2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 06:34:11 +08:00
linux-next/fs/dcache.c
Linus Torvalds d0185c0882 Fix NULL pointer dereference in proc_sys_compare
The VFS interface for the 'd_compare()' is a bit special (read: 'odd'),
because it really just essentially replaces a memcmp().  The filesystem
is supposed to just compare the two names with whatever case-independent
or other function.

And when I say 'is supposed to', I obviously mean that 'procfs does odd
things, and actually looks at the dentry that we don't even pass down,
rather than just the name'.  Which results in problems, because we
actually call d_compare before we have even verified that the dentry is
still hashed at all.

And that causes a problm since the inode that procfs looks at may have
been free'd and the d_inode pointer is NULL.  procfs just assumes that
all dentries are positive, since procfs itself never generates a
negative one.  But memory pressure will still result in the dentry
getting torn down, and as it is removed by RCU, it still remains visible
on some lists - and to d_compare.

If the filesystem just did a name comparison, we wouldn't care.  And we
could just fix procfs to know about negative dentries too.  But rather
than have the low-level filesystems know about internal VFS details,
just move the check for a unhashed dentry up a bit, so that we will only
call d_compare on dentries that are still active.

The actual oops this caused didn't look like a NULL pointer dereference
because procfs did a 'container_of(inode, struct proc_inode, vfs_inode)'
to get at its internal proc_inode information from the inode pointer,
and accessed a field below the inode. So the oops would look something
like

	BUG: unable to handle kernel paging request at fffffffffffffff0
	IP: [<ffffffff802bc6c6>] proc_sys_compare+0x36/0x50

and was seen on both x86-64 (Alexey Dobriyan and Hugh Dickins) and
ppc64 (Hugh Dickins).

Reported-by: Alexey Dobriyan <adobriyan@gmail.com>
Acked-by: Hugh Dickins <hugh@veritas.com>
Cc: Al Viro <viro@ZenIV.linux.org.uk>
Reviewed-by: "Eric W. Biederman" <ebiederm@xmission.com>
Signed-of-by: Linus Torvalds <torvalds@linux-foundation.org>
2008-09-29 07:42:57 -07:00

2369 lines
60 KiB
C

/*
* fs/dcache.c
*
* Complete reimplementation
* (C) 1997 Thomas Schoebel-Theuer,
* with heavy changes by Linus Torvalds
*/
/*
* Notes on the allocation strategy:
*
* The dcache is a master of the icache - whenever a dcache entry
* exists, the inode will always exist. "iput()" is done either when
* the dcache entry is deleted or garbage collected.
*/
#include <linux/syscalls.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/fdtable.h>
#include <linux/fs.h>
#include <linux/fsnotify.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/hash.h>
#include <linux/cache.h>
#include <linux/module.h>
#include <linux/mount.h>
#include <linux/file.h>
#include <asm/uaccess.h>
#include <linux/security.h>
#include <linux/seqlock.h>
#include <linux/swap.h>
#include <linux/bootmem.h>
#include "internal.h"
int sysctl_vfs_cache_pressure __read_mostly = 100;
EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
__cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lock);
__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
EXPORT_SYMBOL(dcache_lock);
static struct kmem_cache *dentry_cache __read_mostly;
#define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
/*
* This is the single most critical data structure when it comes
* to the dcache: the hashtable for lookups. Somebody should try
* to make this good - I've just made it work.
*
* This hash-function tries to avoid losing too many bits of hash
* information, yet avoid using a prime hash-size or similar.
*/
#define D_HASHBITS d_hash_shift
#define D_HASHMASK d_hash_mask
static unsigned int d_hash_mask __read_mostly;
static unsigned int d_hash_shift __read_mostly;
static struct hlist_head *dentry_hashtable __read_mostly;
/* Statistics gathering. */
struct dentry_stat_t dentry_stat = {
.age_limit = 45,
};
static void __d_free(struct dentry *dentry)
{
if (dname_external(dentry))
kfree(dentry->d_name.name);
kmem_cache_free(dentry_cache, dentry);
}
static void d_callback(struct rcu_head *head)
{
struct dentry * dentry = container_of(head, struct dentry, d_u.d_rcu);
__d_free(dentry);
}
/*
* no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
* inside dcache_lock.
*/
static void d_free(struct dentry *dentry)
{
if (dentry->d_op && dentry->d_op->d_release)
dentry->d_op->d_release(dentry);
/* if dentry was never inserted into hash, immediate free is OK */
if (hlist_unhashed(&dentry->d_hash))
__d_free(dentry);
else
call_rcu(&dentry->d_u.d_rcu, d_callback);
}
/*
* Release the dentry's inode, using the filesystem
* d_iput() operation if defined.
*/
static void dentry_iput(struct dentry * dentry)
__releases(dentry->d_lock)
__releases(dcache_lock)
{
struct inode *inode = dentry->d_inode;
if (inode) {
dentry->d_inode = NULL;
list_del_init(&dentry->d_alias);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
if (!inode->i_nlink)
fsnotify_inoderemove(inode);
if (dentry->d_op && dentry->d_op->d_iput)
dentry->d_op->d_iput(dentry, inode);
else
iput(inode);
} else {
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
}
}
/*
* dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
*/
static void dentry_lru_add(struct dentry *dentry)
{
list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
}
static void dentry_lru_add_tail(struct dentry *dentry)
{
list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
dentry->d_sb->s_nr_dentry_unused++;
dentry_stat.nr_unused++;
}
static void dentry_lru_del(struct dentry *dentry)
{
if (!list_empty(&dentry->d_lru)) {
list_del(&dentry->d_lru);
dentry->d_sb->s_nr_dentry_unused--;
dentry_stat.nr_unused--;
}
}
static void dentry_lru_del_init(struct dentry *dentry)
{
if (likely(!list_empty(&dentry->d_lru))) {
list_del_init(&dentry->d_lru);
dentry->d_sb->s_nr_dentry_unused--;
dentry_stat.nr_unused--;
}
}
/**
* d_kill - kill dentry and return parent
* @dentry: dentry to kill
*
* The dentry must already be unhashed and removed from the LRU.
*
* If this is the root of the dentry tree, return NULL.
*/
static struct dentry *d_kill(struct dentry *dentry)
__releases(dentry->d_lock)
__releases(dcache_lock)
{
struct dentry *parent;
list_del(&dentry->d_u.d_child);
dentry_stat.nr_dentry--; /* For d_free, below */
/*drops the locks, at that point nobody can reach this dentry */
dentry_iput(dentry);
parent = dentry->d_parent;
d_free(dentry);
return dentry == parent ? NULL : parent;
}
/*
* This is dput
*
* This is complicated by the fact that we do not want to put
* dentries that are no longer on any hash chain on the unused
* list: we'd much rather just get rid of them immediately.
*
* However, that implies that we have to traverse the dentry
* tree upwards to the parents which might _also_ now be
* scheduled for deletion (it may have been only waiting for
* its last child to go away).
*
* This tail recursion is done by hand as we don't want to depend
* on the compiler to always get this right (gcc generally doesn't).
* Real recursion would eat up our stack space.
*/
/*
* dput - release a dentry
* @dentry: dentry to release
*
* Release a dentry. This will drop the usage count and if appropriate
* call the dentry unlink method as well as removing it from the queues and
* releasing its resources. If the parent dentries were scheduled for release
* they too may now get deleted.
*
* no dcache lock, please.
*/
void dput(struct dentry *dentry)
{
if (!dentry)
return;
repeat:
if (atomic_read(&dentry->d_count) == 1)
might_sleep();
if (!atomic_dec_and_lock(&dentry->d_count, &dcache_lock))
return;
spin_lock(&dentry->d_lock);
if (atomic_read(&dentry->d_count)) {
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return;
}
/*
* AV: ->d_delete() is _NOT_ allowed to block now.
