2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 04:03:58 +08:00
linux-next/mm/slab.h
Johannes Weiner 867e5e1de1 mm: clean up and clarify lruvec lookup procedure
There is a per-memcg lruvec and a NUMA node lruvec.  Which one is being
used is somewhat confusing right now, and it's easy to make mistakes -
especially when it comes to global reclaim.

How it works: when memory cgroups are enabled, we always use the
root_mem_cgroup's per-node lruvecs.  When memory cgroups are not compiled
in or disabled at runtime, we use pgdat->lruvec.

Document that in a comment.

Due to the way the reclaim code is generalized, all lookups use the
mem_cgroup_lruvec() helper function, and nobody should have to find the
right lruvec manually right now.  But to avoid future mistakes, rename the
pgdat->lruvec member to pgdat->__lruvec and delete the convenience wrapper
that suggests it's a commonly accessed member.

While in this area, swap the mem_cgroup_lruvec() argument order.  The name
suggests a memcg operation, yet it takes a pgdat first and a memcg second.
I have to double take every time I call this.  Fix that.

Link: http://lkml.kernel.org/r/20191022144803.302233-3-hannes@cmpxchg.org
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Shakeel Butt <shakeelb@google.com>
Cc: Roman Gushchin <guro@fb.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-12-01 12:59:06 -08:00

695 lines
19 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef MM_SLAB_H
#define MM_SLAB_H
/*
* Internal slab definitions
*/
#ifdef CONFIG_SLOB
/*
* Common fields provided in kmem_cache by all slab allocators
* This struct is either used directly by the allocator (SLOB)
* or the allocator must include definitions for all fields
* provided in kmem_cache_common in their definition of kmem_cache.
*
* Once we can do anonymous structs (C11 standard) we could put a
* anonymous struct definition in these allocators so that the
* separate allocations in the kmem_cache structure of SLAB and
* SLUB is no longer needed.
*/
struct kmem_cache {
unsigned int object_size;/* The original size of the object */
unsigned int size; /* The aligned/padded/added on size */
unsigned int align; /* Alignment as calculated */
slab_flags_t flags; /* Active flags on the slab */
unsigned int useroffset;/* Usercopy region offset */
unsigned int usersize; /* Usercopy region size */
const char *name; /* Slab name for sysfs */
int refcount; /* Use counter */
void (*ctor)(void *); /* Called on object slot creation */
struct list_head list; /* List of all slab caches on the system */
};
#else /* !CONFIG_SLOB */
struct memcg_cache_array {
struct rcu_head rcu;
struct kmem_cache *entries[0];
};
/*
* This is the main placeholder for memcg-related information in kmem caches.
* Both the root cache and the child caches will have it. For the root cache,
* this will hold a dynamically allocated array large enough to hold
* information about the currently limited memcgs in the system. To allow the
* array to be accessed without taking any locks, on relocation we free the old
* version only after a grace period.
*
* Root and child caches hold different metadata.
*
* @root_cache: Common to root and child caches. NULL for root, pointer to
* the root cache for children.
*
* The following fields are specific to root caches.
*
* @memcg_caches: kmemcg ID indexed table of child caches. This table is
* used to index child cachces during allocation and cleared
* early during shutdown.
*
* @root_caches_node: List node for slab_root_caches list.
*
* @children: List of all child caches. While the child caches are also
* reachable through @memcg_caches, a child cache remains on
* this list until it is actually destroyed.
*
* The following fields are specific to child caches.
*
* @memcg: Pointer to the memcg this cache belongs to.
*
* @children_node: List node for @root_cache->children list.
*
* @kmem_caches_node: List node for @memcg->kmem_caches list.
