2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-23 12:43:55 +08:00
linux-next/drivers/scsi/aic7xxx/aic79xx_inline.h
Adrian Bunk 289fe5b1f9 [SCSI] aic7xxx: cleanups
- make needlessly global code static

- #if 0 the following unused global functions:
  - aic79xx_core.c: ahd_print_scb
  - aic79xx_core.c: ahd_suspend
  - aic79xx_core.c: ahd_resume
  - aic79xx_core.c: ahd_dump_scbs
  - aic79xx_osm.c: ahd_softc_comp

Signed-off-by: Adrian Bunk <bunk@stusta.de>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Acked-by: Hannes Reinecke <hare@suse.de>
Signed-off-by: James Bottomley <James.Bottomley@SteelEye.com>
2006-10-25 15:14:21 -07:00

952 lines
28 KiB
C

/*
* Inline routines shareable across OS platforms.
*
* Copyright (c) 1994-2001 Justin T. Gibbs.
* Copyright (c) 2000-2003 Adaptec Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification.
* 2. Redistributions in binary form must reproduce at minimum a disclaimer
* substantially similar to the "NO WARRANTY" disclaimer below
* ("Disclaimer") and any redistribution must be conditioned upon
* including a substantially similar Disclaimer requirement for further
* binary redistribution.
* 3. Neither the names of the above-listed copyright holders nor the names
* of any contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* Alternatively, this software may be distributed under the terms of the
* GNU General Public License ("GPL") version 2 as published by the Free
* Software Foundation.
*
* NO WARRANTY
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
* IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGES.
*
* $Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#59 $
*
* $FreeBSD$
*/
#ifndef _AIC79XX_INLINE_H_
#define _AIC79XX_INLINE_H_
/******************************** Debugging ***********************************/
static __inline char *ahd_name(struct ahd_softc *ahd);
static __inline char *
ahd_name(struct ahd_softc *ahd)
{
return (ahd->name);
}
/************************ Sequencer Execution Control *************************/
static __inline void ahd_known_modes(struct ahd_softc *ahd,
ahd_mode src, ahd_mode dst);
static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
ahd_mode src,
ahd_mode dst);
static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
ahd_mode_state state,
ahd_mode *src, ahd_mode *dst);
static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
ahd_mode dst);
static __inline void ahd_update_modes(struct ahd_softc *ahd);
static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file,
int line);
static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
static __inline void ahd_restore_modes(struct ahd_softc *ahd,
ahd_mode_state state);
static __inline int ahd_is_paused(struct ahd_softc *ahd);
static __inline void ahd_pause(struct ahd_softc *ahd);
static __inline void ahd_unpause(struct ahd_softc *ahd);
static __inline void
ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
ahd->src_mode = src;
ahd->dst_mode = dst;
ahd->saved_src_mode = src;
ahd->saved_dst_mode = dst;
}
static __inline ahd_mode_state
ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
}
static __inline void
ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
ahd_mode *src, ahd_mode *dst)
{
*src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
}
static __inline void
ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
{
if (ahd->src_mode == src && ahd->dst_mode == dst)
return;
#ifdef AHD_DEBUG
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
panic("Setting mode prior to saving it.\n");
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
ahd_build_mode_state(ahd, src, dst));
#endif
ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
ahd->src_mode = src;
ahd->dst_mode = dst;
}
static __inline void
ahd_update_modes(struct ahd_softc *ahd)
{
ahd_mode_state mode_ptr;
ahd_mode src;
ahd_mode dst;
mode_ptr = ahd_inb(ahd, MODE_PTR);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
printf("Reading mode 0x%x\n", mode_ptr);
#endif
ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
ahd_known_modes(ahd, src, dst);
}
static __inline void
ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
ahd_mode dstmode, const char *file, int line)
{
#ifdef AHD_DEBUG
if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
|| (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
panic("%s:%s:%d: Mode assertion failed.\n",
ahd_name(ahd), file, line);
}
#endif
}
static __inline ahd_mode_state
ahd_save_modes(struct ahd_softc *ahd)
{
if (ahd->src_mode == AHD_MODE_UNKNOWN
|| ahd->dst_mode == AHD_MODE_UNKNOWN)
ahd_update_modes(ahd);
return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
}
static __inline void
ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
{
ahd_mode src;
ahd_mode dst;
ahd_extract_mode_state(ahd, state, &src, &dst);
ahd_set_modes(ahd, src, dst);
}
#define AHD_ASSERT_MODES(ahd, source, dest) \
ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
/*
* Determine whether the sequencer has halted code execution.