*/
if (dentry->d_op && dentry->d_op->d_delete) {
if (dentry->d_op->d_delete(dentry))
goto unhash_it;
}
/* Unreachable? Get rid of it */
if (d_unhashed(dentry))
goto kill_it;
if (list_empty(&dentry->d_lru)) {
dentry->d_flags |= DCACHE_REFERENCED;
dentry_lru_add(dentry);
}
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return;
unhash_it:
__d_drop(dentry);
kill_it:
/* if dentry was on the d_lru list delete it from there */
dentry_lru_del(dentry);
dentry = d_kill(dentry);
if (dentry)
goto repeat;
}
/**
* d_invalidate - invalidate a dentry
* @dentry: dentry to invalidate
*
* Try to invalidate the dentry if it turns out to be
* possible. If there are other dentries that can be
* reached through this one we can't delete it and we
* return -EBUSY. On success we return 0.
*
* no dcache lock.
*/
int d_invalidate(struct dentry * dentry)
{
/*
* If it's already been dropped, return OK.
*/
spin_lock(&dcache_lock);
if (d_unhashed(dentry)) {
spin_unlock(&dcache_lock);
return 0;
}
/*
* Check whether to do a partial shrink_dcache
* to get rid of unused child entries.
*/
if (!list_empty(&dentry->d_subdirs)) {
spin_unlock(&dcache_lock);
shrink_dcache_parent(dentry);
spin_lock(&dcache_lock);
}
/*
* Somebody else still using it?
*
* If it's a directory, we can't drop it
* for fear of somebody re-populating it
* with children (even though dropping it
* would make it unreachable from the root,
* we might still populate it if it was a
* working directory or similar).
*/
spin_lock(&dentry->d_lock);
if (atomic_read(&dentry->d_count) > 1) {
if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return -EBUSY;
}
}
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
return 0;
}
/* This should be called _only_ with dcache_lock held */
static inline struct dentry * __dget_locked(struct dentry *dentry)
{
atomic_inc(&dentry->d_count);
dentry_lru_del_init(dentry);
return dentry;
}
struct dentry * dget_locked(struct dentry *dentry)
{
return __dget_locked(dentry);
}
/**
* d_find_alias - grab a hashed alias of inode
* @inode: inode in question
* @want_discon: flag, used by d_splice_alias, to request
* that only a DISCONNECTED alias be returned.
*
* If inode has a hashed alias, or is a directory and has any alias,
* acquire the reference to alias and return it. Otherwise return NULL.
* Notice that if inode is a directory there can be only one alias and
* it can be unhashed only if it has no children, or if it is the root
* of a filesystem.
*
* If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
* any other hashed alias over that one unless @want_discon is set,
* in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
*/
static struct dentry * __d_find_alias(struct inode *inode, int want_discon)
{
struct list_head *head, *next, *tmp;
struct dentry *alias, *discon_alias=NULL;
head = &inode->i_dentry;
next = inode->i_dentry.next;
while (next != head) {
tmp = next;
next = tmp->next;
prefetch(next);
alias = list_entry(tmp, struct dentry, d_alias);
if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
if (IS_ROOT(alias) &&
(alias->d_flags & DCACHE_DISCONNECTED))
discon_alias = alias;
else if (!want_discon) {
__dget_locked(alias);
return alias;
}
}
}
if (discon_alias)
__dget_locked(discon_alias);
return discon_alias;
}
struct dentry * d_find_alias(struct inode *inode)
{
struct dentry *de = NULL;
if (!list_empty(&inode->i_dentry)) {
spin_lock(&dcache_lock);
de = __d_find_alias(inode, 0);
spin_unlock(&dcache_lock);
}
return de;
}
/*
* Try to kill dentries associated with this inode.
* WARNING: you must own a reference to inode.
*/
void d_prune_aliases(struct inode *inode)
{
struct dentry *dentry;
restart:
spin_lock(&dcache_lock);
list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
spin_lock(&dentry->d_lock);
if (!atomic_read(&dentry->d_count)) {
__dget_locked(dentry);
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
dput(dentry);
goto restart;
}
spin_unlock(&dentry->d_lock);
}
spin_unlock(&dcache_lock);
}
/*
* Throw away a dentry - free the inode, dput the parent. This requires that
* the LRU list has already been removed.
*
* Try to prune ancestors as well. This is necessary to prevent
* quadratic behavior of shrink_dcache_parent(), but is also expected
* to be beneficial in reducing dentry cache fragmentation.
*/
static void prune_one_dentry(struct dentry * dentry)
__releases(dentry->d_lock)
__releases(dcache_lock)
__acquires(dcache_lock)
{
__d_drop(dentry);
dentry = d_kill(dentry);
/*
* Prune ancestors. Locking is simpler than in dput(),
* because dcache_lock needs to be taken anyway.
*/
spin_lock(&dcache_lock);
while (dentry) {
if (!atomic_dec_and_lock(&dentry->d_count, &dentry->d_lock))
return;
if (dentry->d_op && dentry->d_op->d_delete)
dentry->d_op->d_delete(dentry);
dentry_lru_del_init(dentry);
__d_drop(dentry);
dentry = d_kill(dentry);
spin_lock(&dcache_lock);
}
}
/*
* Shrink the dentry LRU on a given superblock.
* @sb : superblock to shrink dentry LRU.
* @count: If count is NULL, we prune all dentries on superblock.
* @flags: If flags is non-zero, we need to do special processing based on
* which flags are set. This means we don't need to maintain multiple
* similar copies of this loop.
*/
static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
{
LIST_HEAD(referenced);
LIST_HEAD(tmp);
struct dentry *dentry;
int cnt = 0;
BUG_ON(!sb);
BUG_ON((flags & DCACHE_REFERENCED) && count == NULL);
spin_lock(&dcache_lock);
if (count != NULL)
/* called from prune_dcache() and shrink_dcache_parent() */
cnt = *count;
restart:
if (count == NULL)
list_splice_init(&sb->s_dentry_lru, &tmp);
else {
while (!list_empty(&sb->s_dentry_lru)) {
dentry = list_entry(sb->s_dentry_lru.prev,
struct dentry, d_lru);
BUG_ON(dentry->d_sb != sb);
spin_lock(&dentry->d_lock);
/*
* If we are honouring the DCACHE_REFERENCED flag and
* the dentry has this flag set, don't free it. Clear
* the flag and put it back on the LRU.
*/
if ((flags & DCACHE_REFERENCED)
&& (dentry->d_flags & DCACHE_REFERENCED)) {
dentry->d_flags &= ~DCACHE_REFERENCED;
list_move_tail(&dentry->d_lru, &referenced);
spin_unlock(&dentry->d_lock);
} else {
list_move_tail(&dentry->d_lru, &tmp);
spin_unlock(&dentry->d_lock);
cnt--;
if (!cnt)
break;
}
cond_resched_lock(&dcache_lock);
}
}
while (!list_empty(&tmp)) {
dentry = list_entry(tmp.prev, struct dentry, d_lru);
dentry_lru_del_init(dentry);
spin_lock(&dentry->d_lock);
/*
* We found an inuse dentry which was not removed from
* the LRU because of laziness during lookup. Do not free
* it - just keep it off the LRU list.
*/
if (atomic_read(&dentry->d_count)) {
spin_unlock(&dentry->d_lock);
continue;
}
prune_one_dentry(dentry);
/* dentry->d_lock was dropped in prune_one_dentry() */
cond_resched_lock(&dcache_lock);
}
if (count == NULL && !list_empty(&sb->s_dentry_lru))
goto restart;
if (count != NULL)
*count = cnt;
if (!list_empty(&referenced))
list_splice(&referenced, &sb->s_dentry_lru);
spin_unlock(&dcache_lock);
}
/**
* prune_dcache - shrink the dcache
* @count: number of entries to try to free
*
* Shrink the dcache. This is done when we need more memory, or simply when we
* need to unmount something (at which point we need to unuse all dentries).
*
* This function may fail to free any resources if all the dentries are in use.
