS_TREE_BLOCK_REF_KEY);
|
|
btrfs_set_extent_inline_ref_offset(leaf, iref, ref->root);
|
|
}
|
|
|
|
btrfs_mark_buffer_dirty(leaf);
|
|
btrfs_free_path(path);
|
|
|
|
return alloc_reserved_extent(trans, node->bytenr, fs_info->nodesize);
|
|
}
|
|
|
|
int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 owner,
|
|
u64 offset, u64 ram_bytes,
|
|
struct btrfs_key *ins)
|
|
{
|
|
struct btrfs_ref generic_ref = { 0 };
|
|
|
|
BUG_ON(root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
|
|
|
|
btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
|
|
ins->objectid, ins->offset, 0);
|
|
btrfs_init_data_ref(&generic_ref, root->root_key.objectid, owner,
|
|
offset, 0, false);
|
|
btrfs_ref_tree_mod(root->fs_info, &generic_ref);
|
|
|
|
return btrfs_add_delayed_data_ref(trans, &generic_ref, ram_bytes);
|
|
}
|
|
|
|
/*
|
|
* this is used by the tree logging recovery code. It records that
|
|
* an extent has been allocated and makes sure to clear the free
|
|
* space cache bits as well
|
|
*/
|
|
int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
|
|
u64 root_objectid, u64 owner, u64 offset,
|
|
struct btrfs_key *ins)
|
|
{
|
|
struct btrfs_fs_info *fs_info = trans->fs_info;
|
|
int ret;
|
|
struct btrfs_block_group *block_group;
|
|
struct btrfs_space_info *space_info;
|
|
|
|
/*
|
|
* Mixed block groups will exclude before processing the log so we only
|
|
* need to do the exclude dance if this fs isn't mixed.
|
|
*/
|
|
if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
|
|
ret = __exclude_logged_extent(fs_info, ins->objectid,
|
|
ins->offset);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
|
|
if (!block_group)
|
|
return -EINVAL;
|
|
|
|
space_info = block_group->space_info;
|
|
spin_lock(&space_info->lock);
|
|
spin_lock(&block_group->lock);
|
|
space_info->bytes_reserved += ins->offset;
|
|
block_group->reserved += ins->offset;
|
|
spin_unlock(&block_group->lock);
|
|
spin_unlock(&space_info->lock);
|
|
|
|
ret = alloc_reserved_file_extent(trans, 0, root_objectid, 0, owner,
|
|
offset, ins, 1);
|
|
if (ret)
|
|
btrfs_pin_extent(trans, ins->objectid, ins->offset, 1);
|
|
btrfs_put_block_group(block_group);
|
|
return ret;
|
|
}
|
|
|
|
static struct extent_buffer *
|
|
btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
|
|
u64 bytenr, int level, u64 owner,
|
|
enum btrfs_lock_nesting nest)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct extent_buffer *buf;
|
|
u64 lockdep_owner = owner;
|
|
|
|
buf = btrfs_find_create_tree_block(fs_info, bytenr, owner, level);
|
|
if (IS_ERR(buf))
|
|
return buf;
|
|
|
|
/*
|
|
* Extra safety check in case the extent tree is corrupted and extent
|
|
* allocator chooses to use a tree block which is already used and
|
|
* locked.
|
|
*/
|
|
if (buf->lock_owner == current->pid) {
|
|
btrfs_err_rl(fs_info,
|
|
"tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
|
|
buf->start, btrfs_header_owner(buf), current->pid);
|
|
free_extent_buffer(buf);
|
|
return ERR_PTR(-EUCLEAN);
|
|
}
|
|
|
|
/*
|
|
* The reloc trees are just snapshots, so we need them to appear to be
|
|
* just like any other fs tree WRT lockdep.
|
|
*
|
|
* The exception however is in replace_path() in relocation, where we
|
|
* hold the lock on the original fs root and then search for the reloc
|
|
* root. At that point we need to make sure any reloc root buffers are
|
|
* set to the BTRFS_TREE_RELOC_OBJECTID lockdep class in order to make
|
|
* lockdep happy.
|
|
*/
|
|
if (lockdep_owner == BTRFS_TREE_RELOC_OBJECTID &&
|
|
!test_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &root->state))
|
|
lockdep_owner = BTRFS_FS_TREE_OBJECTID;
|
|
|
|
/* btrfs_clean_tree_block() accesses generation field. */
|
|
btrfs_set_header_generation(buf, trans->transid);
|
|
|
|
/*
|
|
* This needs to stay, because we could allocate a freed block from an
|
|
* old tree into a new tree, so we need to make sure this new block is
|
|
* set to the appropriate level and owner.
|
|
*/
|
|
btrfs_set_buffer_lockdep_class(lockdep_owner, buf, level);
|
|
|
|
__btrfs_tree_lock(buf, nest);
|
|
btrfs_clean_tree_block(buf);
|
|
clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
|
|
clear_bit(EXTENT_BUFFER_NO_CHECK, &buf->bflags);
|
|
|
|
set_extent_buffer_uptodate(buf);
|
|
|
|
memzero_extent_buffer(buf, 0, sizeof(struct btrfs_header));
|
|
btrfs_set_header_level(buf, level);
|
|
btrfs_set_header_bytenr(buf, buf->start);
|
|
btrfs_set_header_generation(buf, trans->transid);
|
|
btrfs_set_header_backref_rev(buf, BTRFS_MIXED_BACKREF_REV);
|
|
btrfs_set_header_owner(buf, owner);
|
|
write_extent_buffer_fsid(buf, fs_info->fs_devices->metadata_uuid);
|
|
write_extent_buffer_chunk_tree_uuid(buf, fs_info->chunk_tree_uuid);
|
|
if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
|
|
buf->log_index = root->log_transid % 2;
|
|
/*
|
|
* we allow two log transactions at a time, use different
|
|
* EXTENT bit to differentiate dirty pages.
