2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-18 18:43:59 +08:00
linux-next/include/media/v4l2-mem2mem.h
Mauro Carvalho Chehab 5800571960 Linux 5.2-rc4
-----BEGIN PGP SIGNATURE-----
 
 iQFSBAABCAA8FiEEq68RxlopcLEwq+PEeb4+QwBBGIYFAlz8fAYeHHRvcnZhbGRz
 QGxpbnV4LWZvdW5kYXRpb24ub3JnAAoJEHm+PkMAQRiG1asH/3ySguxqtqL1MCBa
 4/SZ37PHeWKMerfX6ZyJdgEqK3B+PWlmuLiOMNK5h2bPLzeQQQAmHU/mfKmpXqgB
 dHwUbG9yNnyUtTfsfRqAnCA6vpuw9Yb1oIzTCVQrgJLSWD0j7scBBvmzYqguOkto
 ThwigLUq3AILr8EfR4rh+GM+5Dn9OTEFAxwil9fPHQo7QoczwZxpURhScT6Co9TB
 DqLA3fvXbBvLs/CZy/S5vKM9hKzC+p39ApFTURvFPrelUVnythAM0dPDJg3pIn5u
 g+/+gDxDFa+7ANxvxO2ng1sJPDqJMeY/xmjJYlYyLpA33B7zLNk2vDHhAP06VTtr
 XCMhQ9s=
 =cb80
 -----END PGP SIGNATURE-----

Merge tag 'v5.2-rc4' into media/master

There are some conflicts due to SPDX changes. We also have more
patches being merged via media tree touching them.

So, let's merge back from upstream and address those.

Linux 5.2-rc4

* tag 'v5.2-rc4': (767 commits)
  Linux 5.2-rc4
  MAINTAINERS: Karthikeyan Ramasubramanian is MIA
  i2c: xiic: Add max_read_len quirk
  lockref: Limit number of cmpxchg loop retries
  uaccess: add noop untagged_addr definition
  x86/insn-eval: Fix use-after-free access to LDT entry
  kbuild: use more portable 'command -v' for cc-cross-prefix
  s390/unwind: correct stack switching during unwind
  block, bfq: add weight symlink to the bfq.weight cgroup parameter
  cgroup: let a symlink too be created with a cftype file
  drm/nouveau/secboot/gp10[2467]: support newer FW to fix SEC2 failures on some boards
  drm/nouveau/secboot: enable loading of versioned LS PMU/SEC2 ACR msgqueue FW
  drm/nouveau/secboot: split out FW version-specific LS function pointers
  drm/nouveau/secboot: pass max supported FW version to LS load funcs
  drm/nouveau/core: support versioned firmware loading
  drm/nouveau/core: pass subdev into nvkm_firmware_get, rather than device
  block: free sched's request pool in blk_cleanup_queue
  pktgen: do not sleep with the thread lock held.
  net: mvpp2: Use strscpy to handle stat strings
  net: rds: fix memory leak in rds_ib_flush_mr_pool
  ...

Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
2019-06-11 12:09:28 -04:00

680 lines
22 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* Memory-to-memory device framework for Video for Linux 2.
*
* Helper functions for devices that use memory buffers for both source
* and destination.
*
* Copyright (c) 2009 Samsung Electronics Co., Ltd.
* Pawel Osciak, <pawel@osciak.com>
* Marek Szyprowski, <m.szyprowski@samsung.com>
*/
#ifndef _MEDIA_V4L2_MEM2MEM_H
#define _MEDIA_V4L2_MEM2MEM_H
#include <media/videobuf2-v4l2.h>
/**
* struct v4l2_m2m_ops - mem-to-mem device driver callbacks
* @device_run: required. Begin the actual job (transaction) inside this
* callback.
* The job does NOT have to end before this callback returns
* (and it will be the usual case). When the job finishes,
* v4l2_m2m_job_finish() has to be called.
* @job_ready: optional. Should return 0 if the driver does not have a job
* fully prepared to run yet (i.e. it will not be able to finish a
* transaction without sleeping). If not provided, it will be
* assumed that one source and one destination buffer are all
* that is required for the driver to perform one full transaction.
* This method may not sleep.
* @job_abort: optional. Informs the driver that it has to abort the currently
* running transaction as soon as possible (i.e. as soon as it can
* stop the device safely; e.g. in the next interrupt handler),
* even if the transaction would not have been finished by then.
* After the driver performs the necessary steps, it has to call
* v4l2_m2m_job_finish() (as if the transaction ended normally).
* This function does not have to (and will usually not) wait
* until the device enters a state when it can be stopped.