*/
static void prune_dcache(int count)
{
struct super_block *sb;
int w_count;
int unused = dentry_stat.nr_unused;
int prune_ratio;
int pruned;
if (unused == 0 || count == 0)
return;
spin_lock(&dcache_lock);
restart:
if (count >= unused)
prune_ratio = 1;
else
prune_ratio = unused / count;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (sb->s_nr_dentry_unused == 0)
continue;
sb->s_count++;
/* Now, we reclaim unused dentrins with fairness.
* We reclaim them same percentage from each superblock.
* We calculate number of dentries to scan on this sb
* as follows, but the implementation is arranged to avoid
* overflows:
* number of dentries to scan on this sb =
* count * (number of dentries on this sb /
* number of dentries in the machine)
*/
spin_unlock(&sb_lock);
if (prune_ratio != 1)
w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
else
w_count = sb->s_nr_dentry_unused;
pruned = w_count;
/*
* We need to be sure this filesystem isn't being unmounted,
* otherwise we could race with generic_shutdown_super(), and
* end up holding a reference to an inode while the filesystem
* is unmounted. So we try to get s_umount, and make sure
* s_root isn't NULL.
*/
if (down_read_trylock(&sb->s_umount)) {
if ((sb->s_root != NULL) &&
(!list_empty(&sb->s_dentry_lru))) {
spin_unlock(&dcache_lock);
__shrink_dcache_sb(sb, &w_count,
DCACHE_REFERENCED);
pruned -= w_count;
spin_lock(&dcache_lock);
}
up_read(&sb->s_umount);
}
spin_lock(&sb_lock);
count -= pruned;
/*
* restart only when sb is no longer on the list and
* we have more work to do.
*/
if (__put_super_and_need_restart(sb) && count > 0) {
spin_unlock(&sb_lock);
goto restart;
}
}
spin_unlock(&sb_lock);
spin_unlock(&dcache_lock);
}
/**
* shrink_dcache_sb - shrink dcache for a superblock
* @sb: superblock
*
* Shrink the dcache for the specified super block. This
* is used to free the dcache before unmounting a file
* system
*/
void shrink_dcache_sb(struct super_block * sb)
{
__shrink_dcache_sb(sb, NULL, 0);
}
/*
* destroy a single subtree of dentries for unmount
* - see the comments on shrink_dcache_for_umount() for a description of the
* locking
*/
static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
{
struct dentry *parent;
unsigned detached = 0;
BUG_ON(!IS_ROOT(dentry));
/* detach this root from the system */
spin_lock(&dcache_lock);
dentry_lru_del_init(dentry);
__d_drop(dentry);
spin_unlock(&dcache_lock);
for (;;) {
/* descend to the first leaf in the current subtree */
while (!list_empty(&dentry->d_subdirs)) {
struct dentry *loop;
/* this is a branch with children - detach all of them
* from the system in one go */
spin_lock(&dcache_lock);
list_for_each_entry(loop, &dentry->d_subdirs,
d_u.d_child) {
dentry_lru_del_init(loop);
__d_drop(loop);
cond_resched_lock(&dcache_lock);
}
spin_unlock(&dcache_lock);
/* move to the first child */
dentry = list_entry(dentry->d_subdirs.next,
struct dentry, d_u.d_child);
}
/* consume the dentries from this leaf up through its parents
* until we find one with children or run out altogether */
do {
struct inode *inode;
if (atomic_read(&dentry->d_count) != 0) {
printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%s}"
" still in use (%d)"
" [unmount of %s %s]\n",
dentry,
dentry->d_inode ?
dentry->d_inode->i_ino : 0UL,
dentry->d_name.name,
atomic_read(&dentry->d_count),
dentry->d_sb->s_type->name,
dentry->d_sb->s_id);
BUG();
}
parent = dentry->d_parent;
if (parent == dentry)
parent = NULL;
else
atomic_dec(&parent->d_count);
list_del(&dentry->d_u.d_child);
detached++;
inode = dentry->d_inode;
if (inode) {
dentry->d_inode = NULL;
list_del_init(&dentry->d_alias);
if (dentry->d_op && dentry->d_op->d_iput)
dentry->d_op->d_iput(dentry, inode);
else
iput(inode);
}
d_free(dentry);
/* finished when we fall off the top of the tree,
* otherwise we ascend to the parent and move to the
* next sibling if there is one */
if (!parent)
goto out;
dentry = parent;
} while (list_empty(&dentry->d_subdirs));
dentry = list_entry(dentry->d_subdirs.next,
struct dentry, d_u.d_child);
}
out:
/* several dentries were freed, need to correct nr_dentry */
spin_lock(&dcache_lock);
dentry_stat.nr_dentry -= detached;
spin_unlock(&dcache_lock);
}
/*
* destroy the dentries attached to a superblock on unmounting
* - we don't need to use dentry->d_lock, and only need dcache_lock when
* removing the dentry from the system lists and hashes because:
* - the superblock is detached from all mountings and open files, so the
* dentry trees will not be rearranged by the VFS
* - s_umount is write-locked, so the memory pressure shrinker will ignore
* any dentries belonging to this superblock that it comes across
* - the filesystem itself is no longer permitted to rearrange the dentries
* in this superblock
*/
void shrink_dcache_for_umount(struct super_block *sb)
{
struct dentry *dentry;
if (down_read_trylock(&sb->s_umount))
BUG();
dentry = sb->s_root;
sb->s_root = NULL;
atomic_dec(&dentry->d_count);
shrink_dcache_for_umount_subtree(dentry);
while (!hlist_empty(&sb->s_anon)) {
dentry = hlist_entry(sb->s_anon.first, struct dentry, d_hash);
shrink_dcache_for_umount_subtree(dentry);
}
}
/*
* Search for at least 1 mount point in the dentry's subdirs.
* We descend to the next level whenever the d_subdirs
* list is non-empty and continue searching.
*/
/**
* have_submounts - check for mounts over a dentry
* @parent: dentry to check.
*
* Return true if the parent or its subdirectories contain
* a mount point
*/
int have_submounts(struct dentry *parent)
{
struct dentry *this_parent = parent;
struct list_head *next;
spin_lock(&dcache_lock);
if (d_mountpoint(parent))
goto positive;
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
/* Have we found a mount point ? */
if (d_mountpoint(dentry))
goto positive;
if (!list_empty(&dentry->d_subdirs)) {
this_parent = dentry;
goto repeat;
}
}
/*
* All done at this level ... ascend and resume the search.
*/
if (this_parent != parent) {
next = this_parent->d_u.d_child.next;
this_parent = this_parent->d_parent;
goto resume;
}
spin_unlock(&dcache_lock);
return 0; /* No mount points found in tree */
positive:
spin_unlock(&dcache_lock);
return 1;
}
/*
* Search the dentry child list for the specified parent,
* and move any unused dentries to the end of the unused
* list for prune_dcache(). We descend to the next level
* whenever the d_subdirs list is non-empty and continue
* searching.
*
* It returns zero iff there are no unused children,
* otherwise it returns the number of children moved to
* the end of the unused list. This may not be the total
* number of unused children, because select_parent can
* drop the lock and return early due to latency
* constraints.
*/
static int select_parent(struct dentry * parent)
{
struct dentry *this_parent = parent;
struct list_head *next;
int found = 0;
spin_lock(&dcache_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
dentry_lru_del_init(dentry);
/*
* move only zero ref count dentries to the end
* of the unused list for prune_dcache
*/
if (!atomic_read(&dentry->d_count)) {
dentry_lru_add_tail(dentry);
found++;
}
/*
* We can return to the caller if we have found some (this
* ensures forward progress). We'll be coming back to find
* the rest.
*/
if (found && need_resched())
goto out;
/*
* Descend a level if the d_subdirs list is non-empty.
*/
if (!list_empty(&dentry->d_subdirs)) {
this_parent = dentry;
goto repeat;
}
}
/*
* All done at this level ... ascend and resume the search.
*/
if (this_parent != parent) {
next = this_parent->d_u.d_child.next;
this_parent = this_parent->d_parent;
goto resume;
}
out:
spin_unlock(&dcache_lock);
return found;
}
/**
* shrink_dcache_parent - prune dcache
* @parent: parent of entries to prune
*
* Prune the dcache to remove unused children of the parent dentry.