|
|
*/
|
|
if (buf->log_index == 0)
|
|
set_extent_dirty(&root->dirty_log_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
else
|
|
set_extent_new(&root->dirty_log_pages, buf->start,
|
|
buf->start + buf->len - 1);
|
|
} else {
|
|
buf->log_index = -1;
|
|
set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
|
|
buf->start + buf->len - 1, GFP_NOFS);
|
|
}
|
|
/* this returns a buffer locked for blocking */
|
|
return buf;
|
|
}
|
|
|
|
/*
|
|
* finds a free extent and does all the dirty work required for allocation
|
|
* returns the tree buffer or an ERR_PTR on error.
|
|
*/
|
|
struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
u64 parent, u64 root_objectid,
|
|
const struct btrfs_disk_key *key,
|
|
int level, u64 hint,
|
|
u64 empty_size,
|
|
enum btrfs_lock_nesting nest)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_key ins;
|
|
struct btrfs_block_rsv *block_rsv;
|
|
struct extent_buffer *buf;
|
|
struct btrfs_delayed_extent_op *extent_op;
|
|
struct btrfs_ref generic_ref = { 0 };
|
|
u64 flags = 0;
|
|
int ret;
|
|
u32 blocksize = fs_info->nodesize;
|
|
bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
|
|
|
|
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
|
|
if (btrfs_is_testing(fs_info)) {
|
|
buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
|
|
level, root_objectid, nest);
|
|
if (!IS_ERR(buf))
|
|
root->alloc_bytenr += blocksize;
|
|
return buf;
|
|
}
|
|
#endif
|
|
|
|
block_rsv = btrfs_use_block_rsv(trans, root, blocksize);
|
|
if (IS_ERR(block_rsv))
|
|
return ERR_CAST(block_rsv);
|
|
|
|
ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
|
|
empty_size, hint, &ins, 0, 0);
|
|
if (ret)
|
|
goto out_unuse;
|
|
|
|
buf = btrfs_init_new_buffer(trans, root, ins.objectid, level,
|
|
root_objectid, nest);
|
|
if (IS_ERR(buf)) {
|
|
ret = PTR_ERR(buf);
|
|
goto out_free_reserved;
|
|
}
|
|
|
|
if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
|
|
if (parent == 0)
|
|
parent = ins.objectid;
|
|
flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
} else
|
|
BUG_ON(parent > 0);
|
|
|
|
if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
|
|
extent_op = btrfs_alloc_delayed_extent_op();
|
|
if (!extent_op) {
|
|
ret = -ENOMEM;
|
|
goto out_free_buf;
|
|
}
|
|
if (key)
|
|
memcpy(&extent_op->key, key, sizeof(extent_op->key));
|
|
else
|
|
memset(&extent_op->key, 0, sizeof(extent_op->key));
|
|
extent_op->flags_to_set = flags;
|
|
extent_op->update_key = skinny_metadata ? false : true;
|
|
extent_op->update_flags = true;
|
|
extent_op->level = level;
|
|
|
|
btrfs_init_generic_ref(&generic_ref, BTRFS_ADD_DELAYED_EXTENT,
|
|
ins.objectid, ins.offset, parent);
|
|
btrfs_init_tree_ref(&generic_ref, level, root_objectid,
|
|
root->root_key.objectid, false);
|
|
btrfs_ref_tree_mod(fs_info, &generic_ref);
|
|
ret = btrfs_add_delayed_tree_ref(trans, &generic_ref, extent_op);
|
|
if (ret)
|
|
goto out_free_delayed;
|
|
}
|
|
return buf;
|
|
|
|
out_free_delayed:
|
|
btrfs_free_delayed_extent_op(extent_op);
|
|
out_free_buf:
|
|
btrfs_tree_unlock(buf);
|
|
free_extent_buffer(buf);
|
|
out_free_reserved:
|
|
btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
|
|
out_unuse:
|
|
btrfs_unuse_block_rsv(fs_info, block_rsv, blocksize);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct walk_control {
|
|
u64 refs[BTRFS_MAX_LEVEL];
|
|
u64 flags[BTRFS_MAX_LEVEL];
|
|
struct btrfs_key update_progress;
|
|
struct btrfs_key drop_progress;
|
|
int drop_level;
|
|
int stage;
|
|
int level;
|
|
int shared_level;
|
|
int update_ref;
|
|
int keep_locks;
|
|
int reada_slot;
|
|
int reada_count;
|
|
int restarted;
|
|
};
|
|
|
|
#define DROP_REFERENCE 1
|
|
#define UPDATE_BACKREF 2
|
|
|
|
static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct walk_control *wc,
|
|
struct btrfs_path *path)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 bytenr;
|
|
u64 generation;
|
|
u64 refs;
|
|
u64 flags;
|
|
u32 nritems;
|
|
struct btrfs_key key;
|
|
struct extent_buffer *eb;
|
|
int ret;
|
|
int slot;
|
|
int nread = 0;
|
|
|
|
if (path->slots[wc->level] < wc->reada_slot) {
|
|
wc->reada_count = wc->reada_count * 2 / 3;
|
|
wc->reada_count = max(wc->reada_count, 2);
|
|
} else {
|
|
wc->reada_count = wc->reada_count * 3 / 2;
|
|
wc->reada_count = min_t(int, wc->reada_count,
|
|
BTRFS_NODEPTRS_PER_BLOCK(fs_info));
|
|
}
|
|
|
|
eb = path->nodes[wc->level];
|
|
nritems = btrfs_header_nritems(eb);
|
|
|
|
for (slot = path->slots[wc->level]; slot < nritems; slot++) {
|
|
if (nread >= wc->reada_count)
|
|
break;
|
|
|
|
cond_resched();
|
|
bytenr = btrfs_node_blockptr(eb, slot);
|
|
generation = btrfs_node_ptr_generation(eb, slot);
|
|
|
|
if (slot == path->slots[wc->level])
|
|
goto reada;
|
|
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
generation <= root->root_key.offset)
|
|
continue;
|
|
|
|
/* We don't lock the tree block, it's OK to be racy here */
|
|
ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
|
|
wc->level - 1, 1, &refs,
|
|
&flags);
|
|
/* We don't care about errors in readahead. */
|
|
if (ret < 0)
|
|
continue;
|
|
BUG_ON(refs == 0);
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (refs == 1)
|
|
goto reada;
|
|
|
|
if (wc->level == 1 &&
|
|
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
continue;
|
|
if (!wc->update_ref ||
|
|
generation <= root->root_key.offset)
|
|
continue;
|
|
btrfs_node_key_to_cpu(eb, &key, slot);
|
|
ret = btrfs_comp_cpu_keys(&key,
|
|
&wc->update_progress);
|
|
if (ret < 0)
|
|
continue;
|
|
} else {
|
|
if (wc->level == 1 &&
|
|
(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
continue;
|
|
}
|
|
reada:
|
|
btrfs_readahead_node_child(eb, slot);
|
|
nread++;
|
|
}
|
|
wc->reada_slot = slot;
|
|
}
|
|
|
|
/*
|
|
* helper to process tree block while walking down the tree.