*/
struct v4l2_m2m_ops {
void (*device_run)(void *priv);
int (*job_ready)(void *priv);
void (*job_abort)(void *priv);
};
struct video_device;
struct v4l2_m2m_dev;
/**
* struct v4l2_m2m_queue_ctx - represents a queue for buffers ready to be
* processed
*
* @q: pointer to struct &vb2_queue
* @rdy_queue: List of V4L2 mem-to-mem queues
* @rdy_spinlock: spin lock to protect the struct usage
* @num_rdy: number of buffers ready to be processed
* @buffered: is the queue buffered?
*
* Queue for buffers ready to be processed as soon as this
* instance receives access to the device.
*/
struct v4l2_m2m_queue_ctx {
struct vb2_queue q;
struct list_head rdy_queue;
spinlock_t rdy_spinlock;
u8 num_rdy;
bool buffered;
};
/**
* struct v4l2_m2m_ctx - Memory to memory context structure
*
* @q_lock: struct &mutex lock
* @m2m_dev: opaque pointer to the internal data to handle M2M context
* @cap_q_ctx: Capture (output to memory) queue context
* @out_q_ctx: Output (input from memory) queue context
* @queue: List of memory to memory contexts
* @job_flags: Job queue flags, used internally by v4l2-mem2mem.c:
* %TRANS_QUEUED, %TRANS_RUNNING and %TRANS_ABORT.
* @finished: Wait queue used to signalize when a job queue finished.
* @priv: Instance private data
*
* The memory to memory context is specific to a file handle, NOT to e.g.
* a device.
*/
struct v4l2_m2m_ctx {
/* optional cap/out vb2 queues lock */
struct mutex *q_lock;
/* internal use only */
struct v4l2_m2m_dev *m2m_dev;
struct v4l2_m2m_queue_ctx cap_q_ctx;
struct v4l2_m2m_queue_ctx out_q_ctx;
/* For device job queue */
struct list_head queue;
unsigned long job_flags;
wait_queue_head_t finished;
void *priv;
};
/**
* struct v4l2_m2m_buffer - Memory to memory buffer
*
* @vb: pointer to struct &vb2_v4l2_buffer
* @list: list of m2m buffers
*/
struct v4l2_m2m_buffer {
struct vb2_v4l2_buffer vb;
struct list_head list;
};
/**
* v4l2_m2m_get_curr_priv() - return driver private data for the currently
* running instance or NULL if no instance is running
*
* @m2m_dev: opaque pointer to the internal data to handle M2M context
*/
void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev);
/**
* v4l2_m2m_get_vq() - return vb2_queue for the given type
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @type: type of the V4L2 buffer, as defined by enum &v4l2_buf_type
*/
struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type);
/**
* v4l2_m2m_try_schedule() - check whether an instance is ready to be added to
* the pending job queue and add it if so.
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*
* There are three basic requirements an instance has to meet to be able to run:
* 1) at least one source buffer has to be queued,
* 2) at least one destination buffer has to be queued,
* 3) streaming has to be on.
*
* If a queue is buffered (for example a decoder hardware ringbuffer that has
* to be drained before doing streamoff), allow scheduling without v4l2 buffers
* on that queue.
*
* There may also be additional, custom requirements. In such case the driver
* should supply a custom callback (job_ready in v4l2_m2m_ops) that should
* return 1 if the instance is ready.
* An example of the above could be an instance that requires more than one
* src/dst buffer per transaction.
*/
void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx);
/**
* v4l2_m2m_job_finish() - inform the framework that a job has been finished
* and have it clean up
*
* @m2m_dev: opaque pointer to the internal data to handle M2M context
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*
* Called by a driver to yield back the device after it has finished with it.
* Should be called as soon as possible after reaching a state which allows
* other instances to take control of the device.
*
* This function has to be called only after &v4l2_m2m_ops->device_run
* callback has been called on the driver. To prevent recursion, it should
* not be called directly from the &v4l2_m2m_ops->device_run callback though.
*/
void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx);
static inline void
v4l2_m2m_buf_done(struct vb2_v4l2_buffer *buf, enum vb2_buffer_state state)
{
vb2_buffer_done(&buf->vb2_buf, state);
}
/**
* v4l2_m2m_reqbufs() - multi-queue-aware REQBUFS multiplexer
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @reqbufs: pointer to struct &v4l2_requestbuffers
*/
int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_requestbuffers *reqbufs);
/**
* v4l2_m2m_querybuf() - multi-queue-aware QUERYBUF multiplexer
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @buf: pointer to struct &v4l2_buffer
*
* See v4l2_m2m_mmap() documentation for details.
