2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 15:13:55 +08:00
linux-next/arch/x86/kvm/mmu/paging_tmpl.h
Sean Christopherson d8dd54e063 KVM: x86/mmu: Rename kvm_mmu->get_cr3() to ->get_guest_pgd()
Rename kvm_mmu->get_cr3() to call out that it is retrieving a guest
value, as opposed to kvm_mmu->set_cr3(), which sets a host value, and to
note that it will return something other than CR3 when nested EPT is in
use.  Hopefully the new name will also make it more obvious that L1's
nested_cr3 is returned in SVM's nested NPT case.

No functional change intended.

Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2020-03-16 17:57:46 +01:00

1101 lines
31 KiB
C

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Kernel-based Virtual Machine driver for Linux
*
* This module enables machines with Intel VT-x extensions to run virtual
* machines without emulation or binary translation.
*
* MMU support
*
* Copyright (C) 2006 Qumranet, Inc.
* Copyright 2010 Red Hat, Inc. and/or its affiliates.
*
* Authors:
* Yaniv Kamay <yaniv@qumranet.com>
* Avi Kivity <avi@qumranet.com>
*/
/*
* We need the mmu code to access both 32-bit and 64-bit guest ptes,
* so the code in this file is compiled twice, once per pte size.
*/
#if PTTYPE == 64
#define pt_element_t u64
#define guest_walker guest_walker64
#define FNAME(name) paging##64_##name
#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
#define PT_LEVEL_BITS PT64_LEVEL_BITS
#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
#define PT_HAVE_ACCESSED_DIRTY(mmu) true
#ifdef CONFIG_X86_64
#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
#define CMPXCHG cmpxchg
#else
#define CMPXCHG cmpxchg64
#define PT_MAX_FULL_LEVELS 2
#endif
#elif PTTYPE == 32
#define pt_element_t u32
#define guest_walker guest_walker32
#define FNAME(name) paging##32_##name
#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
#define PT_LEVEL_BITS PT32_LEVEL_BITS
#define PT_MAX_FULL_LEVELS 2
#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
#define PT_HAVE_ACCESSED_DIRTY(mmu) true
#define CMPXCHG cmpxchg
#elif PTTYPE == PTTYPE_EPT
#define pt_element_t u64
#define guest_walker guest_walkerEPT
#define FNAME(name) ept_##name
#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
#define PT_LEVEL_BITS PT64_LEVEL_BITS
#define PT_GUEST_DIRTY_SHIFT 9
#define PT_GUEST_ACCESSED_SHIFT 8
#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
#define CMPXCHG cmpxchg64
#define PT_MAX_FULL_LEVELS PT64_ROOT_MAX_LEVEL
#else
#error Invalid PTTYPE value
#endif
#define PT_GUEST_DIRTY_MASK (1 << PT_GUEST_DIRTY_SHIFT)
#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)
#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
/*
* The guest_walker structure emulates the behavior of the hardware page
* table walker.
*/
struct guest_walker {
int level;
unsigned max_level;
gfn_t table_gfn[PT_MAX_FULL_LEVELS];
pt_element_t ptes[PT_MAX_FULL_LEVELS];
pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
bool pte_writable[PT_MAX_FULL_LEVELS];
unsigned pt_access;
unsigned pte_access;
gfn_t gfn;
struct x86_exception fault;
};
static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
{
return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
}
static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
unsigned gpte)
{
unsigned mask;
/* dirty bit is not supported, so no need to track it */
if (!PT_HAVE_ACCESSED_DIRTY(mmu))
return;
BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
mask = (unsigned)~ACC_WRITE_MASK;
/* Allow write access to dirty gptes */
mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
PT_WRITABLE_MASK;
*access &= mask;
}
static inline int FNAME(is_present_gpte)(unsigned long pte)
{
#if PTTYPE != PTTYPE_EPT
return pte & PT_PRESENT_MASK;
#else
return pte & 7;
#endif
}
static bool FNAME(is_bad_mt_xwr)(struct rsvd_bits_validate *rsvd_check, u64 gpte)
{
#if PTTYPE != PTTYPE_EPT
