mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-25 21:54:06 +08:00
6038f373a3
All file_operations should get a .llseek operation so we can make nonseekable_open the default for future file operations without a .llseek pointer. The three cases that we can automatically detect are no_llseek, seq_lseek and default_llseek. For cases where we can we can automatically prove that the file offset is always ignored, we use noop_llseek, which maintains the current behavior of not returning an error from a seek. New drivers should normally not use noop_llseek but instead use no_llseek and call nonseekable_open at open time. Existing drivers can be converted to do the same when the maintainer knows for certain that no user code relies on calling seek on the device file. The generated code is often incorrectly indented and right now contains comments that clarify for each added line why a specific variant was chosen. In the version that gets submitted upstream, the comments will be gone and I will manually fix the indentation, because there does not seem to be a way to do that using coccinelle. Some amount of new code is currently sitting in linux-next that should get the same modifications, which I will do at the end of the merge window. Many thanks to Julia Lawall for helping me learn to write a semantic patch that does all this. ===== begin semantic patch ===== // This adds an llseek= method to all file operations, // as a preparation for making no_llseek the default. // // The rules are // - use no_llseek explicitly if we do nonseekable_open // - use seq_lseek for sequential files // - use default_llseek if we know we access f_pos // - use noop_llseek if we know we don't access f_pos, // but we still want to allow users to call lseek // @ open1 exists @ identifier nested_open; @@ nested_open(...) { <+... nonseekable_open(...) ...+> } @ open exists@ identifier open_f; identifier i, f; identifier open1.nested_open; @@ int open_f(struct inode *i, struct file *f) { <+... ( nonseekable_open(...) | nested_open(...) ) ...+> } @ read disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ read_no_fpos disable optional_qualifier exists @ identifier read_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t read_f(struct file *f, char *p, size_t s, loff_t *off) { ... when != off } @ write @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; expression E; identifier func; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { <+... ( *off = E | *off += E | func(..., off, ...) | E = *off ) ...+> } @ write_no_fpos @ identifier write_f; identifier f, p, s, off; type ssize_t, size_t, loff_t; @@ ssize_t write_f(struct file *f, const char *p, size_t s, loff_t *off) { ... when != off } @ fops0 @ identifier fops; @@ struct file_operations fops = { ... }; @ has_llseek depends on fops0 @ identifier fops0.fops; identifier llseek_f; @@ struct file_operations fops = { ... .llseek = llseek_f, ... }; @ has_read depends on fops0 @ identifier fops0.fops; identifier read_f; @@ struct file_operations fops = { ... .read = read_f, ... }; @ has_write depends on fops0 @ identifier fops0.fops; identifier write_f; @@ struct file_operations fops = { ... .write = write_f, ... }; @ has_open depends on fops0 @ identifier fops0.fops; identifier open_f; @@ struct file_operations fops = { ... .open = open_f, ... }; // use no_llseek if we call nonseekable_open //////////////////////////////////////////// @ nonseekable1 depends on !has_llseek && has_open @ identifier fops0.fops; identifier nso ~= "nonseekable_open"; @@ struct file_operations fops = { ... .open = nso, ... +.llseek = no_llseek, /* nonseekable */ }; @ nonseekable2 depends on !has_llseek @ identifier fops0.fops; identifier open.open_f; @@ struct file_operations fops = { ... .open = open_f, ... +.llseek = no_llseek, /* open uses nonseekable */ }; // use seq_lseek for sequential files ///////////////////////////////////// @ seq depends on !has_llseek @ identifier fops0.fops; identifier sr ~= "seq_read"; @@ struct file_operations fops = { ... .read = sr, ... +.llseek = seq_lseek, /* we have seq_read */ }; // use default_llseek if there is a readdir /////////////////////////////////////////// @ fops1 depends on !