* Returns non-zero status if the sequencer is stopped.
*/
static __inline int
ahd_is_paused(struct ahd_softc *ahd)
{
return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
}
/*
* Request that the sequencer stop and wait, indefinitely, for it
* to stop. The sequencer will only acknowledge that it is paused
* once it has reached an instruction boundary and PAUSEDIS is
* cleared in the SEQCTL register. The sequencer may use PAUSEDIS
* for critical sections.
*/
static __inline void
ahd_pause(struct ahd_softc *ahd)
{
ahd_outb(ahd, HCNTRL, ahd->pause);
/*
* Since the sequencer can disable pausing in a critical section, we
* must loop until it actually stops.
*/
while (ahd_is_paused(ahd) == 0)
;
}
/*
* Allow the sequencer to continue program execution.
* We check here to ensure that no additional interrupt
* sources that would cause the sequencer to halt have been
* asserted. If, for example, a SCSI bus reset is detected
* while we are fielding a different, pausing, interrupt type,
* we don't want to release the sequencer before going back
* into our interrupt handler and dealing with this new
* condition.
*/
static __inline void
ahd_unpause(struct ahd_softc *ahd)
{
/*
* Automatically restore our modes to those saved
* prior to the first change of the mode.
*/
if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
&& ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
ahd_reset_cmds_pending(ahd);
ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
}
if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
ahd_outb(ahd, HCNTRL, ahd->unpause);
ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
}
/*********************** Scatter Gather List Handling *************************/
static __inline void *ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, dma_addr_t addr,
bus_size_t len, int last);
static __inline void ahd_setup_scb_common(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_setup_data_scb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_setup_noxfer_scb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void *
ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
void *sgptr, dma_addr_t addr, bus_size_t len, int last)
{
scb->sg_count++;
if (sizeof(dma_addr_t) > 4
&& (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)sgptr;
sg->addr = ahd_htole64(addr);
sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
} else {
struct ahd_dma_seg *sg;
sg = (struct ahd_dma_seg *)sgptr;
sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
| (last ? AHD_DMA_LAST_SEG : 0));
return (sg + 1);
}
}
static __inline void
ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
{
/* XXX Handle target mode SCBs. */
scb->crc_retry_count = 0;
if ((scb->flags & SCB_PACKETIZED) != 0) {
/* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
} else {
if (ahd_get_transfer_length(scb) & 0x01)
scb->hscb->task_attribute = SCB_XFERLEN_ODD;
else
scb->hscb->task_attribute = 0;
}
if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
|| (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
ahd_htole32(scb->sense_busaddr);
}
static __inline void
ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
{
/*
* Copy the first SG into the "current" data ponter area.
*/
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
struct ahd_dma64_seg *sg;
sg = (struct ahd_dma64_seg *)scb->sg_list;
scb->hscb->dataptr = sg->addr;
scb->hscb->datacnt = sg->len;
} else {
struct ahd_dma_seg *sg;
uint32_t *dataptr_words;
sg = (struct ahd_dma_seg *)scb->sg_list;
dataptr_words = (uint32_t*)&scb->hscb->dataptr;
dataptr_words[0] = sg->addr;
dataptr_words[1] = 0;
if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
uint64_t high_addr;
high_addr = ahd_le32toh(sg->len) & 0x7F000000;
scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
}
scb->hscb->datacnt = sg->len;
}
/*
* Note where to find the SG entries in bus space.
* We also set the full residual flag which the
* sequencer will clear as soon as a data transfer
* occurs.
