mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-22 20:23:57 +08:00
1e02e6fbda
The A33 SS has a difference with all other SS, it give SHA1 digest
directly in BE.
So this patch adds variant support in sun4i-ss.
Fixes: 6298e94821
("crypto: sunxi-ss - Add Allwinner Security System crypto accelerator")
Signed-off-by: Corentin Labbe <clabbe.montjoie@gmail.com>
Acked-by: Maxime Ripard <mripard@kernel.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
539 lines
14 KiB
C
539 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* sun4i-ss-hash.c - hardware cryptographic accelerator for Allwinner A20 SoC
|
|
*
|
|
* Copyright (C) 2013-2015 Corentin LABBE <clabbe.montjoie@gmail.com>
|
|
*
|
|
* This file add support for MD5 and SHA1.
|
|
*
|
|
* You could find the datasheet in Documentation/arm/sunxi.rst
|
|
*/
|
|
#include "sun4i-ss.h"
|
|
#include <linux/scatterlist.h>
|
|
|
|
/* This is a totally arbitrary value */
|
|
#define SS_TIMEOUT 100
|
|
|
|
int sun4i_hash_crainit(struct crypto_tfm *tfm)
|
|
{
|
|
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
|
|
struct ahash_alg *alg = __crypto_ahash_alg(tfm->__crt_alg);
|
|
struct sun4i_ss_alg_template *algt;
|
|
int err;
|
|
|
|
memset(op, 0, sizeof(struct sun4i_tfm_ctx));
|
|
|
|
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
|
|
op->ss = algt->ss;
|
|
|
|
err = pm_runtime_get_sync(op->ss->dev);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
|
|
sizeof(struct sun4i_req_ctx));
|
|
return 0;
|
|
}
|
|
|
|
void sun4i_hash_craexit(struct crypto_tfm *tfm)
|
|
{
|
|
struct sun4i_tfm_ctx *op = crypto_tfm_ctx(tfm);
|
|
|
|
pm_runtime_put(op->ss->dev);
|
|
}
|
|
|
|
/* sun4i_hash_init: initialize request context */
|
|
int sun4i_hash_init(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
|
|
struct ahash_alg *alg = __crypto_ahash_alg(tfm->base.__crt_alg);
|
|
struct sun4i_ss_alg_template *algt;
|
|
|
|
memset(op, 0, sizeof(struct sun4i_req_ctx));
|
|
|
|
algt = container_of(alg, struct sun4i_ss_alg_template, alg.hash);
|
|
op->mode = algt->mode;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_export_md5(struct ahash_request *areq, void *out)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct md5_state *octx = out;
|
|
int i;
|
|
|
|
octx->byte_count = op->byte_count + op->len;
|
|
|
|
memcpy(octx->block, op->buf, op->len);
|
|
|
|
if (op->byte_count) {
|
|
for (i = 0; i < 4; i++)
|
|
octx->hash[i] = op->hash[i];
|
|
} else {
|
|
octx->hash[0] = SHA1_H0;
|
|
octx->hash[1] = SHA1_H1;
|
|
octx->hash[2] = SHA1_H2;
|
|
octx->hash[3] = SHA1_H3;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_import_md5(struct ahash_request *areq, const void *in)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
const struct md5_state *ictx = in;
|
|
int i;
|
|
|
|
sun4i_hash_init(areq);
|
|
|
|
op->byte_count = ictx->byte_count & ~0x3F;
|
|
op->len = ictx->byte_count & 0x3F;
|
|
|
|
memcpy(op->buf, ictx->block, op->len);
|
|
|
|
for (i = 0; i < 4; i++)
|
|
op->hash[i] = ictx->hash[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_export_sha1(struct ahash_request *areq, void *out)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct sha1_state *octx = out;
|
|
int i;
|
|
|
|
octx->count = op->byte_count + op->len;
|
|
|
|
memcpy(octx->buffer, op->buf, op->len);
|
|
|
|
if (op->byte_count) {
|
|
for (i = 0; i < 5; i++)
|
|
octx->state[i] = op->hash[i];
|
|
} else {
|
|
octx->state[0] = SHA1_H0;
|
|
octx->state[1] = SHA1_H1;
|
|
octx->state[2] = SHA1_H2;
|
|
octx->state[3] = SHA1_H3;
|
|
octx->state[4] = SHA1_H4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sun4i_hash_import_sha1(struct ahash_request *areq, const void *in)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
const struct sha1_state *ictx = in;
|
|
int i;
|
|
|
|
sun4i_hash_init(areq);
|
|
|
|
op->byte_count = ictx->count & ~0x3F;
|
|
op->len = ictx->count & 0x3F;
|
|
|
|
memcpy(op->buf, ictx->buffer, op->len);
|
|
|
|
for (i = 0; i < 5; i++)
|
|
op->hash[i] = ictx->state[i];
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define SS_HASH_UPDATE 1
|
|
#define SS_HASH_FINAL 2
|
|
|
|
/*
|
|
* sun4i_hash_update: update hash engine
|
|
*
|
|
* Could be used for both SHA1 and MD5
|
|
* Write data by step of 32bits and put then in the SS.