return false;
#else
return __is_bad_mt_xwr(rsvd_check, gpte);
#endif
}
static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level)
{
return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level) ||
FNAME(is_bad_mt_xwr)(&mmu->guest_rsvd_check, gpte);
}
static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
pt_element_t __user *ptep_user, unsigned index,
pt_element_t orig_pte, pt_element_t new_pte)
{
int npages;
pt_element_t ret;
pt_element_t *table;
struct page *page;
npages = get_user_pages_fast((unsigned long)ptep_user, 1, FOLL_WRITE, &page);
if (likely(npages == 1)) {
table = kmap_atomic(page);
ret = CMPXCHG(&table[index], orig_pte, new_pte);
kunmap_atomic(table);
kvm_release_page_dirty(page);
} else {
struct vm_area_struct *vma;
unsigned long vaddr = (unsigned long)ptep_user & PAGE_MASK;
unsigned long pfn;
unsigned long paddr;
down_read(&current->mm->mmap_sem);
vma = find_vma_intersection(current->mm, vaddr, vaddr + PAGE_SIZE);
if (!vma || !(vma->vm_flags & VM_PFNMAP)) {
up_read(&current->mm->mmap_sem);
return -EFAULT;
}
pfn = ((vaddr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
paddr = pfn << PAGE_SHIFT;
table = memremap(paddr, PAGE_SIZE, MEMREMAP_WB);
if (!table) {
up_read(&current->mm->mmap_sem);
return -EFAULT;
}
ret = CMPXCHG(&table[index], orig_pte, new_pte);
memunmap(table);
up_read(&current->mm->mmap_sem);
}
return (ret != orig_pte);
}
static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, u64 *spte,
u64 gpte)
{
if (!FNAME(is_present_gpte)(gpte))
goto no_present;
/* if accessed bit is not supported prefetch non accessed gpte */
if (PT_HAVE_ACCESSED_DIRTY(vcpu->arch.mmu) &&
!(gpte & PT_GUEST_ACCESSED_MASK))
goto no_present;
if (FNAME(is_rsvd_bits_set)(vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
goto no_present;
return false;
no_present:
drop_spte(vcpu->kvm, spte);
return true;
}
/*
* For PTTYPE_EPT, a page table can be executable but not readable
* on supported processors. Therefore, set_spte does not automatically
* set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
* to signify readability since it isn't used in the EPT case
*/
static inline unsigned FNAME(gpte_access)(u64 gpte)
{
unsigned access;
#if PTTYPE == PTTYPE_EPT
access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
#else
BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
BUILD_BUG_ON(ACC_EXEC_MASK != 1);
access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
/* Combine NX with P (which is set here) to get ACC_EXEC_MASK. */
access ^= (gpte >> PT64_NX_SHIFT);
#endif
return access;
}
static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
struct kvm_mmu *mmu,
struct guest_walker *walker,
int write_fault)
{
unsigned level, index;
pt_element_t pte, orig_pte;
pt_element_t __user *ptep_user;
gfn_t table_gfn;
int ret;
/* dirty/accessed bits are not supported, so no need to update them */
if (!PT_HAVE_ACCESSED_DIRTY(mmu))
return 0;
for (level = walker->max_level; level >= walker->level; --level) {
pte = orig_pte = walker->ptes[level - 1];
table_gfn = walker->table_gfn[level - 1];
ptep_user = walker->ptep_user[level - 1];
index = offset_in_page(ptep_user) / sizeof(pt_element_t);
if (!(pte & PT_GUEST_ACCESSED_MASK)) {
trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
pte |= PT_GUEST_ACCESSED_MASK;
}
if (level == walker->level && write_fault &&
!(pte & PT_GUEST_DIRTY_MASK)) {
trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
#if PTTYPE == PTTYPE_EPT
if (kvm_arch_write_log_dirty(vcpu))
return -EINVAL;
#endif
pte |= PT_GUEST_DIRTY_MASK;
}
if (pte == orig_pte)
continue;
/*
* If the slot is read-only, simply do not process the accessed
* and dirty bits. This is the correct thing to do if the slot
* is ROM, and page tables in read-as-ROM/write-as-MMIO slots
* are only supported if the accessed and dirty bits are already
* set in the ROM (so that MMIO writes are never needed).