*/
int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf);
/**
* v4l2_m2m_qbuf() - enqueue a source or destination buffer, depending on
* the type
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @buf: pointer to struct &v4l2_buffer
*/
int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf);
/**
* v4l2_m2m_dqbuf() - dequeue a source or destination buffer, depending on
* the type
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @buf: pointer to struct &v4l2_buffer
*/
int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf);
/**
* v4l2_m2m_prepare_buf() - prepare a source or destination buffer, depending on
* the type
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @buf: pointer to struct &v4l2_buffer
*/
int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf);
/**
* v4l2_m2m_create_bufs() - create a source or destination buffer, depending
* on the type
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @create: pointer to struct &v4l2_create_buffers
*/
int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_create_buffers *create);
/**
* v4l2_m2m_expbuf() - export a source or destination buffer, depending on
* the type
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @eb: pointer to struct &v4l2_exportbuffer
*/
int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_exportbuffer *eb);
/**
* v4l2_m2m_streamon() - turn on streaming for a video queue
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @type: type of the V4L2 buffer, as defined by enum &v4l2_buf_type
*/
int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type);
/**
* v4l2_m2m_streamoff() - turn off streaming for a video queue
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @type: type of the V4L2 buffer, as defined by enum &v4l2_buf_type
*/
int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type);
/**
* v4l2_m2m_poll() - poll replacement, for destination buffers only
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @wait: pointer to struct &poll_table_struct
*
* Call from the driver's poll() function. Will poll both queues. If a buffer
* is available to dequeue (with dqbuf) from the source queue, this will
* indicate that a non-blocking write can be performed, while read will be
* returned in case of the destination queue.
*/
__poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct poll_table_struct *wait);
/**
* v4l2_m2m_mmap() - source and destination queues-aware mmap multiplexer
*
* @file: pointer to struct &file
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @vma: pointer to struct &vm_area_struct
*
* Call from driver's mmap() function. Will handle mmap() for both queues
* seamlessly for videobuffer, which will receive normal per-queue offsets and
* proper videobuf queue pointers. The differentiation is made outside videobuf
* by adding a predefined offset to buffers from one of the queues and
* subtracting it before passing it back to videobuf. Only drivers (and
* thus applications) receive modified offsets.
*/
int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct vm_area_struct *vma);
/**
* v4l2_m2m_init() - initialize per-driver m2m data
*
* @m2m_ops: pointer to struct v4l2_m2m_ops
*
* Usually called from driver's ``probe()`` function.
*
* Return: returns an opaque pointer to the internal data to handle M2M context
*/
struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops);
#if defined(CONFIG_MEDIA_CONTROLLER)
void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev);
int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
struct video_device *vdev, int function);
#else
static inline void
v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
{
}
static inline int
v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
struct video_device *vdev, int function)
{
return 0;
}
#endif
/**
* v4l2_m2m_release() - cleans up and frees a m2m_dev structure
*
* @m2m_dev: opaque pointer to the internal data to handle M2M context
*
* Usually called from driver's ``remove()`` function.
*/
void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev);
/**
* v4l2_m2m_ctx_init() - allocate and initialize a m2m context
*
* @m2m_dev: opaque pointer to the internal data to handle M2M context
* @drv_priv: driver's instance private data
* @queue_init: a callback for queue type-specific initialization function
* to be used for initializing videobuf_queues
*
* Usually called from driver's ``open()`` function.
*/
struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
void *drv_priv,
int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq));
static inline void v4l2_m2m_set_src_buffered(struct v4l2_m2m_ctx *m2m_ctx,
bool buffered)
{
m2m_ctx->out_q_ctx.buffered = buffered;
}
static inline void v4l2_m2m_set_dst_buffered(struct v4l2_m2m_ctx *m2m_ctx,
bool buffered)
{
m2m_ctx->cap_q_ctx.buffered = buffered;
}
/**
* v4l2_m2m_ctx_release() - release m2m context
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*
* Usually called from driver's release() function.
*/
void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx);
/**
* v4l2_m2m_buf_queue() - add a buffer to the proper ready buffers list.
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @vbuf: pointer to struct &vb2_v4l2_buffer
*
* Call from videobuf_queue_ops->ops->buf_queue, videobuf_queue_ops callback.
