2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 19:54:03 +08:00
linux-next/mm/balloon_compaction.c
Konstantin Khlebnikov 4d88e6f7d5 mm/balloon_compaction: fix deflation when compaction is disabled
If CONFIG_BALLOON_COMPACTION=n balloon_page_insert() does not link pages
with balloon and doesn't set PagePrivate flag, as a result
balloon_page_dequeue() cannot get any pages because it thinks that all
of them are isolated.  Without balloon compaction nobody can isolate
ballooned pages.  It's safe to remove this check.

Fixes: d6d86c0a7f ("mm/balloon_compaction: redesign ballooned pages management").
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Reported-by: Matt Mullins <mmullins@mmlx.us>
Cc: <stable@vger.kernel.org>	[3.17]
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-10-29 16:33:15 -07:00

222 lines
6.8 KiB
C

/*
* mm/balloon_compaction.c
*
* Common interface for making balloon pages movable by compaction.
*
* Copyright (C) 2012, Red Hat, Inc. Rafael Aquini <aquini@redhat.com>
*/
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/export.h>
#include <linux/balloon_compaction.h>
/*
* balloon_page_enqueue - allocates a new page and inserts it into the balloon
* page list.
* @b_dev_info: balloon device decriptor where we will insert a new page to
*
* Driver must call it to properly allocate a new enlisted balloon page
* before definetively removing it from the guest system.
* This function returns the page address for the recently enqueued page or
* NULL in the case we fail to allocate a new page this turn.
*/
struct page *balloon_page_enqueue(struct balloon_dev_info *b_dev_info)
{
unsigned long flags;
struct page *page = alloc_page(balloon_mapping_gfp_mask() |
__GFP_NOMEMALLOC | __GFP_NORETRY);
if (!page)
return NULL;
/*
* Block others from accessing the 'page' when we get around to
* establishing additional references. We should be the only one
* holding a reference to the 'page' at this point.
*/
BUG_ON(!trylock_page(page));
spin_lock_irqsave(&b_dev_info->pages_lock, flags);
balloon_page_insert(b_dev_info, page);
__count_vm_event(BALLOON_INFLATE);
spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
unlock_page(page);
return page;
}
EXPORT_SYMBOL_GPL(balloon_page_enqueue);
/*
* balloon_page_dequeue - removes a page from balloon's page list and returns
* the its address to allow the driver release the page.
* @b_dev_info: balloon device decriptor where we will grab a page from.
*
* Driver must call it to properly de-allocate a previous enlisted balloon page
* before definetively releasing it back to the guest system.
* This function returns the page address for the recently dequeued page or
* NULL in the case we find balloon's page list temporarily empty due to
* compaction isolated pages.
*/
struct page *balloon_page_dequeue(struct balloon_dev_info *b_dev_info)
{
struct page *page, *tmp;
unsigned long flags;
bool dequeued_page;
dequeued_page = false;
list_for_each_entry_safe(page, tmp, &b_dev_info->pages, lru) {
/*
* Block others from accessing the 'page' while we get around
* establishing additional references and preparing the 'page'
* to be released by the balloon driver.
*/
if (trylock_page(page)) {
#ifdef CONFIG_BALLOON_COMPACTION
if (!PagePrivate(page)) {
/* raced with isolation */
unlock_page(page);
continue;
}
#endif
spin_lock_irqsave(&b_dev_info->pages_lock, flags);
balloon_page_delete(page);
__count_vm_event(BALLOON_DEFLATE);
spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
unlock_page(page);
dequeued_page = true;
break;
}
}
if (!dequeued_page) {
/*
* If we are unable to dequeue a balloon page because the page
* list is empty and there is no isolated pages, then something
* went out of track and some balloon pages are lost.
* BUG() here, otherwise the balloon driver may get stuck into
* an infinite loop while attempting to release all its pages.
*/
spin_lock_irqsave(&b_dev_info->pages_lock, flags);
if (unlikely(list_empty(&b_dev_info->pages) &&
!b_dev_info->isolated_pages))
BUG();
spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
page = NULL;
}
return page;
}
EXPORT_SYMBOL_GPL(balloon_page_dequeue);
#ifdef CONFIG_BALLOON_COMPACTION
static inline void __isolate_balloon_page(struct page *page)
{
struct balloon_dev_info *b_dev_info = balloon_page_device(page);
unsigned long flags;
spin_lock_irqsave(&b_dev_info->pages_lock, flags);
ClearPagePrivate(page);
list_del(&page->lru);
b_dev_info->isolated_pages++;
spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
}
static inline void __putback_balloon_page(struct page *page)
{
struct balloon_dev_info *b_dev_info = balloon_page_device(page);
unsigned long flags;
spin_lock_irqsave(&b_dev_info->pages_lock, flags);
SetPagePrivate(page);
list_add(&page->lru, &b_dev_info->pages);
b_dev_info->isolated_pages--;
spin_unlock_irqrestore(&b_dev_info->pages_lock, flags);
}
/* __isolate_lru_page() counterpart for a ballooned page */
bool balloon_page_isolate(struct page *page)
{
/*
* Avoid burning cycles with pages that are yet under __free_pages(),
* or just got freed under us.
*
* In case we 'win' a race for a balloon page being freed under us and
* raise its refcount preventing __free_pages() from doing its job
* the put_page() at the end of this block will take care of
* release this page, thus avoiding a nasty leakage.
*/
if (likely(get_page_unless_zero(page))) {
/*
* As balloon pages are not isolated from LRU lists, concurrent
* compaction threads can race against page migration functions
* as well as race against the balloon driver releasing a page.
*
* In order to avoid having an already isolated balloon page
* being (wrongly) re-isolated while it is under migration,
* or to avoid attempting to isolate pages being released by
* the balloon driver, lets be sure we have the page lock
* before proceeding with the balloon page isolation steps.
*/
if (likely(trylock_page(page))) {
/*
* A ballooned page, by default, has PagePrivate set.
* Prevent concurrent compaction threads from isolating
* an already isolated balloon page by clearing it.
*/
if (balloon_page_movable(page)) {
__isolate_balloon_page(page);
unlock_page(page);
return true;
}
unlock_page(page);
}
put_page(page);
}
return false;
}
/* putback_lru_page() counterpart for a ballooned page */
void balloon_page_putback(struct page *page)
{
/*
* 'lock_page()' stabilizes the page and prevents races against
* concurrent isolation threads attempting to re-isolate it.
*/
lock_page(page);
if (__is_movable_balloon_page(page)) {
__putback_balloon_page(page);
/* drop the extra ref count taken for page isolation */
put_page(page);
} else {
WARN_ON(1);
dump_page(page, "not movable balloon page");
}
unlock_page(page);
}
/* move_to_new_page() counterpart for a ballooned page */
int balloon_page_migrate(struct page *newpage,
struct page *page, enum migrate_mode mode)
{
struct balloon_dev_info *balloon = balloon_page_device(page);
int rc = -EAGAIN;
/*
* Block others from accessing the 'newpage' when we get around to
* establishing additional references. We should be the only one
* holding a reference to the 'newpage' at this point.
*/
BUG_ON(!trylock_page(newpage));
if (WARN_ON(!__is_movable_balloon_page(page))) {
dump_page(page, "not movable balloon page");
unlock_page(newpage);
return rc;
}
if (balloon && balloon->migratepage)
rc = balloon->migratepage(balloon, newpage, page, mode);
unlock_page(newpage);
return rc;
}
#endif /* CONFIG_BALLOON_COMPACTION */