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier readdir_e; @@ // any other fop is used that changes pos struct file_operations fops = { ... .readdir = readdir_e, ... +.llseek = default_llseek, /* readdir is present */ }; // use default_llseek if at least one of read/write touches f_pos ///////////////////////////////////////////////////////////////// @ fops2 depends on !fops1 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read.read_f; @@ // read fops use offset struct file_operations fops = { ... .read = read_f, ... +.llseek = default_llseek, /* read accesses f_pos */ }; @ fops3 depends on !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, ... + .llseek = default_llseek, /* write accesses f_pos */ }; // Use noop_llseek if neither read nor write accesses f_pos /////////////////////////////////////////////////////////// @ fops4 depends on !fops1 && !fops2 && !fops3 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; identifier write_no_fpos.write_f; @@ // write fops use offset struct file_operations fops = { ... .write = write_f, .read = read_f, ... +.llseek = noop_llseek, /* read and write both use no f_pos */ }; @ depends on has_write && !has_read && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier write_no_fpos.write_f; @@ struct file_operations fops = { ... .write = write_f, ... +.llseek = noop_llseek, /* write uses no f_pos */ }; @ depends on has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; identifier read_no_fpos.read_f; @@ struct file_operations fops = { ... .read = read_f, ... +.llseek = noop_llseek, /* read uses no f_pos */ }; @ depends on !has_read && !has_write && !fops1 && !fops2 && !has_llseek && !nonseekable1 && !nonseekable2 && !seq @ identifier fops0.fops; @@ struct file_operations fops = { ... +.llseek = noop_llseek, /* no read or write fn */ }; ===== End semantic patch ===== Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Julia Lawall <julia@diku.dk> Cc: Christoph Hellwig <hch@infradead.org>
632 lines
17 KiB
C
632 lines
17 KiB
C
/*
|
|
* linux/kernel/profile.c
|
|
* Simple profiling. Manages a direct-mapped profile hit count buffer,
|
|
* with configurable resolution, support for restricting the cpus on
|
|
* which profiling is done, and switching between cpu time and
|
|
* schedule() calls via kernel command line parameters passed at boot.
|
|
*
|
|
* Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
|
|
* Red Hat, July 2004
|
|
* Consolidation of architecture support code for profiling,
|
|
* William Irwin, Oracle, July 2004
|
|
* Amortized hit count accounting via per-cpu open-addressed hashtables
|
|
* to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
|
|
*/
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/profile.h>
|
|
#include <linux/bootmem.h>
|
|
#include <linux/notifier.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/mutex.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/irq_regs.h>
|
|
#include <asm/ptrace.h>
|
|
|
|
struct profile_hit {
|
|
u32 pc, hits;
|
|
};
|
|
#define PROFILE_GRPSHIFT 3
|
|
#define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
|
|
#define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
|
|
#define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
|
|
|
|
/* Oprofile timer tick hook */
|
|
static int (*timer_hook)(struct pt_regs *) __read_mostly;
|
|
|
|
static atomic_t *prof_buffer;
|
|
static unsigned long prof_len, prof_shift;
|
|
|
|
int prof_on __read_mostly;
|
|
EXPORT_SYMBOL_GPL(prof_on);
|
|
|
|
static cpumask_var_t prof_cpu_mask;
|
|
#ifdef CONFIG_SMP
|
|
static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
|
|
static DEFINE_PER_CPU(int, cpu_profile_flip);
|
|
static DEFINE_MUTEX(profile_flip_mutex);
|
|
#endif /* CONFIG_SMP */
|
|
|
|
int profile_setup(char *str)
|
|
{
|
|
static char schedstr[] = "schedule";
|
|
static char sleepstr[] = "sleep";
|
|
static char kvmstr[] = "kvm";
|
|
int par;
|
|
|
|
if (!strncmp(str, sleepstr, strlen(sleepstr))) {
|
|
#ifdef CONFIG_SCHEDSTATS
|
|
prof_on = SLEEP_PROFILING;
|
|
if (str[strlen(sleepstr)] == ',')
|
|
str += strlen(sleepstr) + 1;
|
|
if (get_option(&str, &par))
|
|
prof_shift = par;
|
|
printk(KERN_INFO
|
|
"kernel sleep profiling enabled (shift: %ld)\n",
|
|
prof_shift);
|
|
#else
|
|
printk(KERN_WARNING
|
|
"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
|
|
#endif /* CONFIG_SCHEDSTATS */
|
|
} else if (!strncmp(str, schedstr, strlen(schedstr))) {
|
|
prof_on = SCHED_PROFILING;
|
|
if (str[strlen(schedstr)] == ',')
|
|
str += strlen(schedstr) + 1;
|
|
if (get_option(&str, &par))
|
|
prof_shift = par;
|
|
printk(KERN_INFO
|
|