*/
void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_v4l2_buffer *vbuf);
/**
* v4l2_m2m_num_src_bufs_ready() - return the number of source buffers ready for
* use
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline
unsigned int v4l2_m2m_num_src_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx)
{
return m2m_ctx->out_q_ctx.num_rdy;
}
/**
* v4l2_m2m_num_dst_bufs_ready() - return the number of destination buffers
* ready for use
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline
unsigned int v4l2_m2m_num_dst_bufs_ready(struct v4l2_m2m_ctx *m2m_ctx)
{
return m2m_ctx->cap_q_ctx.num_rdy;
}
/**
* v4l2_m2m_next_buf() - return next buffer from the list of ready buffers
*
* @q_ctx: pointer to struct @v4l2_m2m_queue_ctx
*/
struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx);
/**
* v4l2_m2m_next_src_buf() - return next source buffer from the list of ready
* buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline struct vb2_v4l2_buffer *
v4l2_m2m_next_src_buf(struct v4l2_m2m_ctx *m2m_ctx)
{
return v4l2_m2m_next_buf(&m2m_ctx->out_q_ctx);
}
/**
* v4l2_m2m_next_dst_buf() - return next destination buffer from the list of
* ready buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline struct vb2_v4l2_buffer *
v4l2_m2m_next_dst_buf(struct v4l2_m2m_ctx *m2m_ctx)
{
return v4l2_m2m_next_buf(&m2m_ctx->cap_q_ctx);
}
/**
* v4l2_m2m_last_buf() - return last buffer from the list of ready buffers
*
* @q_ctx: pointer to struct @v4l2_m2m_queue_ctx
*/
struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx);
/**
* v4l2_m2m_last_src_buf() - return last destination buffer from the list of
* ready buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline struct vb2_v4l2_buffer *
v4l2_m2m_last_src_buf(struct v4l2_m2m_ctx *m2m_ctx)
{
return v4l2_m2m_last_buf(&m2m_ctx->out_q_ctx);
}
/**
* v4l2_m2m_last_dst_buf() - return last destination buffer from the list of
* ready buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline struct vb2_v4l2_buffer *
v4l2_m2m_last_dst_buf(struct v4l2_m2m_ctx *m2m_ctx)
{
return v4l2_m2m_last_buf(&m2m_ctx->cap_q_ctx);
}
/**
* v4l2_m2m_for_each_dst_buf() - iterate over a list of destination ready
* buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @b: current buffer of type struct v4l2_m2m_buffer
*/
#define v4l2_m2m_for_each_dst_buf(m2m_ctx, b) \
list_for_each_entry(b, &m2m_ctx->cap_q_ctx.rdy_queue, list)
/**
* v4l2_m2m_for_each_src_buf() - iterate over a list of source ready buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @b: current buffer of type struct v4l2_m2m_buffer
*/
#define v4l2_m2m_for_each_src_buf(m2m_ctx, b) \
list_for_each_entry(b, &m2m_ctx->out_q_ctx.rdy_queue, list)
/**
* v4l2_m2m_for_each_dst_buf_safe() - iterate over a list of destination ready
* buffers safely
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @b: current buffer of type struct v4l2_m2m_buffer
* @n: used as temporary storage
*/
#define v4l2_m2m_for_each_dst_buf_safe(m2m_ctx, b, n) \
list_for_each_entry_safe(b, n, &m2m_ctx->cap_q_ctx.rdy_queue, list)
/**
* v4l2_m2m_for_each_src_buf_safe() - iterate over a list of source ready
* buffers safely
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @b: current buffer of type struct v4l2_m2m_buffer
* @n: used as temporary storage
*/
#define v4l2_m2m_for_each_src_buf_safe(m2m_ctx, b, n) \
list_for_each_entry_safe(b, n, &m2m_ctx->out_q_ctx.rdy_queue, list)
/**
* v4l2_m2m_get_src_vq() - return vb2_queue for source buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline
struct vb2_queue *v4l2_m2m_get_src_vq(struct v4l2_m2m_ctx *m2m_ctx)
{
return &m2m_ctx->out_q_ctx.q;
}
/**
* v4l2_m2m_get_dst_vq() - return vb2_queue for destination buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline
struct vb2_queue *v4l2_m2m_get_dst_vq(struct v4l2_m2m_ctx *m2m_ctx)
{
return &m2m_ctx->cap_q_ctx.q;
}
/**
* v4l2_m2m_buf_remove() - take off a buffer from the list of ready buffers and
* return it
*
* @q_ctx: pointer to struct @v4l2_m2m_queue_ctx
*/
struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx);
/**