*/
void shrink_dcache_parent(struct dentry * parent)
{
struct super_block *sb = parent->d_sb;
int found;
while ((found = select_parent(parent)) != 0)
__shrink_dcache_sb(sb, &found, 0);
}
/*
* Scan `nr' dentries and return the number which remain.
*
* We need to avoid reentering the filesystem if the caller is performing a
* GFP_NOFS allocation attempt. One example deadlock is:
*
* ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
* prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
* ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
*
* In this case we return -1 to tell the caller that we baled.
*/
static int shrink_dcache_memory(int nr, gfp_t gfp_mask)
{
if (nr) {
if (!(gfp_mask & __GFP_FS))
return -1;
prune_dcache(nr);
}
return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
}
static struct shrinker dcache_shrinker = {
.shrink = shrink_dcache_memory,
.seeks = DEFAULT_SEEKS,
};
/**
* d_alloc - allocate a dcache entry
* @parent: parent of entry to allocate
* @name: qstr of the name
*
* Allocates a dentry. It returns %NULL if there is insufficient memory
* available. On a success the dentry is returned. The name passed in is
* copied and the copy passed in may be reused after this call.
*/
struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
{
struct dentry *dentry;
char *dname;
dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
if (!dentry)
return NULL;
if (name->len > DNAME_INLINE_LEN-1) {
dname = kmalloc(name->len + 1, GFP_KERNEL);
if (!dname) {
kmem_cache_free(dentry_cache, dentry);
return NULL;
}
} else {
dname = dentry->d_iname;
}
dentry->d_name.name = dname;
dentry->d_name.len = name->len;
dentry->d_name.hash = name->hash;
memcpy(dname, name->name, name->len);
dname[name->len] = 0;
atomic_set(&dentry->d_count, 1);
dentry->d_flags = DCACHE_UNHASHED;
spin_lock_init(&dentry->d_lock);
dentry->d_inode = NULL;
dentry->d_parent = NULL;
dentry->d_sb = NULL;
dentry->d_op = NULL;
dentry->d_fsdata = NULL;
dentry->d_mounted = 0;
#ifdef CONFIG_PROFILING
dentry->d_cookie = NULL;
#endif
INIT_HLIST_NODE(&dentry->d_hash);
INIT_LIST_HEAD(&dentry->d_lru);
INIT_LIST_HEAD(&dentry->d_subdirs);
INIT_LIST_HEAD(&dentry->d_alias);
if (parent) {
dentry->d_parent = dget(parent);
dentry->d_sb = parent->d_sb;
} else {
INIT_LIST_HEAD(&dentry->d_u.d_child);
}
spin_lock(&dcache_lock);
if (parent)
list_add(&dentry->d_u.d_child, &parent->d_subdirs);
dentry_stat.nr_dentry++;
spin_unlock(&dcache_lock);
return dentry;
}
struct dentry *d_alloc_name(struct dentry *parent, const char *name)
{
struct qstr q;
q.name = name;
q.len = strlen(name);
q.hash = full_name_hash(q.name, q.len);
return d_alloc(parent, &q);
}
/**
* d_instantiate - fill in inode information for a dentry
* @entry: dentry to complete
* @inode: inode to attach to this dentry
*
* Fill in inode information in the entry.
*
* This turns negative dentries into productive full members
* of society.
*
* NOTE! This assumes that the inode count has been incremented
* (or otherwise set) by the caller to indicate that it is now
* in use by the dcache.
*/
void d_instantiate(struct dentry *entry, struct inode * inode)
{
BUG_ON(!list_empty(&entry->d_alias));
spin_lock(&dcache_lock);
if (inode)
list_add(&entry->d_alias, &inode->i_dentry);
entry->d_inode = inode;
fsnotify_d_instantiate(entry, inode);
spin_unlock(&dcache_lock);
security_d_instantiate(entry, inode);
}
/**
* d_instantiate_unique - instantiate a non-aliased dentry
* @entry: dentry to instantiate
* @inode: inode to attach to this dentry
*
* Fill in inode information in the entry. On success, it returns NULL.
* If an unhashed alias of "entry" already exists, then we return the
* aliased dentry instead and drop one reference to inode.
*
* Note that in order to avoid conflicts with rename() etc, the caller
* had better be holding the parent directory semaphore.
*
* This also assumes that the inode count has been incremented
* (or otherwise set) by the caller to indicate that it is now
* in use by the dcache.
*/
static struct dentry *__d_instantiate_unique(struct dentry *entry,
struct inode *inode)
{
struct dentry *alias;
int len = entry->d_name.len;
const char *name = entry->d_name.name;
unsigned int hash = entry->d_name.hash;
if (!inode) {
entry->d_inode = NULL;
return NULL;
}
list_for_each_entry(alias, &inode->i_dentry, d_alias) {
struct qstr *qstr = &alias->d_name;
if (qstr->hash != hash)
continue;
if (alias->d_parent != entry->d_parent)
continue;
if (qstr->len != len)
continue;
if (memcmp(qstr->name, name, len))
continue;
dget_locked(alias);
return alias;
}
list_add(&entry->d_alias, &inode->i_dentry);
entry->d_inode = inode;
fsnotify_d_instantiate(entry, inode);
return NULL;
}
struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
{
struct dentry *result;
BUG_ON(!list_empty(&entry->d_alias));
spin_lock(&dcache_lock);
result = __d_instantiate_unique(entry, inode);
spin_unlock(&dcache_lock);
if (!result) {
security_d_instantiate(entry, inode);
return NULL;
}
BUG_ON(!d_unhashed(result));
iput(inode);
return result;
}
EXPORT_SYMBOL(d_instantiate_unique);
/**
* d_alloc_root - allocate root dentry
* @root_inode: inode to allocate the root for
*
* Allocate a root ("/") dentry for the inode given. The inode is
* instantiated and returned. %NULL is returned if there is insufficient
* memory or the inode passed is %NULL.
*/
struct dentry * d_alloc_root(struct inode * root_inode)
{
struct dentry *res = NULL;
if (root_inode) {
static const struct qstr name = { .name = "/", .len = 1 };
res = d_alloc(NULL, &name);
if (res) {
res->d_sb = root_inode->i_sb;
res->d_parent = res;
d_instantiate(res, root_inode);
}
}
return res;
}
static inline struct hlist_head *d_hash(struct dentry *parent,
unsigned long hash)
{
hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
return dentry_hashtable + (hash & D_HASHMASK);
}
/**
* d_alloc_anon - allocate an anonymous dentry
* @inode: inode to allocate the dentry for
*
* This is similar to d_alloc_root. It is used by filesystems when
* creating a dentry for a given inode, often in the process of
* mapping a filehandle to a dentry. The returned dentry may be
* anonymous, or may have a full name (if the inode was already
* in the cache). The file system may need to make further
* efforts to connect this dentry into the dcache properly.
*
* When called on a directory inode, we must ensure that
* the inode only ever has one dentry. If a dentry is
* found, that is returned instead of allocating a new one.
*
* On successful return, the reference to the inode has been transferred
* to the dentry. If %NULL is returned (indicating kmalloc failure),
* the reference on the inode has not been released.
*/
struct dentry * d_alloc_anon(struct inode *inode)
{
static const struct qstr anonstring = { .name = "" };
struct dentry *tmp;
struct dentry *res;
if ((res = d_find_alias(inode))) {
iput(inode);
return res;
}
tmp = d_alloc(NULL, &anonstring);
if (!tmp)
return NULL;
tmp->d_parent = tmp; /* make sure dput doesn't croak */
spin_lock(&dcache_lock);
res = __d_find_alias(inode, 0);
if (!res) {
/* attach a disconnected dentry */
res = tmp;
tmp = NULL;
spin_lock(&res->d_lock);
res->d_sb = inode->i_sb;
res->d_parent = res;
res->d_inode = inode;
res->d_flags |= DCACHE_DISCONNECTED;
res->d_flags &= ~DCACHE_UNHASHED;
list_add(&res->d_alias, &inode->i_dentry);
hlist_add_head(&res->d_hash, &inode->i_sb->s_anon);
spin_unlock(&res->d_lock);
inode = NULL; /* don't drop reference */
}
spin_unlock(&dcache_lock);
if (inode)
iput(inode);
if (tmp)
dput(tmp);
return res;
}
/**
* d_splice_alias - splice a disconnected dentry into the tree if one exists
* @inode: the inode which may have a disconnected dentry
* @dentry: a negative dentry which we want to point to the inode.