*/
scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
}
static __inline void
ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
{
scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
scb->hscb->dataptr = 0;
scb->hscb->datacnt = 0;
}
/************************** Memory mapping routines ***************************/
static __inline size_t ahd_sg_size(struct ahd_softc *ahd);
static __inline void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd,
struct scb *scb,
uint32_t sg_busaddr);
static __inline uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd,
struct scb *scb,
void *sg);
static __inline void ahd_sync_scb(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline void ahd_sync_sglist(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline void ahd_sync_sense(struct ahd_softc *ahd,
struct scb *scb, int op);
static __inline uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd,
u_int index);
static __inline size_t
ahd_sg_size(struct ahd_softc *ahd)
{
if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
return (sizeof(struct ahd_dma64_seg));
return (sizeof(struct ahd_dma_seg));
}
static __inline void *
ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
{
dma_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
return ((uint8_t *)scb->sg_list + sg_offset);
}
static __inline uint32_t
ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
{
dma_addr_t sg_offset;
/* sg_list_phys points to entry 1, not 0 */
sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
- ahd_sg_size(ahd);
return (scb->sg_list_busaddr + sg_offset);
}
static __inline void
ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
{
ahd_dmamap_sync(ahd, ahd->scb_data.hscb_dmat,
scb->hscb_map->dmamap,
/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
/*len*/sizeof(*scb->hscb), op);
}
static __inline void
ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
{
if (scb->sg_count == 0)
return;
ahd_dmamap_sync(ahd, ahd->scb_data.sg_dmat,
scb->sg_map->dmamap,
/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
}
static __inline void
ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
{
ahd_dmamap_sync(ahd, ahd->scb_data.sense_dmat,
scb->sense_map->dmamap,
/*offset*/scb->sense_busaddr,
/*len*/AHD_SENSE_BUFSIZE, op);
}
static __inline uint32_t
ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
{
return (((uint8_t *)&ahd->targetcmds[index])
- (uint8_t *)ahd->qoutfifo);
}
/*********************** Miscelaneous Support Functions ***********************/
static __inline struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd,
char channel, u_int our_id,
u_int remote_id,
struct ahd_tmode_tstate **tstate);
static __inline uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outw(struct ahd_softc *ahd, u_int port,
u_int value);
static __inline uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outl(struct ahd_softc *ahd, u_int port,
uint32_t value);
static __inline uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port);
static __inline void ahd_outq(struct ahd_softc *ahd, u_int port,
uint64_t value);
static __inline u_int ahd_get_scbptr(struct ahd_softc *ahd);
static __inline void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
static __inline u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_hescb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_snscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_sescb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd);
static __inline void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
static __inline u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
static __inline u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
static __inline uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
static __inline uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset);
static __inline void ahd_swap_with_next_hscb(struct ahd_softc *ahd,
struct scb *scb);
static __inline void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
static __inline uint8_t *
ahd_get_sense_buf(struct ahd_softc *ahd,
struct scb *scb);
static __inline uint32_t
ahd_get_sense_bufaddr(struct ahd_softc *ahd,
struct scb *scb);
/*
* Return pointers to the transfer negotiation information
* for the specified our_id/remote_id pair.
*/
static __inline struct ahd_initiator_tinfo *
ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
u_int remote_id, struct ahd_tmode_tstate **tstate)
{
/*
* Transfer data structures are stored from the perspective
* of the target role. Since the parameters for a connection
* in the initiator role to a given target are the same as
* when the roles are reversed, we pretend we are the target.
*/
if (channel == 'B')
our_id += 8;
*tstate = ahd->enabled_targets[our_id];
return (&(*tstate)->transinfo[remote_id]);
}
#define AHD_COPY_COL_IDX(dst, src) \
do { \
dst->hscb->scsiid = src->hscb->scsiid; \
dst->hscb->lun = src->hscb->lun; \
} while (0)
static __inline uint16_t
ahd_inw(struct ahd_softc *ahd, u_int port)
{
/*
* Read high byte first as some registers increment
* or have other side effects when the low byte is
* read.
*/
uint16_t r = ahd_inb(ahd, port+1) << 8;
return r | ahd_inb(ahd, port);
}
static __inline void
ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
{
/*
* Write low byte first to accomodate registers
* such as PRGMCNT where the order maters.