|
|
*
|
|
* when wc->stage == UPDATE_BACKREF, this function updates
|
|
* back refs for pointers in the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking down.
|
|
*/
|
|
static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int lookup_info)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int level = wc->level;
|
|
struct extent_buffer *eb = path->nodes[level];
|
|
u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
int ret;
|
|
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
btrfs_header_owner(eb) != root->root_key.objectid)
|
|
return 1;
|
|
|
|
/*
|
|
* when reference count of tree block is 1, it won't increase
|
|
* again. once full backref flag is set, we never clear it.
|
|
*/
|
|
if (lookup_info &&
|
|
((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
|
|
(wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
|
|
BUG_ON(!path->locks[level]);
|
|
ret = btrfs_lookup_extent_info(trans, fs_info,
|
|
eb->start, level, 1,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
BUG_ON(ret == -ENOMEM);
|
|
if (ret)
|
|
return ret;
|
|
BUG_ON(wc->refs[level] == 0);
|
|
}
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->refs[level] > 1)
|
|
return 1;
|
|
|
|
if (path->locks[level] && !wc->keep_locks) {
|
|
btrfs_tree_unlock_rw(eb, path->locks[level]);
|
|
path->locks[level] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* wc->stage == UPDATE_BACKREF */
|
|
if (!(wc->flags[level] & flag)) {
|
|
BUG_ON(!path->locks[level]);
|
|
ret = btrfs_inc_ref(trans, root, eb, 1);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
ret = btrfs_dec_ref(trans, root, eb, 0);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
ret = btrfs_set_disk_extent_flags(trans, eb, flag,
|
|
btrfs_header_level(eb));
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
wc->flags[level] |= flag;
|
|
}
|
|
|
|
/*
|
|
* the block is shared by multiple trees, so it's not good to
|
|
* keep the tree lock
|
|
*/
|
|
if (path->locks[level] && level > 0) {
|
|
btrfs_tree_unlock_rw(eb, path->locks[level]);
|
|
path->locks[level] = 0;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This is used to verify a ref exists for this root to deal with a bug where we
|
|
* would have a drop_progress key that hadn't been updated properly.
|
|
*/
|
|
static int check_ref_exists(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root, u64 bytenr, u64 parent,
|
|
int level)
|
|
{
|
|
struct btrfs_path *path;
|
|
struct btrfs_extent_inline_ref *iref;
|
|
int ret;
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
ret = lookup_extent_backref(trans, path, &iref, bytenr,
|
|
root->fs_info->nodesize, parent,
|
|
root->root_key.objectid, level, 0);
|
|
btrfs_free_path(path);
|
|
if (ret == -ENOENT)
|
|
return 0;
|
|
if (ret < 0)
|
|
return ret;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* helper to process tree block pointer.
|
|
*
|
|
* when wc->stage == DROP_REFERENCE, this function checks
|
|
* reference count of the block pointed to. if the block
|
|
* is shared and we need update back refs for the subtree
|
|
* rooted at the block, this function changes wc->stage to
|
|
* UPDATE_BACKREF. if the block is shared and there is no
|
|
* need to update back, this function drops the reference
|
|
* to the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking down.