*
* If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
* DCACHE_DISCONNECTED), then d_move that in place of the given dentry
* and return it, else simply d_add the inode to the dentry and return NULL.
*
* This is needed in the lookup routine of any filesystem that is exportable
* (via knfsd) so that we can build dcache paths to directories effectively.
*
* If a dentry was found and moved, then it is returned. Otherwise NULL
* is returned. This matches the expected return value of ->lookup.
*
*/
struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
{
struct dentry *new = NULL;
if (inode && S_ISDIR(inode->i_mode)) {
spin_lock(&dcache_lock);
new = __d_find_alias(inode, 1);
if (new) {
BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
fsnotify_d_instantiate(new, inode);
spin_unlock(&dcache_lock);
security_d_instantiate(new, inode);
d_rehash(dentry);
d_move(new, dentry);
iput(inode);
} else {
/* d_instantiate takes dcache_lock, so we do it by hand */
list_add(&dentry->d_alias, &inode->i_dentry);
dentry->d_inode = inode;
fsnotify_d_instantiate(dentry, inode);
spin_unlock(&dcache_lock);
security_d_instantiate(dentry, inode);
d_rehash(dentry);
}
} else
d_add(dentry, inode);
return new;
}
/**
* d_add_ci - lookup or allocate new dentry with case-exact name
* @inode: the inode case-insensitive lookup has found
* @dentry: the negative dentry that was passed to the parent's lookup func
* @name: the case-exact name to be associated with the returned dentry
*
* This is to avoid filling the dcache with case-insensitive names to the
* same inode, only the actual correct case is stored in the dcache for
* case-insensitive filesystems.
*
* For a case-insensitive lookup match and if the the case-exact dentry
* already exists in in the dcache, use it and return it.
*
* If no entry exists with the exact case name, allocate new dentry with
* the exact case, and return the spliced entry.
*/
struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
struct qstr *name)
{
int error;
struct dentry *found;
struct dentry *new;
/* Does a dentry matching the name exist already? */
found = d_hash_and_lookup(dentry->d_parent, name);
/* If not, create it now and return */
if (!found) {
new = d_alloc(dentry->d_parent, name);
if (!new) {
error = -ENOMEM;
goto err_out;
}
found = d_splice_alias(inode, new);
if (found) {
dput(new);
return found;
}
return new;
}
/* Matching dentry exists, check if it is negative. */
if (found->d_inode) {
if (unlikely(found->d_inode != inode)) {
/* This can't happen because bad inodes are unhashed. */
BUG_ON(!is_bad_inode(inode));
BUG_ON(!is_bad_inode(found->d_inode));
}
/*
* Already have the inode and the dentry attached, decrement
* the reference count to balance the iget() done
* earlier on. We found the dentry using d_lookup() so it
* cannot be disconnected and thus we do not need to worry
* about any NFS/disconnectedness issues here.
*/
iput(inode);
return found;
}
/*
* Negative dentry: instantiate it unless the inode is a directory and
* has a 'disconnected' dentry (i.e. IS_ROOT and DCACHE_DISCONNECTED),
* in which case d_move() that in place of the found dentry.
*/
if (!S_ISDIR(inode->i_mode)) {
/* Not a directory; everything is easy. */
d_instantiate(found, inode);
return found;
}
spin_lock(&dcache_lock);
if (list_empty(&inode->i_dentry)) {
/*
* Directory without a 'disconnected' dentry; we need to do
* d_instantiate() by hand because it takes dcache_lock which
* we already hold.
*/
list_add(&found->d_alias, &inode->i_dentry);
found->d_inode = inode;
spin_unlock(&dcache_lock);
security_d_instantiate(found, inode);
return found;
}
/*
* Directory with a 'disconnected' dentry; get a reference to the
* 'disconnected' dentry.
*/
new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
dget_locked(new);
spin_unlock(&dcache_lock);
/* Do security vodoo. */
security_d_instantiate(found, inode);
/* Move new in place of found. */
d_move(new, found);
/* Balance the iget() we did above. */
iput(inode);
/* Throw away found. */
dput(found);
/* Use new as the actual dentry. */
return new;
err_out:
iput(inode);
return ERR_PTR(error);
}
/**
* d_lookup - search for a dentry
* @parent: parent dentry
* @name: qstr of name we wish to find
*
* Searches the children of the parent dentry for the name in question. If
* the dentry is found its reference count is incremented and the dentry
* is returned. The caller must use d_put to free the entry when it has
* finished using it. %NULL is returned on failure.
*
* __d_lookup is dcache_lock free. The hash list is protected using RCU.
* Memory barriers are used while updating and doing lockless traversal.
* To avoid races with d_move while rename is happening, d_lock is used.
*
* Overflows in memcmp(), while d_move, are avoided by keeping the length
* and name pointer in one structure pointed by d_qstr.
*
* rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
* lookup is going on.
*
* The dentry unused LRU is not updated even if lookup finds the required dentry
* in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
* select_parent and __dget_locked. This laziness saves lookup from dcache_lock
* acquisition.
*
* d_lookup() is protected against the concurrent renames in some unrelated
* directory using the seqlockt_t rename_lock.
*/
struct dentry * d_lookup(struct dentry * parent, struct qstr * name)
{
struct dentry * dentry = NULL;
unsigned long seq;
do {
seq = read_seqbegin(&rename_lock);
dentry = __d_lookup(parent, name);
if (dentry)
break;
} while (read_seqretry(&rename_lock, seq));
return dentry;
}
struct dentry * __d_lookup(struct dentry * parent, struct qstr * name)
{
unsigned int len = name->len;
unsigned int hash = name->hash;
const unsigned char *str = name->name;
struct hlist_head *head = d_hash(parent,hash);
struct dentry *found = NULL;
struct hlist_node *node;
struct dentry *dentry;
rcu_read_lock();
hlist_for_each_entry_rcu(dentry, node, head, d_hash) {
struct qstr *qstr;
if (dentry->d_name.hash != hash)
continue;
if (dentry->d_parent != parent)
continue;
spin_lock(&dentry->d_lock);
/*
* Recheck the dentry after taking the lock - d_move may have
* changed things. Don't bother checking the hash because we're
* about to compare the whole name anyway.
*/
if (dentry->d_parent != parent)
goto next;
/* non-existing due to RCU? */
if (d_unhashed(dentry))
goto next;
/*
* It is safe to compare names since d_move() cannot
* change the qstr (protected by d_lock).
*/
qstr = &dentry->d_name;
if (parent->d_op && parent->d_op->d_compare) {
if (parent->d_op->d_compare(parent, qstr, name))
goto next;
} else {
if (qstr->len != len)
goto next;
if (memcmp(qstr->name, str, len))
goto next;
}
atomic_inc(&dentry->d_count);
found = dentry;
spin_unlock(&dentry->d_lock);
break;
next:
spin_unlock(&dentry->d_lock);
}
rcu_read_unlock();
return found;
}
/**
* d_hash_and_lookup - hash the qstr then search for a dentry
* @dir: Directory to search in
* @name: qstr of name we wish to find
*
* On hash failure or on lookup failure NULL is returned.
*/
struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
{
struct dentry *dentry = NULL;
/*
* Check for a fs-specific hash function. Note that we must
* calculate the standard hash first, as the d_op->d_hash()
* routine may choose to leave the hash value unchanged.