*/
struct memcg_cache_params {
struct kmem_cache *root_cache;
union {
struct {
struct memcg_cache_array __rcu *memcg_caches;
struct list_head __root_caches_node;
struct list_head children;
bool dying;
};
struct {
struct mem_cgroup *memcg;
struct list_head children_node;
struct list_head kmem_caches_node;
struct percpu_ref refcnt;
void (*work_fn)(struct kmem_cache *);
union {
struct rcu_head rcu_head;
struct work_struct work;
};
};
};
};
#endif /* CONFIG_SLOB */
#ifdef CONFIG_SLAB
#include <linux/slab_def.h>
#endif
#ifdef CONFIG_SLUB
#include <linux/slub_def.h>
#endif
#include <linux/memcontrol.h>
#include <linux/fault-inject.h>
#include <linux/kasan.h>
#include <linux/kmemleak.h>
#include <linux/random.h>
#include <linux/sched/mm.h>
/*
* State of the slab allocator.
*
* This is used to describe the states of the allocator during bootup.
* Allocators use this to gradually bootstrap themselves. Most allocators
* have the problem that the structures used for managing slab caches are
* allocated from slab caches themselves.
*/
enum slab_state {
DOWN, /* No slab functionality yet */
PARTIAL, /* SLUB: kmem_cache_node available */
PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
UP, /* Slab caches usable but not all extras yet */
FULL /* Everything is working */
};
extern enum slab_state slab_state;
/* The slab cache mutex protects the management structures during changes */
extern struct mutex slab_mutex;
/* The list of all slab caches on the system */
extern struct list_head slab_caches;
/* The slab cache that manages slab cache information */
extern struct kmem_cache *kmem_cache;
/* A table of kmalloc cache names and sizes */
extern const struct kmalloc_info_struct {
const char *name[NR_KMALLOC_TYPES];
unsigned int size;
} kmalloc_info[];
#ifndef CONFIG_SLOB
/* Kmalloc array related functions */
void setup_kmalloc_cache_index_table(void);
void create_kmalloc_caches(slab_flags_t);
/* Find the kmalloc slab corresponding for a certain size */
struct kmem_cache *kmalloc_slab(size_t, gfp_t);
#endif
/* Functions provided by the slab allocators */
int __kmem_cache_create(struct kmem_cache *, slab_flags_t flags);
struct kmem_cache *create_kmalloc_cache(const char *name, unsigned int size,
slab_flags_t flags, unsigned int useroffset,
unsigned int usersize);
extern void create_boot_cache(struct kmem_cache *, const char *name,
unsigned int size, slab_flags_t flags,
unsigned int useroffset, unsigned int usersize);
int slab_unmergeable(struct kmem_cache *s);
struct kmem_cache *find_mergeable(unsigned size, unsigned align,
slab_flags_t flags, const char *name, void (*ctor)(void *));
#ifndef CONFIG_SLOB
struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *));
slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name,
void (*ctor)(void *));
#else
static inline struct kmem_cache *
__kmem_cache_alias(const char *name, unsigned int size, unsigned int align,
slab_flags_t flags, void (*ctor)(void *))
{ return NULL; }
static inline slab_flags_t kmem_cache_flags(unsigned int object_size,
slab_flags_t flags, const char *name,
void (*ctor)(void *))
{
return flags;
}
#endif
/* Legal flag mask for kmem_cache_create(), for various configurations */
#define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | \
SLAB_CACHE_DMA32 | SLAB_PANIC | \
SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
#if defined(CONFIG_DEBUG_SLAB)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
#elif defined(CONFIG_SLUB_DEBUG)
#define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
#else
#define SLAB_DEBUG_FLAGS (0)
#endif
#if defined(CONFIG_SLAB)
#define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
SLAB_ACCOUNT)
#elif defined(CONFIG_SLUB)
#define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | SLAB_ACCOUNT)
#else
#define SLAB_CACHE_FLAGS (0)
#endif
/* Common flags available with current configuration */
#define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
/* Common flags permitted for kmem_cache_create */
#define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
SLAB_RED_ZONE | \
SLAB_POISON | \
SLAB_STORE_USER | \
SLAB_TRACE | \
SLAB_CONSISTENCY_CHECKS | \
SLAB_MEM_SPREAD | \
SLAB_NOLEAKTRACE | \