|
|
*/
|
|
static noinline int do_walk_down(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int *lookup_info)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
u64 bytenr;
|
|
u64 generation;
|
|
u64 parent;
|
|
struct btrfs_tree_parent_check check = { 0 };
|
|
struct btrfs_key key;
|
|
struct btrfs_ref ref = { 0 };
|
|
struct extent_buffer *next;
|
|
int level = wc->level;
|
|
int reada = 0;
|
|
int ret = 0;
|
|
bool need_account = false;
|
|
|
|
generation = btrfs_node_ptr_generation(path->nodes[level],
|
|
path->slots[level]);
|
|
/*
|
|
* if the lower level block was created before the snapshot
|
|
* was created, we know there is no need to update back refs
|
|
* for the subtree
|
|
*/
|
|
if (wc->stage == UPDATE_BACKREF &&
|
|
generation <= root->root_key.offset) {
|
|
*lookup_info = 1;
|
|
return 1;
|
|
}
|
|
|
|
bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
|
|
|
|
check.level = level - 1;
|
|
check.transid = generation;
|
|
check.owner_root = root->root_key.objectid;
|
|
check.has_first_key = true;
|
|
btrfs_node_key_to_cpu(path->nodes[level], &check.first_key,
|
|
path->slots[level]);
|
|
|
|
next = find_extent_buffer(fs_info, bytenr);
|
|
if (!next) {
|
|
next = btrfs_find_create_tree_block(fs_info, bytenr,
|
|
root->root_key.objectid, level - 1);
|
|
if (IS_ERR(next))
|
|
return PTR_ERR(next);
|
|
reada = 1;
|
|
}
|
|
btrfs_tree_lock(next);
|
|
|
|
ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
|
|
&wc->refs[level - 1],
|
|
&wc->flags[level - 1]);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
|
|
if (unlikely(wc->refs[level - 1] == 0)) {
|
|
btrfs_err(fs_info, "Missing references.");
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
*lookup_info = 0;
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->refs[level - 1] > 1) {
|
|
need_account = true;
|
|
if (level == 1 &&
|
|
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
goto skip;
|
|
|
|
if (!wc->update_ref ||
|
|
generation <= root->root_key.offset)
|
|
goto skip;
|
|
|
|
btrfs_node_key_to_cpu(path->nodes[level], &key,
|
|
path->slots[level]);
|
|
ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
|
|
if (ret < 0)
|
|
goto skip;
|
|
|
|
wc->stage = UPDATE_BACKREF;
|
|
wc->shared_level = level - 1;
|
|
}
|
|
} else {
|
|
if (level == 1 &&
|
|
(wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
|
|
goto skip;
|
|
}
|
|
|
|
if (!btrfs_buffer_uptodate(next, generation, 0)) {
|
|
btrfs_tree_unlock(next);
|
|
free_extent_buffer(next);
|
|
next = NULL;
|
|
*lookup_info = 1;
|
|
}
|
|
|
|
if (!next) {
|
|
if (reada && level == 1)
|
|
reada_walk_down(trans, root, wc, path);
|
|
next = read_tree_block(fs_info, bytenr, &check);
|
|
if (IS_ERR(next)) {
|
|
return PTR_ERR(next);
|
|
} else if (!extent_buffer_uptodate(next)) {
|
|
free_extent_buffer(next);
|
|
return -EIO;
|
|
}
|
|
btrfs_tree_lock(next);
|
|
}
|
|
|
|
level--;
|
|
ASSERT(level == btrfs_header_level(next));
|
|
if (level != btrfs_header_level(next)) {
|
|
btrfs_err(root->fs_info, "mismatched level");
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
path->nodes[level] = next;
|
|
path->slots[level] = 0;
|
|
path->locks[level] = BTRFS_WRITE_LOCK;
|
|
wc->level = level;
|
|
if (wc->level == 1)
|
|
wc->reada_slot = 0;
|
|
return 0;
|
|
skip:
|
|
wc->refs[level - 1] = 0;
|
|
wc->flags[level - 1] = 0;
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
|
|
parent = path->nodes[level]->start;
|
|
} else {
|
|
ASSERT(root->root_key.objectid ==
|
|
btrfs_header_owner(path->nodes[level]));
|
|
if (root->root_key.objectid !=
|
|
btrfs_header_owner(path->nodes[level])) {
|
|
btrfs_err(root->fs_info,
|
|
"mismatched block owner");
|
|
ret = -EIO;
|
|
goto out_unlock;
|
|
}
|
|
parent = 0;
|
|
}
|
|
|
|
/*
|
|
* If we had a drop_progress we need to verify the refs are set
|
|
* as expected. If we find our ref then we know that from here
|
|
* on out everything should be correct, and we can clear the
|
|
* ->restarted flag.
|
|
*/
|
|
if (wc->restarted) {
|
|
ret = check_ref_exists(trans, root, bytenr, parent,
|
|
level - 1);
|
|
if (ret < 0)
|
|
goto out_unlock;
|
|
if (ret == 0)
|
|
goto no_delete;
|
|
ret = 0;
|
|
wc->restarted = 0;
|
|
}
|
|
|
|
/*
|
|
* Reloc tree doesn't contribute to qgroup numbers, and we have
|
|
* already accounted them at merge time (replace_path),
|
|
* thus we could skip expensive subtree trace here.
|
|
*/
|
|
if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
|
|
need_account) {
|
|
ret = btrfs_qgroup_trace_subtree(trans, next,
|
|
generation, level - 1);
|
|
if (ret) {
|
|
btrfs_err_rl(fs_info,
|
|
"Error %d accounting shared subtree. Quota is out of sync, rescan required.",
|
|
ret);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to update the next key in our walk control so we can
|
|
* update the drop_progress key accordingly. We don't care if
|
|
* find_next_key doesn't find a key because that means we're at
|
|
* the end and are going to clean up now.
|
|
*/
|
|
wc->drop_level = level;
|
|
find_next_key(path, level, &wc->drop_progress);
|
|
|
|
btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
|
|
fs_info->nodesize, parent);
|
|
btrfs_init_tree_ref(&ref, level - 1, root->root_key.objectid,
|
|
0, false);
|
|
ret = btrfs_free_extent(trans, &ref);
|
|
if (ret)
|
|
goto out_unlock;
|
|
}
|
|
no_delete:
|
|
*lookup_info = 1;
|
|
ret = 1;
|
|
|
|
out_unlock:
|
|
btrfs_tree_unlock(next);
|
|
free_extent_buffer(next);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* helper to process tree block while walking up the tree.
|
|
*
|
|
* when wc->stage == DROP_REFERENCE, this function drops
|
|
* reference count on the block.
|
|
*
|
|
* when wc->stage == UPDATE_BACKREF, this function changes
|
|
* wc->stage back to DROP_REFERENCE if we changed wc->stage
|
|
* to UPDATE_BACKREF previously while processing the block.
|
|
*
|
|
* NOTE: return value 1 means we should stop walking up.