*
* Note that NPT does not allow this at all and faults, since
* it always wants nested page table entries for the guest
* page tables to be writable. And EPT works but will simply
* overwrite the read-only memory to set the accessed and dirty
* bits.
*/
if (unlikely(!walker->pte_writable[level - 1]))
continue;
ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
if (ret)
return ret;
kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
walker->ptes[level - 1] = pte;
}
return 0;
}
static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
{
unsigned pkeys = 0;
#if PTTYPE == 64
pte_t pte = {.pte = gpte};
pkeys = pte_flags_pkey(pte_flags(pte));
#endif
return pkeys;
}
/*
* Fetch a guest pte for a guest virtual address, or for an L2's GPA.
*/
static int FNAME(walk_addr_generic)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gpa_t addr, u32 access)
{
int ret;
pt_element_t pte;
pt_element_t __user *uninitialized_var(ptep_user);
gfn_t table_gfn;
u64 pt_access, pte_access;
unsigned index, accessed_dirty, pte_pkey;
unsigned nested_access;
gpa_t pte_gpa;
bool have_ad;
int offset;
u64 walk_nx_mask = 0;
const int write_fault = access & PFERR_WRITE_MASK;
const int user_fault = access & PFERR_USER_MASK;
const int fetch_fault = access & PFERR_FETCH_MASK;
u16 errcode = 0;
gpa_t real_gpa;
gfn_t gfn;
trace_kvm_mmu_pagetable_walk(addr, access);
retry_walk:
walker->level = mmu->root_level;
pte = mmu->get_guest_pgd(vcpu);
have_ad = PT_HAVE_ACCESSED_DIRTY(mmu);
#if PTTYPE == 64
walk_nx_mask = 1ULL << PT64_NX_SHIFT;
if (walker->level == PT32E_ROOT_LEVEL) {
pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
trace_kvm_mmu_paging_element(pte, walker->level);
if (!FNAME(is_present_gpte)(pte))
goto error;
--walker->level;
}
#endif
walker->max_level = walker->level;
ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));
/*
* FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
* by the MOV to CR instruction are treated as reads and do not cause the
* processor to set the dirty flag in any EPT paging-structure entry.
*/
nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;
pte_access = ~0;
++walker->level;
do {
gfn_t real_gfn;
unsigned long host_addr;
pt_access = pte_access;
--walker->level;
index = PT_INDEX(addr, walker->level);
table_gfn = gpte_to_gfn(pte);
offset = index * sizeof(pt_element_t);
pte_gpa = gfn_to_gpa(table_gfn) + offset;
BUG_ON(walker->level < 1);
walker->table_gfn[walker->level - 1] = table_gfn;
walker->pte_gpa[walker->level - 1] = pte_gpa;
real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
nested_access,
&walker->fault);
/*
* FIXME: This can happen if emulation (for of an INS/OUTS
* instruction) triggers a nested page fault. The exit
* qualification / exit info field will incorrectly have
* "guest page access" as the nested page fault's cause,
* instead of "guest page structure access". To fix this,
* the x86_exception struct should be augmented with enough
* information to fix the exit_qualification or exit_info_1
* fields.
*/
if (unlikely(real_gfn == UNMAPPED_GVA))
return 0;
real_gfn = gpa_to_gfn(real_gfn);
host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
&walker->pte_writable[walker->level - 1]);
if (unlikely(kvm_is_error_hva(host_addr)))
goto error;
ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
goto error;
walker->ptep_user[walker->level - 1] = ptep_user;
trace_kvm_mmu_paging_element(pte, walker->level);
/*
* Inverting the NX it lets us AND it like other
* permission bits.
*/
pte_access = pt_access & (pte ^ walk_nx_mask);
if (unlikely(!FNAME(is_present_gpte)(pte)))
goto error;
if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) {
errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
goto error;
}
walker->ptes[walker->level - 1] = pte;
} while (!is_last_gpte(mmu, walker->level, pte));
pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;
/* Convert to ACC_*_MASK flags for struct guest_walker. */
walker->pt_access = FNAME(gpte_access)(pt_access ^ walk_nx_mask);
walker->pte_access = FNAME(gpte_access)(pte_access ^ walk_nx_mask);
errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
if (unlikely(errcode))
goto error;
gfn = gpte_to_gfn_lvl(pte, walker->level);
gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;
if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
gfn += pse36_gfn_delta(pte);
real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
if (real_gpa == UNMAPPED_GVA)
return 0;
walker->gfn = real_gpa >> PAGE_SHIFT;
if (!write_fault)
FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
else
/*
* On a write fault, fold the dirty bit into accessed_dirty.