"kernel schedule profiling enabled (shift: %ld)\n",
|
|
prof_shift);
|
|
} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
|
|
prof_on = KVM_PROFILING;
|
|
if (str[strlen(kvmstr)] == ',')
|
|
str += strlen(kvmstr) + 1;
|
|
if (get_option(&str, &par))
|
|
prof_shift = par;
|
|
printk(KERN_INFO
|
|
"kernel KVM profiling enabled (shift: %ld)\n",
|
|
prof_shift);
|
|
} else if (get_option(&str, &par)) {
|
|
prof_shift = par;
|
|
prof_on = CPU_PROFILING;
|
|
printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
|
|
prof_shift);
|
|
}
|
|
return 1;
|
|
}
|
|
__setup("profile=", profile_setup);
|
|
|
|
|
|
int __ref profile_init(void)
|
|
{
|
|
int buffer_bytes;
|
|
if (!prof_on)
|
|
return 0;
|
|
|
|
/* only text is profiled */
|
|
prof_len = (_etext - _stext) >> prof_shift;
|
|
buffer_bytes = prof_len*sizeof(atomic_t);
|
|
|
|
if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
cpumask_copy(prof_cpu_mask, cpu_possible_mask);
|
|
|
|
prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL|__GFP_NOWARN);
|
|
if (prof_buffer)
|
|
return 0;
|
|
|
|
prof_buffer = alloc_pages_exact(buffer_bytes,
|
|
GFP_KERNEL|__GFP_ZERO|__GFP_NOWARN);
|
|
if (prof_buffer)
|
|
return 0;
|
|
|
|
prof_buffer = vmalloc(buffer_bytes);
|
|
if (prof_buffer) {
|
|
memset(prof_buffer, 0, buffer_bytes);
|
|
return 0;
|
|
}
|
|
|
|
free_cpumask_var(prof_cpu_mask);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Profile event notifications */
|
|
|
|
static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
|
|
static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
|
|
static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
|
|
|
|
void profile_task_exit(struct task_struct *task)
|
|
{
|
|
blocking_notifier_call_chain(&task_exit_notifier, 0, task);
|
|
}
|
|
|
|
int profile_handoff_task(struct task_struct *task)
|
|
{
|
|
int ret;
|
|
ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
|
|
return (ret == NOTIFY_OK) ? 1 : 0;
|
|
}
|
|
|
|
void profile_munmap(unsigned long addr)
|
|
{
|
|
blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
|
|
}
|
|
|
|
int task_handoff_register(struct notifier_block *n)
|
|
{
|
|
return atomic_notifier_chain_register(&task_free_notifier, n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_handoff_register);
|
|
|
|
int task_handoff_unregister(struct notifier_block *n)
|
|
{
|
|
return atomic_notifier_chain_unregister(&task_free_notifier, n);
|
|
}
|
|
EXPORT_SYMBOL_GPL(task_handoff_unregister);
|
|
|
|
int profile_event_register(enum profile_type type, struct notifier_block *n)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
switch (type) {
|
|
case PROFILE_TASK_EXIT:
|
|
err = blocking_notifier_chain_register(
|
|
&task_exit_notifier, n);
|
|
break;
|
|
case PROFILE_MUNMAP:
|
|
err = blocking_notifier_chain_register(
|
|
&munmap_notifier, n);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(profile_event_register);
|
|
|
|
int profile_event_unregister(enum profile_type type, struct notifier_block *n)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
switch (type) {
|
|
case PROFILE_TASK_EXIT:
|
|
err = blocking_notifier_chain_unregister(
|
|
&task_exit_notifier, n);
|
|
break;
|
|
case PROFILE_MUNMAP:
|
|
err = blocking_notifier_chain_unregister(
|
|
&munmap_notifier, n);
|
|
break;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(profile_event_unregister);
|
|
|
|
int register_timer_hook(int (*hook)(struct pt_regs *))
|
|
{
|
|
if (timer_hook)
|
|
return -EBUSY;
|
|
timer_hook = hook;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_timer_hook);
|
|
|
|
void unregister_timer_hook(int (*hook)(struct pt_regs *))
|
|
{
|
|
WARN_ON(hook != timer_hook);
|
|
timer_hook = NULL;
|
|
/* make sure all CPUs see the NULL hook */
|
|
synchronize_sched(); /* Allow ongoing interrupts to complete. */
|
|
}
|
|
EXPORT_SYMBOL_GPL(unregister_timer_hook);
|
|
|
|
|
|
#ifdef CONFIG_SMP
|
|
/*
|
|
* Each cpu has a pair of open-addressed hashtables for pending
|
|
* profile hits. read_profile() IPI's all cpus to request them
|
|
* to flip buffers and flushes their contents to prof_buffer itself.
|
|
* Flip requests are serialized by the profile_flip_mutex. The sole
|
|
* use of having a second hashtable is for avoiding cacheline
|
|
* contention that would otherwise happen during flushes of pending
|
|
* profile hits required for the accuracy of reported profile hits
|
|
* and so resurrect the interrupt livelock issue.