SLAB_RECLAIM_ACCOUNT | \
SLAB_TEMPORARY | \
SLAB_ACCOUNT)
bool __kmem_cache_empty(struct kmem_cache *);
int __kmem_cache_shutdown(struct kmem_cache *);
void __kmem_cache_release(struct kmem_cache *);
int __kmem_cache_shrink(struct kmem_cache *);
void __kmemcg_cache_deactivate(struct kmem_cache *s);
void __kmemcg_cache_deactivate_after_rcu(struct kmem_cache *s);
void slab_kmem_cache_release(struct kmem_cache *);
void kmem_cache_shrink_all(struct kmem_cache *s);
struct seq_file;
struct file;
struct slabinfo {
unsigned long active_objs;
unsigned long num_objs;
unsigned long active_slabs;
unsigned long num_slabs;
unsigned long shared_avail;
unsigned int limit;
unsigned int batchcount;
unsigned int shared;
unsigned int objects_per_slab;
unsigned int cache_order;
};
void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
ssize_t slabinfo_write(struct file *file, const char __user *buffer,
size_t count, loff_t *ppos);
/*
* Generic implementation of bulk operations
* These are useful for situations in which the allocator cannot
* perform optimizations. In that case segments of the object listed
* may be allocated or freed using these operations.
*/
void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
static inline int cache_vmstat_idx(struct kmem_cache *s)
{
return (s->flags & SLAB_RECLAIM_ACCOUNT) ?
NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE;
}
#ifdef CONFIG_MEMCG_KMEM
/* List of all root caches. */
extern struct list_head slab_root_caches;
#define root_caches_node memcg_params.__root_caches_node
/*
* Iterate over all memcg caches of the given root cache. The caller must hold
* slab_mutex.
*/
#define for_each_memcg_cache(iter, root) \
list_for_each_entry(iter, &(root)->memcg_params.children, \
memcg_params.children_node)
static inline bool is_root_cache(struct kmem_cache *s)
{
return !s->memcg_params.root_cache;
}
static inline bool slab_equal_or_root(struct kmem_cache *s,
struct kmem_cache *p)
{
return p == s || p == s->memcg_params.root_cache;
}
/*
* We use suffixes to the name in memcg because we can't have caches
* created in the system with the same name. But when we print them
* locally, better refer to them with the base name
*/
static inline const char *cache_name(struct kmem_cache *s)
{
if (!is_root_cache(s))
s = s->memcg_params.root_cache;
return s->name;
}
static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
if (is_root_cache(s))
return s;
return s->memcg_params.root_cache;
}
/*
* Expects a pointer to a slab page. Please note, that PageSlab() check
* isn't sufficient, as it returns true also for tail compound slab pages,
* which do not have slab_cache pointer set.
* So this function assumes that the page can pass PageSlab() && !PageTail()
* check.
*
* The kmem_cache can be reparented asynchronously. The caller must ensure
* the memcg lifetime, e.g. by taking rcu_read_lock() or cgroup_mutex.
*/
static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
{
struct kmem_cache *s;
s = READ_ONCE(page->slab_cache);
if (s && !is_root_cache(s))
return READ_ONCE(s->memcg_params.memcg);
return NULL;
}
/*
* Charge the slab page belonging to the non-root kmem_cache.
* Can be called for non-root kmem_caches only.
*/
static __always_inline int memcg_charge_slab(struct page *page,
gfp_t gfp, int order,
struct kmem_cache *s)
{
struct mem_cgroup *memcg;
struct lruvec *lruvec;
int ret;
rcu_read_lock();
memcg = READ_ONCE(s->memcg_params.memcg);
while (memcg && !css_tryget_online(&memcg->css))
memcg = parent_mem_cgroup(memcg);
rcu_read_unlock();
if (unlikely(!memcg || mem_cgroup_is_root(memcg))) {
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
(1 << order));
percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
return 0;
}
ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
if (ret)
goto out;
lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
mod_lruvec_state(lruvec, cache_vmstat_idx(s), 1 << order);
/* transer try_charge() page references to kmem_cache */
percpu_ref_get_many(&s->memcg_params.refcnt, 1 << order);
css_put_many(&memcg->css, 1 << order);
out:
css_put(&memcg->css);
return ret;
}
/*
* Uncharge a slab page belonging to a non-root kmem_cache.