* For modes without A/D bits support accessed_dirty will be
* always clear.
*/
accessed_dirty &= pte >>
(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);
if (unlikely(!accessed_dirty)) {
ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
if (unlikely(ret < 0))
goto error;
else if (ret)
goto retry_walk;
}
pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
__func__, (u64)pte, walker->pte_access, walker->pt_access);
return 1;
error:
errcode |= write_fault | user_fault;
if (fetch_fault && (mmu->nx ||
kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
errcode |= PFERR_FETCH_MASK;
walker->fault.vector = PF_VECTOR;
walker->fault.error_code_valid = true;
walker->fault.error_code = errcode;
#if PTTYPE == PTTYPE_EPT
/*
* Use PFERR_RSVD_MASK in error_code to to tell if EPT
* misconfiguration requires to be injected. The detection is
* done by is_rsvd_bits_set() above.
*
* We set up the value of exit_qualification to inject:
* [2:0] - Derive from the access bits. The exit_qualification might be
* out of date if it is serving an EPT misconfiguration.
* [5:3] - Calculated by the page walk of the guest EPT page tables
* [7:8] - Derived from [7:8] of real exit_qualification
*
* The other bits are set to 0.
*/
if (!(errcode & PFERR_RSVD_MASK)) {
vcpu->arch.exit_qualification &= 0x180;
if (write_fault)
vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
if (user_fault)
vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
if (fetch_fault)
vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
}
#endif
walker->fault.address = addr;
walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;
trace_kvm_mmu_walker_error(walker->fault.error_code);
return 0;
}
static int FNAME(walk_addr)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, gpa_t addr, u32 access)
{
return FNAME(walk_addr_generic)(walker, vcpu, vcpu->arch.mmu, addr,
access);
}
#if PTTYPE != PTTYPE_EPT
static int FNAME(walk_addr_nested)(struct guest_walker *walker,
struct kvm_vcpu *vcpu, gva_t addr,
u32 access)
{
return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
addr, access);
}
#endif
static bool
FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
u64 *spte, pt_element_t gpte, bool no_dirty_log)
{
unsigned pte_access;
gfn_t gfn;
kvm_pfn_t pfn;
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
return false;
pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);
gfn = gpte_to_gfn(gpte);
pte_access = sp->role.access & FNAME(gpte_access)(gpte);
FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
no_dirty_log && (pte_access & ACC_WRITE_MASK));
if (is_error_pfn(pfn))
return false;
/*
* we call mmu_set_spte() with host_writable = true because
* pte_prefetch_gfn_to_pfn always gets a writable pfn.
*/
mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
true, true);
kvm_release_pfn_clean(pfn);
return true;
}
static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
u64 *spte, const void *pte)
{
pt_element_t gpte = *(const pt_element_t *)pte;
FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
}
static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
struct guest_walker *gw, int level)
{
pt_element_t curr_pte;
gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
u64 mask;
int r, index;
if (level == PT_PAGE_TABLE_LEVEL) {
mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
base_gpa = pte_gpa & ~mask;
index = (pte_gpa - base_gpa) / sizeof(pt_element_t);
r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
curr_pte = gw->prefetch_ptes[index];
} else
r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
&curr_pte, sizeof(curr_pte));
return r || curr_pte != gw->ptes[level - 1];
}
static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
u64 *sptep)
{
struct kvm_mmu_page *sp;
pt_element_t *gptep = gw->prefetch_ptes;
u64 *spte;
int i;
sp = page_header(__pa(sptep));
if (sp->role.level > PT_PAGE_TABLE_LEVEL)
return;
if (sp->role.direct)
return __direct_pte_prefetch(vcpu, sp, sptep);
i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
spte = sp->spt + i;
for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
if (spte == sptep)
continue;
if (is_shadow_present_pte(*spte))
continue;
if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
break;
}
}
/*
* Fetch a shadow pte for a specific level in the paging hierarchy.