*/
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
}
static __inline uint32_t
ahd_inl(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24));
}
static __inline void
ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
{
ahd_outb(ahd, port, (value) & 0xFF);
ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
}
static __inline uint64_t
ahd_inq(struct ahd_softc *ahd, u_int port)
{
return ((ahd_inb(ahd, port))
| (ahd_inb(ahd, port+1) << 8)
| (ahd_inb(ahd, port+2) << 16)
| (ahd_inb(ahd, port+3) << 24)
| (((uint64_t)ahd_inb(ahd, port+4)) << 32)
| (((uint64_t)ahd_inb(ahd, port+5)) << 40)
| (((uint64_t)ahd_inb(ahd, port+6)) << 48)
| (((uint64_t)ahd_inb(ahd, port+7)) << 56));
}
static __inline void
ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
{
ahd_outb(ahd, port, value & 0xFF);
ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
}
static __inline u_int
ahd_get_scbptr(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
}
static __inline void
ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
{
AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
}
static __inline u_int
ahd_get_hnscb_qoff(struct ahd_softc *ahd)
{
return (ahd_inw_atomic(ahd, HNSCB_QOFF));
}
static __inline void
ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outw_atomic(ahd, HNSCB_QOFF, value);
}
static __inline u_int
ahd_get_hescb_qoff(struct ahd_softc *ahd)
{
return (ahd_inb(ahd, HESCB_QOFF));
}
static __inline void
ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
{
ahd_outb(ahd, HESCB_QOFF, value);
}
static __inline u_int
ahd_get_snscb_qoff(struct ahd_softc *ahd)
{
u_int oldvalue;
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
oldvalue = ahd_inw(ahd, SNSCB_QOFF);
ahd_outw(ahd, SNSCB_QOFF, oldvalue);
return (oldvalue);
}
static __inline void
ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outw(ahd, SNSCB_QOFF, value);
}
static __inline u_int
ahd_get_sescb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SESCB_QOFF));
}
static __inline void
ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SESCB_QOFF, value);
}
static __inline u_int
ahd_get_sdscb_qoff(struct ahd_softc *ahd)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
}
static __inline void
ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
{
AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
}
static __inline u_int
ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
{
u_int value;
/*
* Workaround PCI-X Rev A. hardware bug.
* After a host read of SCB memory, the chip
* may become confused into thinking prefetch
* was required. This starts the discard timer
* running and can cause an unexpected discard
* timer interrupt. The work around is to read
* a normal register prior to the exhaustion of
* the discard timer. The mode pointer register
* has no side effects and so serves well for
* this purpose.
*
* Razor #528
*/
value = ahd_inb(ahd, offset);
if ((ahd->bugs & AHD_PCIX_SCBRAM_RD_BUG) != 0)
ahd_inb(ahd, MODE_PTR);
return (value);
}
static __inline u_int
ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inb_scbram(ahd, offset)
| (ahd_inb_scbram(ahd, offset+1) << 8));
}
static __inline uint32_t
ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inw_scbram(ahd, offset)
| (ahd_inw_scbram(ahd, offset+2) << 16));
}
static __inline uint64_t
ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
{
return (ahd_inl_scbram(ahd, offset)
| ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
}
static __inline struct scb *
ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
{
struct scb* scb;
if (tag >= AHD_SCB_MAX)
return (NULL);
scb = ahd->scb_data.scbindex[tag];
if (scb != NULL)
ahd_sync_scb(ahd, scb,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
return (scb);
}
static __inline void
ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
{
struct hardware_scb *q_hscb;
struct map_node *q_hscb_map;
uint32_t saved_hscb_busaddr;
/*
* Our queuing method is a bit tricky. The card
* knows in advance which HSCB (by address) to download,
* and we can't disappoint it. To achieve this, the next
* HSCB to download is saved off in ahd->next_queued_hscb.
* When we are called to queue "an arbitrary scb",
* we copy the contents of the incoming HSCB to the one
* the sequencer knows about, swap HSCB pointers and
* finally assign the SCB to the tag indexed location
* in the scb_array. This makes sure that we can still
* locate the correct SCB by SCB_TAG.
*/
q_hscb = ahd->next_queued_hscb;
q_hscb_map = ahd->next_queued_hscb_map;
saved_hscb_busaddr = q_hscb->hscb_busaddr;
memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
q_hscb->hscb_busaddr = saved_hscb_busaddr;
q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
/* Now swap HSCB pointers. */
ahd->next_queued_hscb = scb->hscb;
ahd->next_queued_hscb_map = scb->hscb_map;
scb->hscb = q_hscb;
scb->hscb_map = q_hscb_map;
/* Now define the mapping from tag to SCB in the scbindex */
ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
}
/*
* Tell the sequencer about a new transaction to execute.
*/
static __inline void
ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
{
ahd_swap_with_next_hscb(ahd, scb);
if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
panic("Attempt to queue invalid SCB tag %x\n",
SCB_GET_TAG(scb));
/*
* Keep a history of SCBs we've downloaded in the qinfifo.
*/
ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
ahd->qinfifonext++;
if (scb->sg_count != 0)
ahd_setup_data_scb(ahd, scb);
else
ahd_setup_noxfer_scb(ahd, scb);
ahd_setup_scb_common(ahd, scb);
/*
* Make sure our data is consistent from the
* perspective of the adapter.