*/
name->hash = full_name_hash(name->name, name->len);
if (dir->d_op && dir->d_op->d_hash) {
if (dir->d_op->d_hash(dir, name) < 0)
goto out;
}
dentry = d_lookup(dir, name);
out:
return dentry;
}
/**
* d_validate - verify dentry provided from insecure source
* @dentry: The dentry alleged to be valid child of @dparent
* @dparent: The parent dentry (known to be valid)
* @hash: Hash of the dentry
* @len: Length of the name
*
* An insecure source has sent us a dentry, here we verify it and dget() it.
* This is used by ncpfs in its readdir implementation.
* Zero is returned in the dentry is invalid.
*/
int d_validate(struct dentry *dentry, struct dentry *dparent)
{
struct hlist_head *base;
struct hlist_node *lhp;
/* Check whether the ptr might be valid at all.. */
if (!kmem_ptr_validate(dentry_cache, dentry))
goto out;
if (dentry->d_parent != dparent)
goto out;
spin_lock(&dcache_lock);
base = d_hash(dparent, dentry->d_name.hash);
hlist_for_each(lhp,base) {
/* hlist_for_each_entry_rcu() not required for d_hash list
* as it is parsed under dcache_lock
*/
if (dentry == hlist_entry(lhp, struct dentry, d_hash)) {
__dget_locked(dentry);
spin_unlock(&dcache_lock);
return 1;
}
}
spin_unlock(&dcache_lock);
out:
return 0;
}
/*
* When a file is deleted, we have two options:
* - turn this dentry into a negative dentry
* - unhash this dentry and free it.
*
* Usually, we want to just turn this into
* a negative dentry, but if anybody else is
* currently using the dentry or the inode
* we can't do that and we fall back on removing
* it from the hash queues and waiting for
* it to be deleted later when it has no users
*/
/**
* d_delete - delete a dentry
* @dentry: The dentry to delete
*
* Turn the dentry into a negative dentry if possible, otherwise
* remove it from the hash queues so it can be deleted later
*/
void d_delete(struct dentry * dentry)
{
int isdir = 0;
/*
* Are we the only user?
*/
spin_lock(&dcache_lock);
spin_lock(&dentry->d_lock);
isdir = S_ISDIR(dentry->d_inode->i_mode);
if (atomic_read(&dentry->d_count) == 1) {
dentry_iput(dentry);
fsnotify_nameremove(dentry, isdir);
return;
}
if (!d_unhashed(dentry))
__d_drop(dentry);
spin_unlock(&dentry->d_lock);
spin_unlock(&dcache_lock);
fsnotify_nameremove(dentry, isdir);
}
static void __d_rehash(struct dentry * entry, struct hlist_head *list)
{
entry->d_flags &= ~DCACHE_UNHASHED;
hlist_add_head_rcu(&entry->d_hash, list);
}
static void _d_rehash(struct dentry * entry)
{
__d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
}
/**
* d_rehash - add an entry back to the hash
* @entry: dentry to add to the hash
*
* Adds a dentry to the hash according to its name.
*/
void d_rehash(struct dentry * entry)
{
spin_lock(&dcache_lock);
spin_lock(&entry->d_lock);
_d_rehash(entry);
spin_unlock(&entry->d_lock);
spin_unlock(&dcache_lock);
}
#define do_switch(x,y) do { \
__typeof__ (x) __tmp = x; \
x = y; y = __tmp; } while (0)
/*
* When switching names, the actual string doesn't strictly have to
* be preserved in the target - because we're dropping the target
* anyway. As such, we can just do a simple memcpy() to copy over
* the new name before we switch.
*
* Note that we have to be a lot more careful about getting the hash
* switched - we have to switch the hash value properly even if it
* then no longer matches the actual (corrupted) string of the target.
* The hash value has to match the hash queue that the dentry is on..
*/
static void switch_names(struct dentry *dentry, struct dentry *target)
{
if (dname_external(target)) {
if (dname_external(dentry)) {
/*
* Both external: swap the pointers
*/
do_switch(target->d_name.name, dentry->d_name.name);
} else {
/*
* dentry:internal, target:external. Steal target's
* storage and make target internal.
*/
memcpy(target->d_iname, dentry->d_name.name,
dentry->d_name.len + 1);
dentry->d_name.name = target->d_name.name;
target->d_name.name = target->d_iname;
}
} else {
if (dname_external(dentry)) {
/*
* dentry:external, target:internal. Give dentry's
* storage to target and make dentry internal
*/
memcpy(dentry->d_iname, target->d_name.name,
target->d_name.len + 1);
target->d_name.name = dentry->d_name.name;
dentry->d_name.name = dentry->d_iname;
} else {
/*
* Both are internal. Just copy target to dentry
*/
memcpy(dentry->d_iname, target->d_name.name,
target->d_name.len + 1);
}
}
}
/*
* We cannibalize "target" when moving dentry on top of it,
* because it's going to be thrown away anyway. We could be more
* polite about it, though.
*
* This forceful removal will result in ugly /proc output if
* somebody holds a file open that got deleted due to a rename.
* We could be nicer about the deleted file, and let it show
* up under the name it had before it was deleted rather than
* under the original name of the file that was moved on top of it.
*/
/*
* d_move_locked - move a dentry
* @dentry: entry to move
* @target: new dentry
*
* Update the dcache to reflect the move of a file name. Negative
* dcache entries should not be moved in this way.
*/
static void d_move_locked(struct dentry * dentry, struct dentry * target)
{
struct hlist_head *list;
if (!dentry->d_inode)
printk(KERN_WARNING "VFS: moving negative dcache entry\n");
write_seqlock(&rename_lock);
/*
* XXXX: do we really need to take target->d_lock?
*/
if (target < dentry) {
spin_lock(&target->d_lock);
spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
} else {
spin_lock(&dentry->d_lock);
spin_lock_nested(&target->d_lock, DENTRY_D_LOCK_NESTED);
}
/* Move the dentry to the target hash queue, if on different bucket */
if (d_unhashed(dentry))
goto already_unhashed;
hlist_del_rcu(&dentry->d_hash);
already_unhashed:
list = d_hash(target->d_parent, target->d_name.hash);
__d_rehash(dentry, list);
/* Unhash the target: dput() will then get rid of it */
__d_drop(target);
list_del(&dentry->d_u.d_child);
list_del(&target->d_u.d_child);
/* Switch the names.. */
switch_names(dentry, target);
do_switch(dentry->d_name.len, target->d_name.len);
do_switch(dentry->d_name.hash, target->d_name.hash);
/* ... and switch the parents */
if (IS_ROOT(dentry)) {
dentry->d_parent = target->d_parent;
target->d_parent = target;
INIT_LIST_HEAD(&target->d_u.d_child);
} else {
do_switch(dentry->d_parent, target->d_parent);
/* And add them back to the (new) parent lists */
list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
}
list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
spin_unlock(&target->d_lock);
fsnotify_d_move(dentry);
spin_unlock(&dentry->d_lock);
write_sequnlock(&rename_lock);
}
/**
* d_move - move a dentry
* @dentry: entry to move
* @target: new dentry
*
* Update the dcache to reflect the move of a file name. Negative
* dcache entries should not be moved in this way.
*/
void d_move(struct dentry * dentry, struct dentry * target)
{
spin_lock(&dcache_lock);
d_move_locked(dentry, target);
spin_unlock(&dcache_lock);
}
/*
* Helper that returns 1 if p1 is a parent of p2, else 0
*/
static int d_isparent(struct dentry *p1, struct dentry *p2)
{
struct dentry *p;
for (p = p2; p->d_parent != p; p = p->d_parent) {
if (p->d_parent == p1)
return 1;
}
return 0;
}
/*
* This helper attempts to cope with remotely renamed directories
*
* It assumes that the caller is already holding
* dentry->d_parent->d_inode->i_mutex and the dcache_lock
*
* Note: If ever the locking in lock_rename() changes, then please
* remember to update this too...