* If the guest tries to write a write-protected page, we need to
* emulate this operation, return 1 to indicate this case.
*/
static int FNAME(fetch)(struct kvm_vcpu *vcpu, gpa_t addr,
struct guest_walker *gw,
int write_fault, int max_level,
kvm_pfn_t pfn, bool map_writable, bool prefault,
bool lpage_disallowed)
{
struct kvm_mmu_page *sp = NULL;
struct kvm_shadow_walk_iterator it;
unsigned direct_access, access = gw->pt_access;
int top_level, hlevel, ret;
gfn_t base_gfn = gw->gfn;
direct_access = gw->pte_access;
top_level = vcpu->arch.mmu->root_level;
if (top_level == PT32E_ROOT_LEVEL)
top_level = PT32_ROOT_LEVEL;
/*
* Verify that the top-level gpte is still there. Since the page
* is a root page, it is either write protected (and cannot be
* changed from now on) or it is invalid (in which case, we don't
* really care if it changes underneath us after this point).
*/
if (FNAME(gpte_changed)(vcpu, gw, top_level))
goto out_gpte_changed;
if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
goto out_gpte_changed;
for (shadow_walk_init(&it, vcpu, addr);
shadow_walk_okay(&it) && it.level > gw->level;
shadow_walk_next(&it)) {
gfn_t table_gfn;
clear_sp_write_flooding_count(it.sptep);
drop_large_spte(vcpu, it.sptep);
sp = NULL;
if (!is_shadow_present_pte(*it.sptep)) {
table_gfn = gw->table_gfn[it.level - 2];
sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
false, access);
}
/*
* Verify that the gpte in the page we've just write
* protected is still there.
*/
if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
goto out_gpte_changed;
if (sp)
link_shadow_page(vcpu, it.sptep, sp);
}
hlevel = kvm_mmu_hugepage_adjust(vcpu, gw->gfn, max_level, &pfn);
trace_kvm_mmu_spte_requested(addr, gw->level, pfn);
for (; shadow_walk_okay(&it); shadow_walk_next(&it)) {
clear_sp_write_flooding_count(it.sptep);
/*
* We cannot overwrite existing page tables with an NX
* large page, as the leaf could be executable.
*/
disallowed_hugepage_adjust(it, gw->gfn, &pfn, &hlevel);
base_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
if (it.level == hlevel)
break;
validate_direct_spte(vcpu, it.sptep, direct_access);
drop_large_spte(vcpu, it.sptep);
if (!is_shadow_present_pte(*it.sptep)) {
sp = kvm_mmu_get_page(vcpu, base_gfn, addr,
it.level - 1, true, direct_access);
link_shadow_page(vcpu, it.sptep, sp);
if (lpage_disallowed)
account_huge_nx_page(vcpu->kvm, sp);
}
}
ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
it.level, base_gfn, pfn, prefault, map_writable);
FNAME(pte_prefetch)(vcpu, gw, it.sptep);
++vcpu->stat.pf_fixed;
return ret;
out_gpte_changed:
return RET_PF_RETRY;
}
/*
* To see whether the mapped gfn can write its page table in the current
* mapping.
*
* It is the helper function of FNAME(page_fault). When guest uses large page
* size to map the writable gfn which is used as current page table, we should
* force kvm to use small page size to map it because new shadow page will be
* created when kvm establishes shadow page table that stop kvm using large
* page size. Do it early can avoid unnecessary #PF and emulation.
*
* @write_fault_to_shadow_pgtable will return true if the fault gfn is
* currently used as its page table.
*
* Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
* since the PDPT is always shadowed, that means, we can not use large page
* size to map the gfn which is used as PDPT.
*/
static bool
FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
struct guest_walker *walker, int user_fault,
bool *write_fault_to_shadow_pgtable)
{
int level;
gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
bool self_changed = false;
if (!(walker->pte_access & ACC_WRITE_MASK ||
(!is_write_protection(vcpu) && !user_fault)))
return false;
for (level = walker->level; level <= walker->max_level; level++) {
gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];
self_changed |= !(gfn & mask);
*write_fault_to_shadow_pgtable |= !gfn;
}
return self_changed;
}
/*
* Page fault handler. There are several causes for a page fault:
* - there is no shadow pte for the guest pte
* - write access through a shadow pte marked read only so that we can set
* the dirty bit
* - write access to a shadow pte marked read only so we can update the page
* dirty bitmap, when userspace requests it
* - mmio access; in this case we will never install a present shadow pte
* - normal guest page fault due to the guest pte marked not present, not
* writable, or not executable
*
* Returns: 1 if we need to emulate the instruction, 0 otherwise, or
* a negative value on error.