* v4l2_m2m_src_buf_remove() - take off a source buffer from the list of ready
* buffers and return it
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline struct vb2_v4l2_buffer *
v4l2_m2m_src_buf_remove(struct v4l2_m2m_ctx *m2m_ctx)
{
return v4l2_m2m_buf_remove(&m2m_ctx->out_q_ctx);
}
/**
* v4l2_m2m_dst_buf_remove() - take off a destination buffer from the list of
* ready buffers and return it
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
*/
static inline struct vb2_v4l2_buffer *
v4l2_m2m_dst_buf_remove(struct v4l2_m2m_ctx *m2m_ctx)
{
return v4l2_m2m_buf_remove(&m2m_ctx->cap_q_ctx);
}
/**
* v4l2_m2m_buf_remove_by_buf() - take off exact buffer from the list of ready
* buffers
*
* @q_ctx: pointer to struct @v4l2_m2m_queue_ctx
* @vbuf: the buffer to be removed
*/
void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
struct vb2_v4l2_buffer *vbuf);
/**
* v4l2_m2m_src_buf_remove_by_buf() - take off exact source buffer from the list
* of ready buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @vbuf: the buffer to be removed
*/
static inline void v4l2_m2m_src_buf_remove_by_buf(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_v4l2_buffer *vbuf)
{
v4l2_m2m_buf_remove_by_buf(&m2m_ctx->out_q_ctx, vbuf);
}
/**
* v4l2_m2m_dst_buf_remove_by_buf() - take off exact destination buffer from the
* list of ready buffers
*
* @m2m_ctx: m2m context assigned to the instance given by struct &v4l2_m2m_ctx
* @vbuf: the buffer to be removed
*/
static inline void v4l2_m2m_dst_buf_remove_by_buf(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_v4l2_buffer *vbuf)
{
v4l2_m2m_buf_remove_by_buf(&m2m_ctx->cap_q_ctx, vbuf);
}
struct vb2_v4l2_buffer *
v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx);
static inline struct vb2_v4l2_buffer *
v4l2_m2m_src_buf_remove_by_idx(struct v4l2_m2m_ctx *m2m_ctx, unsigned int idx)
{
return v4l2_m2m_buf_remove_by_idx(&m2m_ctx->out_q_ctx, idx);
}
static inline struct vb2_v4l2_buffer *
v4l2_m2m_dst_buf_remove_by_idx(struct v4l2_m2m_ctx *m2m_ctx, unsigned int idx)
{
return v4l2_m2m_buf_remove_by_idx(&m2m_ctx->cap_q_ctx, idx);
}
/**
* v4l2_m2m_buf_copy_metadata() - copy buffer metadata from
* the output buffer to the capture buffer
*
* @out_vb: the output buffer that is the source of the metadata.
* @cap_vb: the capture buffer that will receive the metadata.
* @copy_frame_flags: copy the KEY/B/PFRAME flags as well.
*
* This helper function copies the timestamp, timecode (if the TIMECODE
* buffer flag was set), field and the TIMECODE, KEYFRAME, BFRAME, PFRAME
* and TSTAMP_SRC_MASK flags from @out_vb to @cap_vb.
*
* If @copy_frame_flags is false, then the KEYFRAME, BFRAME and PFRAME
* flags are not copied. This is typically needed for encoders that
* set this bits explicitly.
*/
void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
struct vb2_v4l2_buffer *cap_vb,
bool copy_frame_flags);
/* v4l2 request helper */
void v4l2_m2m_request_queue(struct media_request *req);
/* v4l2 ioctl helpers */
int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
struct v4l2_requestbuffers *rb);
int v4l2_m2m_ioctl_create_bufs(struct file *file, void *fh,
struct v4l2_create_buffers *create);
int v4l2_m2m_ioctl_querybuf(struct file *file, void *fh,
struct v4l2_buffer *buf);
int v4l2_m2m_ioctl_expbuf(struct file *file, void *fh,
struct v4l2_exportbuffer *eb);
int v4l2_m2m_ioctl_qbuf(struct file *file, void *fh,
struct v4l2_buffer *buf);
int v4l2_m2m_ioctl_dqbuf(struct file *file, void *fh,
struct v4l2_buffer *buf);
int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *fh,
struct v4l2_buffer *buf);
int v4l2_m2m_ioctl_streamon(struct file *file, void *fh,
enum v4l2_buf_type type);
int v4l2_m2m_ioctl_streamoff(struct file *file, void *fh,
enum v4l2_buf_type type);
int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
struct v4l2_encoder_cmd *ec);
int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
struct v4l2_decoder_cmd *dc);
int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma);
__poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait);
#endif /* _MEDIA_V4L2_MEM2MEM_H */