|
|
*
|
|
* The open-addressed hashtables are indexed by profile buffer slot
|
|
* and hold the number of pending hits to that profile buffer slot on
|
|
* a cpu in an entry. When the hashtable overflows, all pending hits
|
|
* are accounted to their corresponding profile buffer slots with
|
|
* atomic_add() and the hashtable emptied. As numerous pending hits
|
|
* may be accounted to a profile buffer slot in a hashtable entry,
|
|
* this amortizes a number of atomic profile buffer increments likely
|
|
* to be far larger than the number of entries in the hashtable,
|
|
* particularly given that the number of distinct profile buffer
|
|
* positions to which hits are accounted during short intervals (e.g.
|
|
* several seconds) is usually very small. Exclusion from buffer
|
|
* flipping is provided by interrupt disablement (note that for
|
|
* SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
|
|
* process context).
|
|
* The hash function is meant to be lightweight as opposed to strong,
|
|
* and was vaguely inspired by ppc64 firmware-supported inverted
|
|
* pagetable hash functions, but uses a full hashtable full of finite
|
|
* collision chains, not just pairs of them.
|
|
*
|
|
* -- wli
|
|
*/
|
|
static void __profile_flip_buffers(void *unused)
|
|
{
|
|
int cpu = smp_processor_id();
|
|
|
|
per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
|
|
}
|
|
|
|
static void profile_flip_buffers(void)
|
|
{
|
|
int i, j, cpu;
|
|
|
|
mutex_lock(&profile_flip_mutex);
|
|
j = per_cpu(cpu_profile_flip, get_cpu());
|
|
put_cpu();
|
|
on_each_cpu(__profile_flip_buffers, NULL, 1);
|
|
for_each_online_cpu(cpu) {
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
|
if (!hits[i].hits) {
|
|
if (hits[i].pc)
|
|
hits[i].pc = 0;
|
|
continue;
|
|
}
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
|
hits[i].hits = hits[i].pc = 0;
|
|
}
|
|
}
|
|
mutex_unlock(&profile_flip_mutex);
|
|
}
|
|
|
|
static void profile_discard_flip_buffers(void)
|
|
{
|
|
int i, cpu;
|
|
|
|
mutex_lock(&profile_flip_mutex);
|
|
i = per_cpu(cpu_profile_flip, get_cpu());
|
|
put_cpu();
|
|
on_each_cpu(__profile_flip_buffers, NULL, 1);
|
|
for_each_online_cpu(cpu) {
|
|
struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
|
|
memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
|
|
}
|
|
mutex_unlock(&profile_flip_mutex);
|
|
}
|
|
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
|
{
|
|
unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
|
|
int i, j, cpu;
|
|
struct profile_hit *hits;
|
|
|
|
if (prof_on != type || !prof_buffer)
|
|
return;
|
|
pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
|
|
i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
|
secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
|
|
cpu = get_cpu();
|
|
hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
|
|
if (!hits) {
|
|
put_cpu();
|
|
return;
|
|
}
|
|
/*
|
|
* We buffer the global profiler buffer into a per-CPU
|
|
* queue and thus reduce the number of global (and possibly
|
|
* NUMA-alien) accesses. The write-queue is self-coalescing:
|
|
*/
|
|
local_irq_save(flags);
|
|
do {
|
|
for (j = 0; j < PROFILE_GRPSZ; ++j) {
|
|
if (hits[i + j].pc == pc) {
|
|
hits[i + j].hits += nr_hits;
|
|
goto out;
|
|
} else if (!hits[i + j].hits) {
|
|
hits[i + j].pc = pc;
|
|
hits[i + j].hits = nr_hits;
|
|
goto out;
|
|
}
|
|
}
|
|
i = (i + secondary) & (NR_PROFILE_HIT - 1);
|
|
} while (i != primary);
|
|
|
|
/*
|
|
* Add the current hit(s) and flush the write-queue out
|
|
* to the global buffer:
|
|
*/
|
|
atomic_add(nr_hits, &prof_buffer[pc]);
|
|
for (i = 0; i < NR_PROFILE_HIT; ++i) {
|
|
atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
|
|
hits[i].pc = hits[i].hits = 0;
|
|
}
|
|
out:
|
|
local_irq_restore(flags);
|
|
put_cpu();
|
|
}
|
|
|
|