*/
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gpa_t addr, u32 error_code,
bool prefault)
{
int write_fault = error_code & PFERR_WRITE_MASK;
int user_fault = error_code & PFERR_USER_MASK;
struct guest_walker walker;
int r;
kvm_pfn_t pfn;
unsigned long mmu_seq;
bool map_writable, is_self_change_mapping;
bool lpage_disallowed = (error_code & PFERR_FETCH_MASK) &&
is_nx_huge_page_enabled();
int max_level;
pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);
r = mmu_topup_memory_caches(vcpu);
if (r)
return r;
/*
* If PFEC.RSVD is set, this is a shadow page fault.
* The bit needs to be cleared before walking guest page tables.
*/
error_code &= ~PFERR_RSVD_MASK;
/*
* Look up the guest pte for the faulting address.
*/
r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);
/*
* The page is not mapped by the guest. Let the guest handle it.
*/
if (!r) {
pgprintk("%s: guest page fault\n", __func__);
if (!prefault)
inject_page_fault(vcpu, &walker.fault);
return RET_PF_RETRY;
}
if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
shadow_page_table_clear_flood(vcpu, addr);
return RET_PF_EMULATE;
}
vcpu->arch.write_fault_to_shadow_pgtable = false;
is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
&walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);
if (lpage_disallowed || is_self_change_mapping)
max_level = PT_PAGE_TABLE_LEVEL;
else
max_level = walker.level;
mmu_seq = vcpu->kvm->mmu_notifier_seq;
smp_rmb();
if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
&map_writable))
return RET_PF_RETRY;
if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
return r;
/*
* Do not change pte_access if the pfn is a mmio page, otherwise
* we will cache the incorrect access into mmio spte.
*/
if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
!is_write_protection(vcpu) && !user_fault &&
!is_noslot_pfn(pfn)) {
walker.pte_access |= ACC_WRITE_MASK;
walker.pte_access &= ~ACC_USER_MASK;
/*
* If we converted a user page to a kernel page,
* so that the kernel can write to it when cr0.wp=0,
* then we should prevent the kernel from executing it
* if SMEP is enabled.
*/
if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
walker.pte_access &= ~ACC_EXEC_MASK;
}
r = RET_PF_RETRY;
spin_lock(&vcpu->kvm->mmu_lock);
if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
goto out_unlock;
kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
if (make_mmu_pages_available(vcpu) < 0)
goto out_unlock;
r = FNAME(fetch)(vcpu, addr, &walker, write_fault, max_level, pfn,
map_writable, prefault, lpage_disallowed);
kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
out_unlock:
spin_unlock(&vcpu->kvm->mmu_lock);
kvm_release_pfn_clean(pfn);
return r;
}
static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
{
int offset = 0;
WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
if (PTTYPE == 32)
offset = sp->role.quadrant << PT64_LEVEL_BITS;
return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
}
static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
{
struct kvm_shadow_walk_iterator iterator;
struct kvm_mmu_page *sp;
int level;
u64 *sptep;
vcpu_clear_mmio_info(vcpu, gva);
/*
* No need to check return value here, rmap_can_add() can
* help us to skip pte prefetch later.