|
|
*/
|
|
static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
int ret;
|
|
int level = wc->level;
|
|
struct extent_buffer *eb = path->nodes[level];
|
|
u64 parent = 0;
|
|
|
|
if (wc->stage == UPDATE_BACKREF) {
|
|
BUG_ON(wc->shared_level < level);
|
|
if (level < wc->shared_level)
|
|
goto out;
|
|
|
|
ret = find_next_key(path, level + 1, &wc->update_progress);
|
|
if (ret > 0)
|
|
wc->update_ref = 0;
|
|
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->shared_level = -1;
|
|
path->slots[level] = 0;
|
|
|
|
/*
|
|
* check reference count again if the block isn't locked.
|
|
* we should start walking down the tree again if reference
|
|
* count is one.
|
|
*/
|
|
if (!path->locks[level]) {
|
|
BUG_ON(level == 0);
|
|
btrfs_tree_lock(eb);
|
|
path->locks[level] = BTRFS_WRITE_LOCK;
|
|
|
|
ret = btrfs_lookup_extent_info(trans, fs_info,
|
|
eb->start, level, 1,
|
|
&wc->refs[level],
|
|
&wc->flags[level]);
|
|
if (ret < 0) {
|
|
btrfs_tree_unlock_rw(eb, path->locks[level]);
|
|
path->locks[level] = 0;
|
|
return ret;
|
|
}
|
|
BUG_ON(wc->refs[level] == 0);
|
|
if (wc->refs[level] == 1) {
|
|
btrfs_tree_unlock_rw(eb, path->locks[level]);
|
|
path->locks[level] = 0;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* wc->stage == DROP_REFERENCE */
|
|
BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
|
|
|
|
if (wc->refs[level] == 1) {
|
|
if (level == 0) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
ret = btrfs_dec_ref(trans, root, eb, 1);
|
|
else
|
|
ret = btrfs_dec_ref(trans, root, eb, 0);
|
|
BUG_ON(ret); /* -ENOMEM */
|
|
if (is_fstree(root->root_key.objectid)) {
|
|
ret = btrfs_qgroup_trace_leaf_items(trans, eb);
|
|
if (ret) {
|
|
btrfs_err_rl(fs_info,
|
|
"error %d accounting leaf items, quota is out of sync, rescan required",
|
|
ret);
|
|
}
|
|
}
|
|
}
|
|
/* make block locked assertion in btrfs_clean_tree_block happy */
|
|
if (!path->locks[level] &&
|
|
btrfs_header_generation(eb) == trans->transid) {
|
|
btrfs_tree_lock(eb);
|
|
path->locks[level] = BTRFS_WRITE_LOCK;
|
|
}
|
|
btrfs_clean_tree_block(eb);
|
|
}
|
|
|
|
if (eb == root->node) {
|
|
if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
parent = eb->start;
|
|
else if (root->root_key.objectid != btrfs_header_owner(eb))
|
|
goto owner_mismatch;
|
|
} else {
|
|
if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
|
|
parent = path->nodes[level + 1]->start;
|
|
else if (root->root_key.objectid !=
|
|
btrfs_header_owner(path->nodes[level + 1]))
|
|
goto owner_mismatch;
|
|
}
|
|
|
|
btrfs_free_tree_block(trans, btrfs_root_id(root), eb, parent,
|
|
wc->refs[level] == 1);
|
|
out:
|
|
wc->refs[level] = 0;
|
|
wc->flags[level] = 0;
|
|
return 0;
|
|
|
|
owner_mismatch:
|
|
btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
|
|
btrfs_header_owner(eb), root->root_key.objectid);
|
|
return -EUCLEAN;
|
|
}
|
|
|
|
static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc)
|
|
{
|
|
int level = wc->level;
|
|
int lookup_info = 1;
|
|
int ret;
|
|
|
|
while (level >= 0) {
|
|
ret = walk_down_proc(trans, root, path, wc, lookup_info);
|
|
if (ret > 0)
|
|
break;
|
|
|
|
if (level == 0)
|
|
break;
|
|
|
|
if (path->slots[level] >=
|
|
btrfs_header_nritems(path->nodes[level]))
|
|
break;
|
|
|
|
ret = do_walk_down(trans, root, path, wc, &lookup_info);
|
|
if (ret > 0) {
|
|
path->slots[level]++;
|
|
continue;
|
|
} else if (ret < 0)
|
|
return ret;
|
|
level = wc->level;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct btrfs_path *path,
|
|
struct walk_control *wc, int max_level)
|
|
{
|
|
int level = wc->level;
|
|
int ret;
|
|
|
|
path->slots[level] = btrfs_header_nritems(path->nodes[level]);
|
|
while (level < max_level && path->nodes[level]) {
|
|
wc->level = level;
|
|
if (path->slots[level] + 1 <
|
|
btrfs_header_nritems(path->nodes[level])) {
|
|
path->slots[level]++;
|
|
return 0;
|
|
} else {
|
|
ret = walk_up_proc(trans, root, path, wc);
|
|
if (ret > 0)
|
|
return 0;
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (path->locks[level]) {
|
|
btrfs_tree_unlock_rw(path->nodes[level],
|
|
path->locks[level]);
|
|
path->locks[level] = 0;
|
|
}
|
|
free_extent_buffer(path->nodes[level]);
|
|
path->nodes[level] = NULL;
|
|
level++;
|
|
}
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* drop a subvolume tree.
|
|
*
|
|
* this function traverses the tree freeing any blocks that only
|
|
* referenced by the tree.
|
|
*
|
|
* when a shared tree block is found. this function decreases its
|
|
* reference count by one. if update_ref is true, this function
|
|
* also make sure backrefs for the shared block and all lower level
|
|
* blocks are properly updated.