static int __cpuinit profile_cpu_callback(struct notifier_block *info,
|
|
unsigned long action, void *__cpu)
|
|
{
|
|
int node, cpu = (unsigned long)__cpu;
|
|
struct page *page;
|
|
|
|
switch (action) {
|
|
case CPU_UP_PREPARE:
|
|
case CPU_UP_PREPARE_FROZEN:
|
|
node = cpu_to_mem(cpu);
|
|
per_cpu(cpu_profile_flip, cpu) = 0;
|
|
if (!per_cpu(cpu_profile_hits, cpu)[1]) {
|
|
page = alloc_pages_exact_node(node,
|
|
GFP_KERNEL | __GFP_ZERO,
|
|
0);
|
|
if (!page)
|
|
return notifier_from_errno(-ENOMEM);
|
|
per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
|
|
}
|
|
if (!per_cpu(cpu_profile_hits, cpu)[0]) {
|
|
page = alloc_pages_exact_node(node,
|
|
GFP_KERNEL | __GFP_ZERO,
|
|
0);
|
|
if (!page)
|
|
goto out_free;
|
|
per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
|
|
}
|
|
break;
|
|
out_free:
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
|
__free_page(page);
|
|
return notifier_from_errno(-ENOMEM);
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
if (prof_cpu_mask != NULL)
|
|
cpumask_set_cpu(cpu, prof_cpu_mask);
|
|
break;
|
|
case CPU_UP_CANCELED:
|
|
case CPU_UP_CANCELED_FROZEN:
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
if (prof_cpu_mask != NULL)
|
|
cpumask_clear_cpu(cpu, prof_cpu_mask);
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
|
__free_page(page);
|
|
}
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
|
__free_page(page);
|
|
}
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
#else /* !CONFIG_SMP */
|
|
#define profile_flip_buffers() do { } while (0)
|
|
#define profile_discard_flip_buffers() do { } while (0)
|
|
#define profile_cpu_callback NULL
|
|
|
|
void profile_hits(int type, void *__pc, unsigned int nr_hits)
|
|
{
|
|
unsigned long pc;
|
|
|
|
if (prof_on != type || !prof_buffer)
|
|
return;
|
|
pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
|
|
atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
|
|
}
|
|
#endif /* !CONFIG_SMP */
|
|
EXPORT_SYMBOL_GPL(profile_hits);
|
|
|
|
void profile_tick(int type)
|
|
{
|
|
struct pt_regs *regs = get_irq_regs();
|
|
|
|
if (type == CPU_PROFILING && timer_hook)
|
|
timer_hook(regs);
|
|
if (!user_mode(regs) && prof_cpu_mask != NULL &&
|
|
cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
|
|
profile_hit(type, (void *)profile_pc(regs));
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
static int prof_cpu_mask_proc_show(struct seq_file *m, void *v)
|
|
{
|
|
seq_cpumask(m, prof_cpu_mask);
|
|
seq_putc(m, '\n');
|
|
return 0;
|
|
}
|
|
|
|
static int prof_cpu_mask_proc_open(struct inode *inode, struct file *file)
|
|
{
|
|
return single_open(file, prof_cpu_mask_proc_show, NULL);
|
|
}
|
|
|
|
static ssize_t prof_cpu_mask_proc_write(struct file *file,
|
|
const char __user *buffer, size_t count, loff_t *pos)
|
|
{
|
|
cpumask_var_t new_value;
|
|
int err;
|
|
|
|
if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
|
|
return -ENOMEM;
|
|
|
|
err = cpumask_parse_user(buffer, count, new_value);
|
|
if (!err) {
|
|
cpumask_copy(prof_cpu_mask, new_value);
|
|
err = count;
|
|
}
|
|
free_cpumask_var(new_value);
|
|
return err;
|
|
}
|
|
|
|
static const struct file_operations prof_cpu_mask_proc_fops = {
|
|
.open = prof_cpu_mask_proc_open,
|
|
.read = seq_read,
|
|
.llseek = seq_lseek,
|
|
.release = single_release,
|
|
.write = prof_cpu_mask_proc_write,
|
|
};
|
|
|
|
void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
|
|
{
|
|
/* create /proc/irq/prof_cpu_mask */
|
|
proc_create("prof_cpu_mask", 0600, root_irq_dir, &prof_cpu_mask_proc_fops);
|
|
}
|
|
|
|
/*
|
|
* This function accesses profiling information. The returned data is
|
|
* binary: the sampling step and the actual contents of the profile
|
|
* buffer. Use of the program readprofile is recommended in order to
|
|
* get meaningful info out of these data.