*/
mmu_topup_memory_caches(vcpu);
if (!VALID_PAGE(root_hpa)) {
WARN_ON(1);
return;
}
spin_lock(&vcpu->kvm->mmu_lock);
for_each_shadow_entry_using_root(vcpu, root_hpa, gva, iterator) {
level = iterator.level;
sptep = iterator.sptep;
sp = page_header(__pa(sptep));
if (is_last_spte(*sptep, level)) {
pt_element_t gpte;
gpa_t pte_gpa;
if (!sp->unsync)
break;
pte_gpa = FNAME(get_level1_sp_gpa)(sp);
pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
kvm_flush_remote_tlbs_with_address(vcpu->kvm,
sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
if (!rmap_can_add(vcpu))
break;
if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
sizeof(pt_element_t)))
break;
FNAME(update_pte)(vcpu, sp, sptep, &gpte);
}
if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
break;
}
spin_unlock(&vcpu->kvm->mmu_lock);
}
/* Note, @addr is a GPA when gva_to_gpa() translates an L2 GPA to an L1 GPA. */
static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gpa_t addr, u32 access,
struct x86_exception *exception)
{
struct guest_walker walker;
gpa_t gpa = UNMAPPED_GVA;
int r;
r = FNAME(walk_addr)(&walker, vcpu, addr, access);
if (r) {
gpa = gfn_to_gpa(walker.gfn);
gpa |= addr & ~PAGE_MASK;
} else if (exception)
*exception = walker.fault;
return gpa;
}
#if PTTYPE != PTTYPE_EPT
/* Note, gva_to_gpa_nested() is only used to translate L2 GVAs. */
static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gpa_t vaddr,
u32 access,
struct x86_exception *exception)
{
struct guest_walker walker;
gpa_t gpa = UNMAPPED_GVA;
int r;
#ifndef CONFIG_X86_64
/* A 64-bit GVA should be impossible on 32-bit KVM. */
WARN_ON_ONCE(vaddr >> 32);
#endif
r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);
if (r) {
gpa = gfn_to_gpa(walker.gfn);
gpa |= vaddr & ~PAGE_MASK;
} else if (exception)
*exception = walker.fault;
return gpa;
}
#endif
/*
* Using the cached information from sp->gfns is safe because:
* - The spte has a reference to the struct page, so the pfn for a given gfn
* can't change unless all sptes pointing to it are nuked first.
*
* Note:
* We should flush all tlbs if spte is dropped even though guest is
* responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
* and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
* used by guest then tlbs are not flushed, so guest is allowed to access the
* freed pages.
* And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
*/
static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
int i, nr_present = 0;
bool host_writable;
gpa_t first_pte_gpa;
int set_spte_ret = 0;
/* direct kvm_mmu_page can not be unsync. */
BUG_ON(sp->role.direct);
first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);
for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
unsigned pte_access;
pt_element_t gpte;
gpa_t pte_gpa;
gfn_t gfn;
if (!sp->spt[i])
continue;
pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);
if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
sizeof(pt_element_t)))
return 0;
if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
/*
* Update spte before increasing tlbs_dirty to make
* sure no tlb flush is lost after spte is zapped; see
* the comments in kvm_flush_remote_tlbs().
*/
smp_wmb();
vcpu->kvm->tlbs_dirty++;
continue;
}
gfn = gpte_to_gfn(gpte);
pte_access = sp->role.access;
pte_access &= FNAME(gpte_access)(gpte);
FNAME(protect_clean_gpte)(vcpu->arch.mmu, &pte_access, gpte);
if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
&nr_present))
continue;
if (gfn != sp->gfns[i]) {
drop_spte(vcpu->kvm, &sp->spt[i]);
/*
* The same as above where we are doing
* prefetch_invalid_gpte().
*/
smp_wmb();
vcpu->kvm->tlbs_dirty++;
continue;
}
nr_present++;
host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;
set_spte_ret |= set_spte(vcpu, &sp->spt[i],
pte_access, PT_PAGE_TABLE_LEVEL,
gfn, spte_to_pfn(sp->spt[i]),
true, false, host_writable);
}
if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH)
kvm_flush_remote_tlbs(vcpu->kvm);
return nr_present;
}
#undef pt_element_t
#undef guest_walker
#undef FNAME
#undef PT_BASE_ADDR_MASK
#undef PT_INDEX
#undef PT_LVL_ADDR_MASK
#undef PT_LVL_OFFSET_MASK
#undef PT_LEVEL_BITS
#undef PT_MAX_FULL_LEVELS
#undef gpte_to_gfn
#undef gpte_to_gfn_lvl
#undef CMPXCHG
#undef PT_GUEST_ACCESSED_MASK
#undef PT_GUEST_DIRTY_MASK
#undef PT_GUEST_DIRTY_SHIFT
#undef PT_GUEST_ACCESSED_SHIFT
#undef PT_HAVE_ACCESSED_DIRTY