*/
ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
#ifdef AHD_DEBUG
if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
uint64_t host_dataptr;
host_dataptr = ahd_le64toh(scb->hscb->dataptr);
printf("%s: Queueing SCB %d:0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
ahd_name(ahd),
SCB_GET_TAG(scb), scb->hscb->scsiid,
ahd_le32toh(scb->hscb->hscb_busaddr),
(u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
(u_int)(host_dataptr & 0xFFFFFFFF),
ahd_le32toh(scb->hscb->datacnt));
}
#endif
/* Tell the adapter about the newly queued SCB */
ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
}
static __inline uint8_t *
ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
{
return (scb->sense_data);
}
static __inline uint32_t
ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
{
return (scb->sense_busaddr);
}
/************************** Interrupt Processing ******************************/
static __inline void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
static __inline void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
static __inline u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
static __inline int ahd_intr(struct ahd_softc *ahd);
static __inline void
ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
{
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/0,
/*len*/AHD_SCB_MAX * sizeof(struct ahd_completion), op);
}
static __inline void
ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
{
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0) {
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, 0),
sizeof(struct target_cmd) * AHD_TMODE_CMDS,
op);
}
#endif
}
/*
* See if the firmware has posted any completed commands
* into our in-core command complete fifos.
*/
#define AHD_RUN_QOUTFIFO 0x1
#define AHD_RUN_TQINFIFO 0x2
static __inline u_int
ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
{
u_int retval;
retval = 0;
ahd_dmamap_sync(ahd, ahd->shared_data_dmat, ahd->shared_data_map.dmamap,
/*offset*/ahd->qoutfifonext * sizeof(*ahd->qoutfifo),
/*len*/sizeof(*ahd->qoutfifo), BUS_DMASYNC_POSTREAD);
if (ahd->qoutfifo[ahd->qoutfifonext].valid_tag
== ahd->qoutfifonext_valid_tag)
retval |= AHD_RUN_QOUTFIFO;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0
&& (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
ahd_dmamap_sync(ahd, ahd->shared_data_dmat,
ahd->shared_data_map.dmamap,
ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
/*len*/sizeof(struct target_cmd),
BUS_DMASYNC_POSTREAD);
if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
retval |= AHD_RUN_TQINFIFO;
}
#endif
return (retval);
}
/*
* Catch an interrupt from the adapter
*/
static __inline int
ahd_intr(struct ahd_softc *ahd)
{
u_int intstat;
if ((ahd->pause & INTEN) == 0) {
/*
* Our interrupt is not enabled on the chip
* and may be disabled for re-entrancy reasons,
* so just return. This is likely just a shared
* interrupt.
*/
return (0);
}
/*
* Instead of directly reading the interrupt status register,
* infer the cause of the interrupt by checking our in-core
* completion queues. This avoids a costly PCI bus read in
* most cases.
*/
if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
&& (ahd_check_cmdcmpltqueues(ahd) != 0))
intstat = CMDCMPLT;
else
intstat = ahd_inb(ahd, INTSTAT);
if ((intstat & INT_PEND) == 0)
return (0);
if (intstat & CMDCMPLT) {
ahd_outb(ahd, CLRINT, CLRCMDINT);
/*
* Ensure that the chip sees that we've cleared
* this interrupt before we walk the output fifo.
* Otherwise, we may, due to posted bus writes,
* clear the interrupt after we finish the scan,
* and after the sequencer has added new entries
* and asserted the interrupt again.
*/
if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
if (ahd_is_paused(ahd)) {
/*
* Potentially lost SEQINT.
* If SEQINTCODE is non-zero,
* simulate the SEQINT.
*/
if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
intstat |= SEQINT;
}
} else {
ahd_flush_device_writes(ahd);
}
ahd_run_qoutfifo(ahd);
ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
ahd->cmdcmplt_total++;
#ifdef AHD_TARGET_MODE
if ((ahd->flags & AHD_TARGETROLE) != 0)
ahd_run_tqinfifo(ahd, /*paused*/FALSE);
#endif
}
/*
* Handle statuses that may invalidate our cached
* copy of INTSTAT separately.
*/
if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
/* Hot eject. Do nothing */
} else if (intstat & HWERRINT) {
ahd_handle_hwerrint(ahd);
} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
ahd->bus_intr(ahd);
} else {
if ((intstat & SEQINT) != 0)
ahd_handle_seqint(ahd, intstat);
if ((intstat & SCSIINT) != 0)
ahd_handle_scsiint(ahd, intstat);
}
return (1);
}
#endif /* _AIC79XX_INLINE_H_ */