|
|
*
|
|
* If called with for_reloc == 0, may exit early with -EAGAIN
|
|
*/
|
|
int btrfs_drop_snapshot(struct btrfs_root *root, int update_ref, int for_reloc)
|
|
{
|
|
const bool is_reloc_root = (root->root_key.objectid ==
|
|
BTRFS_TREE_RELOC_OBJECTID);
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct btrfs_trans_handle *trans;
|
|
struct btrfs_root *tree_root = fs_info->tree_root;
|
|
struct btrfs_root_item *root_item = &root->root_item;
|
|
struct walk_control *wc;
|
|
struct btrfs_key key;
|
|
int err = 0;
|
|
int ret;
|
|
int level;
|
|
bool root_dropped = false;
|
|
bool unfinished_drop = false;
|
|
|
|
btrfs_debug(fs_info, "Drop subvolume %llu", root->root_key.objectid);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
wc = kzalloc(sizeof(*wc), GFP_NOFS);
|
|
if (!wc) {
|
|
btrfs_free_path(path);
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Use join to avoid potential EINTR from transaction start. See
|
|
* wait_reserve_ticket and the whole reservation callchain.
|
|
*/
|
|
if (for_reloc)
|
|
trans = btrfs_join_transaction(tree_root);
|
|
else
|
|
trans = btrfs_start_transaction(tree_root, 0);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
goto out_free;
|
|
}
|
|
|
|
err = btrfs_run_delayed_items(trans);
|
|
if (err)
|
|
goto out_end_trans;
|
|
|
|
/*
|
|
* This will help us catch people modifying the fs tree while we're
|
|
* dropping it. It is unsafe to mess with the fs tree while it's being
|
|
* dropped as we unlock the root node and parent nodes as we walk down
|
|
* the tree, assuming nothing will change. If something does change
|
|
* then we'll have stale information and drop references to blocks we've
|
|
* already dropped.
|
|
*/
|
|
set_bit(BTRFS_ROOT_DELETING, &root->state);
|
|
unfinished_drop = test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state);
|
|
|
|
if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
|
|
level = btrfs_header_level(root->node);
|
|
path->nodes[level] = btrfs_lock_root_node(root);
|
|
path->slots[level] = 0;
|
|
path->locks[level] = BTRFS_WRITE_LOCK;
|
|
memset(&wc->update_progress, 0,
|
|
sizeof(wc->update_progress));
|
|
} else {
|
|
btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
|
|
memcpy(&wc->update_progress, &key,
|
|
sizeof(wc->update_progress));
|
|
|
|
level = btrfs_root_drop_level(root_item);
|
|
BUG_ON(level == 0);
|
|
path->lowest_level = level;
|
|
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
|
|
path->lowest_level = 0;
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out_end_trans;
|
|
}
|
|
WARN_ON(ret > 0);
|
|
|
|
/*
|
|
* unlock our path, this is safe because only this
|
|
* function is allowed to delete this snapshot
|
|
*/
|
|
btrfs_unlock_up_safe(path, 0);
|
|
|
|
level = btrfs_header_level(root->node);
|
|
while (1) {
|
|
btrfs_tree_lock(path->nodes[level]);
|
|
path->locks[level] = BTRFS_WRITE_LOCK;
|
|
|
|
ret = btrfs_lookup_extent_info(trans, fs_info,
|
|
path->nodes[level]->start,
|
|
level, 1, &wc->refs[level],
|
|
&wc->flags[level]);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
goto out_end_trans;
|
|
}
|
|
BUG_ON(wc->refs[level] == 0);
|
|
|
|
if (level == btrfs_root_drop_level(root_item))
|
|
break;
|
|
|
|
btrfs_tree_unlock(path->nodes[level]);
|
|
path->locks[level] = 0;
|
|
WARN_ON(wc->refs[level] != 1);
|
|
level--;
|
|
}
|
|
}
|
|
|
|
wc->restarted = test_bit(BTRFS_ROOT_DEAD_TREE, &root->state);
|
|
wc->level = level;
|
|
wc->shared_level = -1;
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->update_ref = update_ref;
|
|
wc->keep_locks = 0;
|
|
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
|
|
|
|
while (1) {
|
|
|
|
ret = walk_down_tree(trans, root, path, wc);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
|
|
ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
|
|
if (ret < 0) {
|
|
err = ret;
|
|
break;
|
|
}
|
|
|
|
if (ret > 0) {
|
|
BUG_ON(wc->stage != DROP_REFERENCE);
|
|
break;
|
|
}
|
|
|
|
if (wc->stage == DROP_REFERENCE) {
|
|
wc->drop_level = wc->level;
|
|
btrfs_node_key_to_cpu(path->nodes[wc->drop_level],
|
|
&wc->drop_progress,
|
|
path->slots[wc->drop_level]);
|
|
}
|
|
btrfs_cpu_key_to_disk(&root_item->drop_progress,
|
|
&wc->drop_progress);
|
|
btrfs_set_root_drop_level(root_item, wc->drop_level);
|
|
|
|
BUG_ON(wc->level == 0);
|
|
if (btrfs_should_end_transaction(trans) ||
|
|
(!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
|
|
ret = btrfs_update_root(trans, tree_root,
|
|
&root->root_key,
|
|
root_item);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
err = ret;
|
|
goto out_end_trans;
|
|
}
|
|
|
|
if (!is_reloc_root)
|
|
btrfs_set_last_root_drop_gen(fs_info, trans->transid);
|
|
|
|
btrfs_end_transaction_throttle(trans);
|
|
if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
|
|
btrfs_debug(fs_info,
|
|
"drop snapshot early exit");
|
|
err = -EAGAIN;
|
|
goto out_free;
|
|
}
|
|
|
|
/*
|
|
* Use join to avoid potential EINTR from transaction
|
|
* start. See wait_reserve_ticket and the whole
|
|
* reservation callchain.