* Can be called for non-root kmem_caches only.
*/
static __always_inline void memcg_uncharge_slab(struct page *page, int order,
struct kmem_cache *s)
{
struct mem_cgroup *memcg;
struct lruvec *lruvec;
rcu_read_lock();
memcg = READ_ONCE(s->memcg_params.memcg);
if (likely(!mem_cgroup_is_root(memcg))) {
lruvec = mem_cgroup_lruvec(memcg, page_pgdat(page));
mod_lruvec_state(lruvec, cache_vmstat_idx(s), -(1 << order));
memcg_kmem_uncharge_memcg(page, order, memcg);
} else {
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
-(1 << order));
}
rcu_read_unlock();
percpu_ref_put_many(&s->memcg_params.refcnt, 1 << order);
}
extern void slab_init_memcg_params(struct kmem_cache *);
extern void memcg_link_cache(struct kmem_cache *s, struct mem_cgroup *memcg);
#else /* CONFIG_MEMCG_KMEM */
/* If !memcg, all caches are root. */
#define slab_root_caches slab_caches
#define root_caches_node list
#define for_each_memcg_cache(iter, root) \
for ((void)(iter), (void)(root); 0; )
static inline bool is_root_cache(struct kmem_cache *s)
{
return true;
}
static inline bool slab_equal_or_root(struct kmem_cache *s,
struct kmem_cache *p)
{
return s == p;
}
static inline const char *cache_name(struct kmem_cache *s)
{
return s->name;
}
static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
{
return s;
}
static inline struct mem_cgroup *memcg_from_slab_page(struct page *page)
{
return NULL;
}
static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
struct kmem_cache *s)
{
return 0;
}
static inline void memcg_uncharge_slab(struct page *page, int order,
struct kmem_cache *s)
{
}
static inline void slab_init_memcg_params(struct kmem_cache *s)
{
}
static inline void memcg_link_cache(struct kmem_cache *s,
struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */
static inline struct kmem_cache *virt_to_cache(const void *obj)
{
struct page *page;
page = virt_to_head_page(obj);
if (WARN_ONCE(!PageSlab(page), "%s: Object is not a Slab page!\n",
__func__))
return NULL;
return page->slab_cache;
}
static __always_inline int charge_slab_page(struct page *page,
gfp_t gfp, int order,
struct kmem_cache *s)
{
if (is_root_cache(s)) {
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
1 << order);
return 0;
}
return memcg_charge_slab(page, gfp, order, s);
}
static __always_inline void uncharge_slab_page(struct page *page, int order,
struct kmem_cache *s)
{
if (is_root_cache(s)) {
mod_node_page_state(page_pgdat(page), cache_vmstat_idx(s),
-(1 << order));
return;
}
memcg_uncharge_slab(page, order, s);
}
static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
{
struct kmem_cache *cachep;
/*
* When kmemcg is not being used, both assignments should return the
* same value. but we don't want to pay the assignment price in that
* case. If it is not compiled in, the compiler should be smart enough
* to not do even the assignment. In that case, slab_equal_or_root
* will also be a constant.
*/
if (!memcg_kmem_enabled() &&
!IS_ENABLED(CONFIG_SLAB_FREELIST_HARDENED) &&
!unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
return s;
cachep = virt_to_cache(x);
WARN_ONCE(cachep && !slab_equal_or_root(cachep, s),
"%s: Wrong slab cache. %s but object is from %s\n",
__func__, s->name, cachep->name);
return cachep;
}
static inline size_t slab_ksize(const struct kmem_cache *s)
{
#ifndef CONFIG_SLUB
return s->object_size;
#else /* CONFIG_SLUB */
# ifdef CONFIG_SLUB_DEBUG
/*
* Debugging requires use of the padding between object
* and whatever may come after it.