*/
static struct dentry *__d_unalias(struct dentry *dentry, struct dentry *alias)
__releases(dcache_lock)
{
struct mutex *m1 = NULL, *m2 = NULL;
struct dentry *ret;
/* If alias and dentry share a parent, then no extra locks required */
if (alias->d_parent == dentry->d_parent)
goto out_unalias;
/* Check for loops */
ret = ERR_PTR(-ELOOP);
if (d_isparent(alias, dentry))
goto out_err;
/* See lock_rename() */
ret = ERR_PTR(-EBUSY);
if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
goto out_err;
m1 = &dentry->d_sb->s_vfs_rename_mutex;
if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
goto out_err;
m2 = &alias->d_parent->d_inode->i_mutex;
out_unalias:
d_move_locked(alias, dentry);
ret = alias;
out_err:
spin_unlock(&dcache_lock);
if (m2)
mutex_unlock(m2);
if (m1)
mutex_unlock(m1);
return ret;
}
/*
* Prepare an anonymous dentry for life in the superblock's dentry tree as a
* named dentry in place of the dentry to be replaced.
*/
static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
{
struct dentry *dparent, *aparent;
switch_names(dentry, anon);
do_switch(dentry->d_name.len, anon->d_name.len);
do_switch(dentry->d_name.hash, anon->d_name.hash);
dparent = dentry->d_parent;
aparent = anon->d_parent;
dentry->d_parent = (aparent == anon) ? dentry : aparent;
list_del(&dentry->d_u.d_child);
if (!IS_ROOT(dentry))
list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
else
INIT_LIST_HEAD(&dentry->d_u.d_child);
anon->d_parent = (dparent == dentry) ? anon : dparent;
list_del(&anon->d_u.d_child);
if (!IS_ROOT(anon))
list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
else
INIT_LIST_HEAD(&anon->d_u.d_child);
anon->d_flags &= ~DCACHE_DISCONNECTED;
}
/**
* d_materialise_unique - introduce an inode into the tree
* @dentry: candidate dentry
* @inode: inode to bind to the dentry, to which aliases may be attached
*
* Introduces an dentry into the tree, substituting an extant disconnected
* root directory alias in its place if there is one
*/
struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
{
struct dentry *actual;
BUG_ON(!d_unhashed(dentry));
spin_lock(&dcache_lock);
if (!inode) {
actual = dentry;
dentry->d_inode = NULL;
goto found_lock;
}
if (S_ISDIR(inode->i_mode)) {
struct dentry *alias;
/* Does an aliased dentry already exist? */
alias = __d_find_alias(inode, 0);
if (alias) {
actual = alias;
/* Is this an anonymous mountpoint that we could splice
* into our tree? */
if (IS_ROOT(alias)) {
spin_lock(&alias->d_lock);
__d_materialise_dentry(dentry, alias);
__d_drop(alias);
goto found;
}
/* Nope, but we must(!) avoid directory aliasing */
actual = __d_unalias(dentry, alias);
if (IS_ERR(actual))
dput(alias);
goto out_nolock;
}
}
/* Add a unique reference */
actual = __d_instantiate_unique(dentry, inode);
if (!actual)
actual = dentry;
else if (unlikely(!d_unhashed(actual)))
goto shouldnt_be_hashed;
found_lock:
spin_lock(&actual->d_lock);
found:
_d_rehash(actual);
spin_unlock(&actual->d_lock);
spin_unlock(&dcache_lock);
out_nolock:
if (actual == dentry) {
security_d_instantiate(dentry, inode);
return NULL;
}
iput(inode);
return actual;
shouldnt_be_hashed:
spin_unlock(&dcache_lock);
BUG();
}
static int prepend(char **buffer, int *buflen, const char *str, int namelen)
{
*buflen -= namelen;
if (*buflen < 0)
return -ENAMETOOLONG;
*buffer -= namelen;
memcpy(*buffer, str, namelen);
return 0;
}
static int prepend_name(char **buffer, int *buflen, struct qstr *name)
{
return prepend(buffer, buflen, name->name, name->len);
}
/**
* __d_path - return the path of a dentry
* @path: the dentry/vfsmount to report
* @root: root vfsmnt/dentry (may be modified by this function)
* @buffer: buffer to return value in
* @buflen: buffer length
*
* Convert a dentry into an ASCII path name. If the entry has been deleted
* the string " (deleted)" is appended. Note that this is ambiguous.
*
* Returns the buffer or an error code if the path was too long.
*
* "buflen" should be positive. Caller holds the dcache_lock.
*
* If path is not reachable from the supplied root, then the value of
* root is changed (without modifying refcounts).
*/
char *__d_path(const struct path *path, struct path *root,
char *buffer, int buflen)
{
struct dentry *dentry = path->dentry;
struct vfsmount *vfsmnt = path->mnt;
char *end = buffer + buflen;
char *retval;
spin_lock(&vfsmount_lock);
prepend(&end, &buflen, "\0", 1);
if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
(prepend(&end, &buflen, " (deleted)", 10) != 0))
goto Elong;
if (buflen < 1)
goto Elong;
/* Get '/' right */
retval = end-1;
*retval = '/';
for (;;) {
struct dentry * parent;
if (dentry == root->dentry && vfsmnt == root->mnt)
break;
if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
/* Global root? */
if (vfsmnt->mnt_parent == vfsmnt) {
goto global_root;
}
dentry = vfsmnt->mnt_mountpoint;
vfsmnt = vfsmnt->mnt_parent;
continue;
}
parent = dentry->d_parent;
prefetch(parent);
if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
(prepend(&end, &buflen, "/", 1) != 0))
goto Elong;
retval = end;
dentry = parent;
}
out:
spin_unlock(&vfsmount_lock);
return retval;
global_root:
retval += 1; /* hit the slash */
if (prepend_name(&retval, &buflen, &dentry->d_name) != 0)
goto Elong;
root->mnt = vfsmnt;
root->dentry = dentry;
goto out;
Elong:
retval = ERR_PTR(-ENAMETOOLONG);
goto out;
}
/**
* d_path - return the path of a dentry
* @path: path to report
* @buf: buffer to return value in
* @buflen: buffer length
*
* Convert a dentry into an ASCII path name. If the entry has been deleted
* the string " (deleted)" is appended. Note that this is ambiguous.
*
* Returns the buffer or an error code if the path was too long.
*
* "buflen" should be positive.
*/
char *d_path(const struct path *path, char *buf, int buflen)
{
char *res;
struct path root;
struct path tmp;
/*
* We have various synthetic filesystems that never get mounted. On
* these filesystems dentries are never used for lookup purposes, and
* thus don't need to be hashed. They also don't need a name until a
* user wants to identify the object in /proc/pid/fd/. The little hack
* below allows us to generate a name for these objects on demand:
*/
if (path->dentry->d_op && path->dentry->d_op->d_dname)
return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
read_lock(&current->fs->lock);
root = current->fs->root;
path_get(&root);
read_unlock(&current->fs->lock);
spin_lock(&dcache_lock);
tmp = root;
res = __d_path(path, &tmp, buf, buflen);
spin_unlock(&dcache_lock);
path_put(&root);
return res;
}
/*
* Helper function for dentry_operations.d_dname() members
*/
char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
const char *fmt, ...)
{
va_list args;
char temp[64];
int sz;
va_start(args, fmt);
sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
va_end(args);
if (sz > sizeof(temp) || sz > buflen)
return ERR_PTR(-ENAMETOOLONG);
buffer += buflen - sz;
return memcpy(buffer, temp, sz);
}
/*
* Write full pathname from the root of the filesystem into the buffer.