|
|
*/
|
|
if (for_reloc)
|
|
trans = btrfs_join_transaction(tree_root);
|
|
else
|
|
trans = btrfs_start_transaction(tree_root, 0);
|
|
if (IS_ERR(trans)) {
|
|
err = PTR_ERR(trans);
|
|
goto out_free;
|
|
}
|
|
}
|
|
}
|
|
btrfs_release_path(path);
|
|
if (err)
|
|
goto out_end_trans;
|
|
|
|
ret = btrfs_del_root(trans, &root->root_key);
|
|
if (ret) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
err = ret;
|
|
goto out_end_trans;
|
|
}
|
|
|
|
if (!is_reloc_root) {
|
|
ret = btrfs_find_root(tree_root, &root->root_key, path,
|
|
NULL, NULL);
|
|
if (ret < 0) {
|
|
btrfs_abort_transaction(trans, ret);
|
|
err = ret;
|
|
goto out_end_trans;
|
|
} else if (ret > 0) {
|
|
/* if we fail to delete the orphan item this time
|
|
* around, it'll get picked up the next time.
|
|
*
|
|
* The most common failure here is just -ENOENT.
|
|
*/
|
|
btrfs_del_orphan_item(trans, tree_root,
|
|
root->root_key.objectid);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This subvolume is going to be completely dropped, and won't be
|
|
* recorded as dirty roots, thus pertrans meta rsv will not be freed at
|
|
* commit transaction time. So free it here manually.
|
|
*/
|
|
btrfs_qgroup_convert_reserved_meta(root, INT_MAX);
|
|
btrfs_qgroup_free_meta_all_pertrans(root);
|
|
|
|
if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state))
|
|
btrfs_add_dropped_root(trans, root);
|
|
else
|
|
btrfs_put_root(root);
|
|
root_dropped = true;
|
|
out_end_trans:
|
|
if (!is_reloc_root)
|
|
btrfs_set_last_root_drop_gen(fs_info, trans->transid);
|
|
|
|
btrfs_end_transaction_throttle(trans);
|
|
out_free:
|
|
kfree(wc);
|
|
btrfs_free_path(path);
|
|
out:
|
|
/*
|
|
* We were an unfinished drop root, check to see if there are any
|
|
* pending, and if not clear and wake up any waiters.
|
|
*/
|
|
if (!err && unfinished_drop)
|
|
btrfs_maybe_wake_unfinished_drop(fs_info);
|
|
|
|
/*
|
|
* So if we need to stop dropping the snapshot for whatever reason we
|
|
* need to make sure to add it back to the dead root list so that we
|
|
* keep trying to do the work later. This also cleans up roots if we
|
|
* don't have it in the radix (like when we recover after a power fail
|
|
* or unmount) so we don't leak memory.
|
|
*/
|
|
if (!for_reloc && !root_dropped)
|
|
btrfs_add_dead_root(root);
|
|
return err;
|
|
}
|
|
|
|
/*
|
|
* drop subtree rooted at tree block 'node'.
|
|
*
|
|
* NOTE: this function will unlock and release tree block 'node'
|
|
* only used by relocation code
|
|
*/
|
|
int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
|
|
struct btrfs_root *root,
|
|
struct extent_buffer *node,
|
|
struct extent_buffer *parent)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_path *path;
|
|
struct walk_control *wc;
|
|
int level;
|
|
int parent_level;
|
|
int ret = 0;
|
|
int wret;
|
|
|
|
BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
|
|
|
|
path = btrfs_alloc_path();
|
|
if (!path)
|
|
return -ENOMEM;
|
|
|
|
wc = kzalloc(sizeof(*wc), GFP_NOFS);
|
|
if (!wc) {
|
|
btrfs_free_path(path);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
btrfs_assert_tree_write_locked(parent);
|
|
parent_level = btrfs_header_level(parent);
|
|
atomic_inc(&parent->refs);
|
|
path->nodes[parent_level] = parent;
|
|
path->slots[parent_level] = btrfs_header_nritems(parent);
|
|
|
|
btrfs_assert_tree_write_locked(node);
|
|
level = btrfs_header_level(node);
|
|
path->nodes[level] = node;
|
|
path->slots[level] = 0;
|
|
path->locks[level] = BTRFS_WRITE_LOCK;
|
|
|
|
wc->refs[parent_level] = 1;
|
|
wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
|
|
wc->level = level;
|
|
wc->shared_level = -1;
|
|
wc->stage = DROP_REFERENCE;
|
|
wc->update_ref = 0;
|
|
wc->keep_locks = 1;
|
|
wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
|
|
|
|
while (1) {
|
|
wret = walk_down_tree(trans, root, path, wc);
|
|
if (wret < 0) {
|
|
ret = wret;
|
|
break;
|
|
}
|
|
|
|
wret = walk_up_tree(trans, root, path, wc, parent_level);
|
|
if (wret < 0)
|
|
ret = wret;
|
|
if (wret != 0)
|
|
break;
|
|
}
|
|
|
|
kfree(wc);
|
|
btrfs_free_path(path);
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
|
|
u64 start, u64 end)
|
|
{
|
|
return unpin_extent_range(fs_info, start, end, false);
|
|
}
|
|
|
|
/*
|
|
* It used to be that old block groups would be left around forever.
|
|
* Iterating over them would be enough to trim unused space. Since we
|
|
* now automatically remove them, we also need to iterate over unallocated
|
|
* space.
|
|
*
|
|
* We don't want a transaction for this since the discard may take a
|
|
* substantial amount of time. We don't require that a transaction be
|
|
* running, but we do need to take a running transaction into account
|
|
* to ensure that we're not discarding chunks that were released or
|
|
* allocated in the current transaction.
|
|
*
|
|
* Holding the chunks lock will prevent other threads from allocating
|
|
* or releasing chunks, but it won't prevent a running transaction
|
|
* from committing and releasing the memory that the pending chunks
|
|
* list head uses. For that, we need to take a reference to the
|
|
* transaction and hold the commit root sem. We only need to hold
|
|
* it while performing the free space search since we have already
|
|
* held back allocations.