*/
if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
return s->object_size;
# endif
if (s->flags & SLAB_KASAN)
return s->object_size;
/*
* If we have the need to store the freelist pointer
* back there or track user information then we can
* only use the space before that information.
*/
if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
return s->inuse;
/*
* Else we can use all the padding etc for the allocation
*/
return s->size;
#endif
}
static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
gfp_t flags)
{
flags &= gfp_allowed_mask;
fs_reclaim_acquire(flags);
fs_reclaim_release(flags);
might_sleep_if(gfpflags_allow_blocking(flags));
if (should_failslab(s, flags))
return NULL;
if (memcg_kmem_enabled() &&
((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
return memcg_kmem_get_cache(s);
return s;
}
static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
size_t size, void **p)
{
size_t i;
flags &= gfp_allowed_mask;
for (i = 0; i < size; i++) {
p[i] = kasan_slab_alloc(s, p[i], flags);
/* As p[i] might get tagged, call kmemleak hook after KASAN. */
kmemleak_alloc_recursive(p[i], s->object_size, 1,
s->flags, flags);
}
if (memcg_kmem_enabled())
memcg_kmem_put_cache(s);
}
#ifndef CONFIG_SLOB
/*
* The slab lists for all objects.
*/
struct kmem_cache_node {
spinlock_t list_lock;
#ifdef CONFIG_SLAB
struct list_head slabs_partial; /* partial list first, better asm code */
struct list_head slabs_full;
struct list_head slabs_free;
unsigned long total_slabs; /* length of all slab lists */
unsigned long free_slabs; /* length of free slab list only */
unsigned long free_objects;
unsigned int free_limit;
unsigned int colour_next; /* Per-node cache coloring */
struct array_cache *shared; /* shared per node */
struct alien_cache **alien; /* on other nodes */
unsigned long next_reap; /* updated without locking */
int free_touched; /* updated without locking */
#endif
#ifdef CONFIG_SLUB
unsigned long nr_partial;
struct list_head partial;
#ifdef CONFIG_SLUB_DEBUG
atomic_long_t nr_slabs;
atomic_long_t total_objects;
struct list_head full;
#endif
#endif
};
static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
{
return s->node[node];
}
/*
* Iterator over all nodes. The body will be executed for each node that has
* a kmem_cache_node structure allocated (which is true for all online nodes)
*/
#define for_each_kmem_cache_node(__s, __node, __n) \
for (__node = 0; __node < nr_node_ids; __node++) \
if ((__n = get_node(__s, __node)))
#endif
void *slab_start(struct seq_file *m, loff_t *pos);
void *slab_next(struct seq_file *m, void *p, loff_t *pos);
void slab_stop(struct seq_file *m, void *p);
void *memcg_slab_start(struct seq_file *m, loff_t *pos);
void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
void memcg_slab_stop(struct seq_file *m, void *p);
int memcg_slab_show(struct seq_file *m, void *p);
#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
void dump_unreclaimable_slab(void);
#else
static inline void dump_unreclaimable_slab(void)
{
}
#endif
void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
#ifdef CONFIG_SLAB_FREELIST_RANDOM
int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
gfp_t gfp);
void cache_random_seq_destroy(struct kmem_cache *cachep);
#else
static inline int cache_random_seq_create(struct kmem_cache *cachep,
unsigned int count, gfp_t gfp)
{
return 0;
}
static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
#endif /* CONFIG_SLAB_FREELIST_RANDOM */
static inline bool slab_want_init_on_alloc(gfp_t flags, struct kmem_cache *c)
{
if (static_branch_unlikely(&init_on_alloc)) {
if (c->ctor)
return false;
if (c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON))
return flags & __GFP_ZERO;
return true;
}
return flags & __GFP_ZERO;
}
static inline bool slab_want_init_on_free(struct kmem_cache *c)
{
if (static_branch_unlikely(&init_on_free))
return !(c->ctor ||
(c->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)));
return false;
}
#endif /* MM_SLAB_H */