*/
char *dentry_path(struct dentry *dentry, char *buf, int buflen)
{
char *end = buf + buflen;
char *retval;
spin_lock(&dcache_lock);
prepend(&end, &buflen, "\0", 1);
if (!IS_ROOT(dentry) && d_unhashed(dentry) &&
(prepend(&end, &buflen, "//deleted", 9) != 0))
goto Elong;
if (buflen < 1)
goto Elong;
/* Get '/' right */
retval = end-1;
*retval = '/';
while (!IS_ROOT(dentry)) {
struct dentry *parent = dentry->d_parent;
prefetch(parent);
if ((prepend_name(&end, &buflen, &dentry->d_name) != 0) ||
(prepend(&end, &buflen, "/", 1) != 0))
goto Elong;
retval = end;
dentry = parent;
}
spin_unlock(&dcache_lock);
return retval;
Elong:
spin_unlock(&dcache_lock);
return ERR_PTR(-ENAMETOOLONG);
}
/*
* NOTE! The user-level library version returns a
* character pointer. The kernel system call just
* returns the length of the buffer filled (which
* includes the ending '\0' character), or a negative
* error value. So libc would do something like
*
* char *getcwd(char * buf, size_t size)
* {
* int retval;
*
* retval = sys_getcwd(buf, size);
* if (retval >= 0)
* return buf;
* errno = -retval;
* return NULL;
* }
*/
asmlinkage long sys_getcwd(char __user *buf, unsigned long size)
{
int error;
struct path pwd, root;
char *page = (char *) __get_free_page(GFP_USER);
if (!page)
return -ENOMEM;
read_lock(&current->fs->lock);
pwd = current->fs->pwd;
path_get(&pwd);
root = current->fs->root;
path_get(&root);
read_unlock(&current->fs->lock);
error = -ENOENT;
/* Has the current directory has been unlinked? */
spin_lock(&dcache_lock);
if (IS_ROOT(pwd.dentry) || !d_unhashed(pwd.dentry)) {
unsigned long len;
struct path tmp = root;
char * cwd;
cwd = __d_path(&pwd, &tmp, page, PAGE_SIZE);
spin_unlock(&dcache_lock);
error = PTR_ERR(cwd);
if (IS_ERR(cwd))
goto out;
error = -ERANGE;
len = PAGE_SIZE + page - cwd;
if (len <= size) {
error = len;
if (copy_to_user(buf, cwd, len))
error = -EFAULT;
}
} else
spin_unlock(&dcache_lock);
out:
path_put(&pwd);
path_put(&root);
free_page((unsigned long) page);
return error;
}
/*
* Test whether new_dentry is a subdirectory of old_dentry.
*
* Trivially implemented using the dcache structure
*/
/**
* is_subdir - is new dentry a subdirectory of old_dentry
* @new_dentry: new dentry
* @old_dentry: old dentry
*
* Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
* Returns 0 otherwise.
* Caller must ensure that "new_dentry" is pinned before calling is_subdir()
*/
int is_subdir(struct dentry * new_dentry, struct dentry * old_dentry)
{
int result;
struct dentry * saved = new_dentry;
unsigned long seq;
/* need rcu_readlock to protect against the d_parent trashing due to
* d_move
*/
rcu_read_lock();
do {
/* for restarting inner loop in case of seq retry */
new_dentry = saved;
result = 0;
seq = read_seqbegin(&rename_lock);
for (;;) {
if (new_dentry != old_dentry) {
struct dentry * parent = new_dentry->d_parent;
if (parent == new_dentry)
break;
new_dentry = parent;
continue;
}
result = 1;
break;
}
} while (read_seqretry(&rename_lock, seq));
rcu_read_unlock();
return result;
}
void d_genocide(struct dentry *root)
{
struct dentry *this_parent = root;
struct list_head *next;
spin_lock(&dcache_lock);
repeat:
next = this_parent->d_subdirs.next;
resume:
while (next != &this_parent->d_subdirs) {
struct list_head *tmp = next;
struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
next = tmp->next;
if (d_unhashed(dentry)||!dentry->d_inode)
continue;
if (!list_empty(&dentry->d_subdirs)) {
this_parent = dentry;
goto repeat;
}
atomic_dec(&dentry->d_count);
}
if (this_parent != root) {
next = this_parent->d_u.d_child.next;
atomic_dec(&this_parent->d_count);
this_parent = this_parent->d_parent;
goto resume;
}
spin_unlock(&dcache_lock);
}
/**
* find_inode_number - check for dentry with name
* @dir: directory to check
* @name: Name to find.
*
* Check whether a dentry already exists for the given name,
* and return the inode number if it has an inode. Otherwise
* 0 is returned.
*
* This routine is used to post-process directory listings for
* filesystems using synthetic inode numbers, and is necessary
* to keep getcwd() working.
*/
ino_t find_inode_number(struct dentry *dir, struct qstr *name)
{
struct dentry * dentry;
ino_t ino = 0;
dentry = d_hash_and_lookup(dir, name);
if (dentry) {
if (dentry->d_inode)
ino = dentry->d_inode->i_ino;
dput(dentry);
}
return ino;
}
static __initdata unsigned long dhash_entries;
static int __init set_dhash_entries(char *str)
{
if (!str)
return 0;
dhash_entries = simple_strtoul(str, &str, 0);
return 1;
}
__setup("dhash_entries=", set_dhash_entries);
static void __init dcache_init_early(void)
{
int loop;
/* If hashes are distributed across NUMA nodes, defer
* hash allocation until vmalloc space is available.
*/
if (hashdist)
return;
dentry_hashtable =
alloc_large_system_hash("Dentry cache",
sizeof(struct hlist_head),
dhash_entries,
13,
HASH_EARLY,
&d_hash_shift,
&d_hash_mask,
0);
for (loop = 0; loop < (1 << d_hash_shift); loop++)
INIT_HLIST_HEAD(&dentry_hashtable[loop]);
}
static void __init dcache_init(void)
{
int loop;
/*
* A constructor could be added for stable state like the lists,
* but it is probably not worth it because of the cache nature
* of the dcache.
*/
dentry_cache = KMEM_CACHE(dentry,
SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
register_shrinker(&dcache_shrinker);
/* Hash may have been set up in dcache_init_early */
if (!hashdist)
return;
dentry_hashtable =
alloc_large_system_hash("Dentry cache",
sizeof(struct hlist_head),
dhash_entries,
13,
0,
&d_hash_shift,
&d_hash_mask,
0);
for (loop = 0; loop < (1 << d_hash_shift); loop++)
INIT_HLIST_HEAD(&dentry_hashtable[loop]);
}
/* SLAB cache for __getname() consumers */
struct kmem_cache *names_cachep __read_mostly;
/* SLAB cache for file structures */
struct kmem_cache *filp_cachep __read_mostly;
EXPORT_SYMBOL(d_genocide);
void __init vfs_caches_init_early(void)
{
dcache_init_early();
inode_init_early();
}
void __init vfs_caches_init(unsigned long mempages)
{
unsigned long reserve;
/* Base hash sizes on available memory, with a reserve equal to
150% of current kernel size */
reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
mempages -= reserve;
names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
filp_cachep = kmem_cache_create("filp", sizeof(struct file), 0,
SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
dcache_init();
inode_init();
files_init(mempages);
mnt_init();
bdev_cache_init();
chrdev_init();
}
EXPORT_SYMBOL(d_alloc);
EXPORT_SYMBOL(d_alloc_anon);
EXPORT_SYMBOL(d_alloc_root);
EXPORT_SYMBOL(d_delete);
EXPORT_SYMBOL(d_find_alias);
EXPORT_SYMBOL(d_instantiate);
EXPORT_SYMBOL(d_invalidate);
EXPORT_SYMBOL(d_lookup);
EXPORT_SYMBOL(d_move);
EXPORT_SYMBOL_GPL(d_materialise_unique);
EXPORT_SYMBOL(d_path);
EXPORT_SYMBOL(d_prune_aliases);
EXPORT_SYMBOL(d_rehash);
EXPORT_SYMBOL(d_splice_alias);
EXPORT_SYMBOL(d_add_ci);
EXPORT_SYMBOL(d_validate);
EXPORT_SYMBOL(dget_locked);
EXPORT_SYMBOL(dput);
EXPORT_SYMBOL(find_inode_number);
EXPORT_SYMBOL(have_submounts);
EXPORT_SYMBOL(names_cachep);
EXPORT_SYMBOL(shrink_dcache_parent);
EXPORT_SYMBOL(shrink_dcache_sb);