|
|
*/
|
|
static int btrfs_trim_free_extents(struct btrfs_device *device, u64 *trimmed)
|
|
{
|
|
u64 start = BTRFS_DEVICE_RANGE_RESERVED, len = 0, end = 0;
|
|
int ret;
|
|
|
|
*trimmed = 0;
|
|
|
|
/* Discard not supported = nothing to do. */
|
|
if (!bdev_max_discard_sectors(device->bdev))
|
|
return 0;
|
|
|
|
/* Not writable = nothing to do. */
|
|
if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state))
|
|
return 0;
|
|
|
|
/* No free space = nothing to do. */
|
|
if (device->total_bytes <= device->bytes_used)
|
|
return 0;
|
|
|
|
ret = 0;
|
|
|
|
while (1) {
|
|
struct btrfs_fs_info *fs_info = device->fs_info;
|
|
u64 bytes;
|
|
|
|
ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
|
|
if (ret)
|
|
break;
|
|
|
|
find_first_clear_extent_bit(&device->alloc_state, start,
|
|
&start, &end,
|
|
CHUNK_TRIMMED | CHUNK_ALLOCATED);
|
|
|
|
/* Check if there are any CHUNK_* bits left */
|
|
if (start > device->total_bytes) {
|
|
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
|
|
btrfs_warn_in_rcu(fs_info,
|
|
"ignoring attempt to trim beyond device size: offset %llu length %llu device %s device size %llu",
|
|
start, end - start + 1,
|
|
btrfs_dev_name(device),
|
|
device->total_bytes);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
/* Ensure we skip the reserved space on each device. */
|
|
start = max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED);
|
|
|
|
/*
|
|
* If find_first_clear_extent_bit find a range that spans the
|
|
* end of the device it will set end to -1, in this case it's up
|
|
* to the caller to trim the value to the size of the device.
|
|
*/
|
|
end = min(end, device->total_bytes - 1);
|
|
|
|
len = end - start + 1;
|
|
|
|
/* We didn't find any extents */
|
|
if (!len) {
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
|
|
ret = btrfs_issue_discard(device->bdev, start, len,
|
|
&bytes);
|
|
if (!ret)
|
|
set_extent_bits(&device->alloc_state, start,
|
|
start + bytes - 1,
|
|
CHUNK_TRIMMED);
|
|
mutex_unlock(&fs_info->chunk_mutex);
|
|
|
|
if (ret)
|
|
break;
|
|
|
|
start += len;
|
|
*trimmed += bytes;
|
|
|
|
if (fatal_signal_pending(current)) {
|
|
ret = -ERESTARTSYS;
|
|
break;
|
|
}
|
|
|
|
cond_resched();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Trim the whole filesystem by:
|
|
* 1) trimming the free space in each block group
|
|
* 2) trimming the unallocated space on each device
|
|
*
|
|
* This will also continue trimming even if a block group or device encounters
|
|
* an error. The return value will be the last error, or 0 if nothing bad
|
|
* happens.
|
|
*/
|
|
int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
|
|
{
|
|
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
|
|
struct btrfs_block_group *cache = NULL;
|
|
struct btrfs_device *device;
|
|
u64 group_trimmed;
|
|
u64 range_end = U64_MAX;
|
|
u64 start;
|
|
u64 end;
|
|
u64 trimmed = 0;
|
|
u64 bg_failed = 0;
|
|
u64 dev_failed = 0;
|
|
int bg_ret = 0;
|
|
int dev_ret = 0;
|
|
int ret = 0;
|
|
|
|
if (range->start == U64_MAX)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Check range overflow if range->len is set.
|
|
* The default range->len is U64_MAX.
|
|
*/
|
|
if (range->len != U64_MAX &&
|
|
check_add_overflow(range->start, range->len, &range_end))
|
|
return -EINVAL;
|
|
|
|
cache = btrfs_lookup_first_block_group(fs_info, range->start);
|
|
for (; cache; cache = btrfs_next_block_group(cache)) {
|
|
if (cache->start >= range_end) {
|
|
btrfs_put_block_group(cache);
|
|
break;
|
|
}
|
|
|
|
start = max(range->start, cache->start);
|
|
end = min(range_end, cache->start + cache->length);
|
|
|
|
if (end - start >= range->minlen) {
|
|
if (!btrfs_block_group_done(cache)) {
|
|
ret = btrfs_cache_block_group(cache, true);
|
|
if (ret) {
|
|
bg_failed++;
|
|
bg_ret = ret;
|
|
continue;
|
|
}
|
|
}
|
|
ret = btrfs_trim_block_group(cache,
|
|
&group_trimmed,
|
|
start,
|
|
end,
|
|
range->minlen);
|
|
|
|
trimmed += group_trimmed;
|
|
if (ret) {
|
|
bg_failed++;
|
|
bg_ret = ret;
|
|
continue;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (bg_failed)
|
|
btrfs_warn(fs_info,
|
|
"failed to trim %llu block group(s), last error %d",
|
|
bg_failed, bg_ret);
|
|
|
|
mutex_lock(&fs_devices->device_list_mutex);
|
|
list_for_each_entry(device, &fs_devices->devices, dev_list) {
|
|
if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state))
|
|
continue;
|
|
|
|
ret = btrfs_trim_free_extents(device, &group_trimmed);
|
|
if (ret) {
|
|
dev_failed++;
|
|
dev_ret = ret;
|
|
break;
|
|
}
|
|
|
|
trimmed += group_trimmed;
|
|
}
|
|
mutex_unlock(&fs_devices->device_list_mutex);
|
|
|
|
if (dev_failed)
|
|
btrfs_warn(fs_info,
|
|
"failed to trim %llu device(s), last error %d",
|
|
dev_failed, dev_ret);
|
|
range->len = trimmed;
|
|
if (bg_ret)
|
|
return bg_ret;
|
|
return dev_ret;
|
|
}
|