|
|
*/
|
|
static ssize_t
|
|
read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
|
|
{
|
|
unsigned long p = *ppos;
|
|
ssize_t read;
|
|
char *pnt;
|
|
unsigned int sample_step = 1 << prof_shift;
|
|
|
|
profile_flip_buffers();
|
|
if (p >= (prof_len+1)*sizeof(unsigned int))
|
|
return 0;
|
|
if (count > (prof_len+1)*sizeof(unsigned int) - p)
|
|
count = (prof_len+1)*sizeof(unsigned int) - p;
|
|
read = 0;
|
|
|
|
while (p < sizeof(unsigned int) && count > 0) {
|
|
if (put_user(*((char *)(&sample_step)+p), buf))
|
|
return -EFAULT;
|
|
buf++; p++; count--; read++;
|
|
}
|
|
pnt = (char *)prof_buffer + p - sizeof(atomic_t);
|
|
if (copy_to_user(buf, (void *)pnt, count))
|
|
return -EFAULT;
|
|
read += count;
|
|
*ppos += read;
|
|
return read;
|
|
}
|
|
|
|
/*
|
|
* Writing to /proc/profile resets the counters
|
|
*
|
|
* Writing a 'profiling multiplier' value into it also re-sets the profiling
|
|
* interrupt frequency, on architectures that support this.
|
|
*/
|
|
static ssize_t write_profile(struct file *file, const char __user *buf,
|
|
size_t count, loff_t *ppos)
|
|
{
|
|
#ifdef CONFIG_SMP
|
|
extern int setup_profiling_timer(unsigned int multiplier);
|
|
|
|
if (count == sizeof(int)) {
|
|
unsigned int multiplier;
|
|
|
|
if (copy_from_user(&multiplier, buf, sizeof(int)))
|
|
return -EFAULT;
|
|
|
|
if (setup_profiling_timer(multiplier))
|
|
return -EINVAL;
|
|
}
|
|
#endif
|
|
profile_discard_flip_buffers();
|
|
memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations proc_profile_operations = {
|
|
.read = read_profile,
|
|
.write = write_profile,
|
|
.llseek = default_llseek,
|
|
};
|
|
|
|
#ifdef CONFIG_SMP
|
|
static void profile_nop(void *unused)
|
|
{
|
|
}
|
|
|
|
static int create_hash_tables(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
int node = cpu_to_mem(cpu);
|
|
struct page *page;
|
|
|
|
page = alloc_pages_exact_node(node,
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
|
0);
|
|
if (!page)
|
|
goto out_cleanup;
|
|
per_cpu(cpu_profile_hits, cpu)[1]
|
|
= (struct profile_hit *)page_address(page);
|
|
page = alloc_pages_exact_node(node,
|
|
GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
|
|
0);
|
|
if (!page)
|
|
goto out_cleanup;
|
|
per_cpu(cpu_profile_hits, cpu)[0]
|
|
= (struct profile_hit *)page_address(page);
|
|
}
|
|
return 0;
|
|
out_cleanup:
|
|
prof_on = 0;
|
|
smp_mb();
|
|
on_each_cpu(profile_nop, NULL, 1);
|
|
for_each_online_cpu(cpu) {
|
|
struct page *page;
|
|
|
|
if (per_cpu(cpu_profile_hits, cpu)[0]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
|
|
per_cpu(cpu_profile_hits, cpu)[0] = NULL;
|
|
__free_page(page);
|
|
}
|
|
if (per_cpu(cpu_profile_hits, cpu)[1]) {
|
|
page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
|
|
per_cpu(cpu_profile_hits, cpu)[1] = NULL;
|
|
__free_page(page);
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
#else
|
|
#define create_hash_tables() ({ 0; })
|
|
#endif
|
|
|
|
int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
|
|
{
|
|
struct proc_dir_entry *entry;
|
|
|
|
if (!prof_on)
|
|
return 0;
|
|
if (create_hash_tables())
|
|
return -ENOMEM;
|
|
entry = proc_create("profile", S_IWUSR | S_IRUGO,
|
|
NULL, &proc_profile_operations);
|
|
if (!entry)
|
|
return 0;
|
|
entry->size = (1+prof_len) * sizeof(atomic_t);
|
|
hotcpu_notifier(profile_cpu_callback, 0);
|
|
return 0;
|
|
}
|
|
module_init(create_proc_profile);
|
|
#endif /* CONFIG_PROC_FS */
|