|
|
*
|
|
* Since we cannot leave partial data and hash state in the engine,
|
|
* we need to get the hash state at the end of this function.
|
|
* We can get the hash state every 64 bytes
|
|
*
|
|
* So the first work is to get the number of bytes to write to SS modulo 64
|
|
* The extra bytes will go to a temporary buffer op->buf storing op->len bytes
|
|
*
|
|
* So at the begin of update()
|
|
* if op->len + areq->nbytes < 64
|
|
* => all data will be written to wait buffer (op->buf) and end=0
|
|
* if not, write all data from op->buf to the device and position end to
|
|
* complete to 64bytes
|
|
*
|
|
* example 1:
|
|
* update1 60o => op->len=60
|
|
* update2 60o => need one more word to have 64 bytes
|
|
* end=4
|
|
* so write all data from op->buf and one word of SGs
|
|
* write remaining data in op->buf
|
|
* final state op->len=56
|
|
*/
|
|
static int sun4i_hash(struct ahash_request *areq)
|
|
{
|
|
/*
|
|
* i is the total bytes read from SGs, to be compared to areq->nbytes
|
|
* i is important because we cannot rely on SG length since the sum of
|
|
* SG->length could be greater than areq->nbytes
|
|
*
|
|
* end is the position when we need to stop writing to the device,
|
|
* to be compared to i
|
|
*
|
|
* in_i: advancement in the current SG
|
|
*/
|
|
unsigned int i = 0, end, fill, min_fill, nwait, nbw = 0, j = 0, todo;
|
|
unsigned int in_i = 0;
|
|
u32 spaces, rx_cnt = SS_RX_DEFAULT, bf[32] = {0}, v, ivmode = 0;
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
struct crypto_ahash *tfm = crypto_ahash_reqtfm(areq);
|
|
struct sun4i_tfm_ctx *tfmctx = crypto_ahash_ctx(tfm);
|
|
struct sun4i_ss_ctx *ss = tfmctx->ss;
|
|
struct scatterlist *in_sg = areq->src;
|
|
struct sg_mapping_iter mi;
|
|
int in_r, err = 0;
|
|
size_t copied = 0;
|
|
__le32 wb = 0;
|
|
|
|
dev_dbg(ss->dev, "%s %s bc=%llu len=%u mode=%x wl=%u h0=%0x",
|
|
__func__, crypto_tfm_alg_name(areq->base.tfm),
|
|
op->byte_count, areq->nbytes, op->mode,
|
|
op->len, op->hash[0]);
|
|
|
|
if (unlikely(!areq->nbytes) && !(op->flags & SS_HASH_FINAL))
|
|
return 0;
|
|
|
|
/* protect against overflow */
|
|
if (unlikely(areq->nbytes > UINT_MAX - op->len)) {
|
|
dev_err(ss->dev, "Cannot process too large request\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (op->len + areq->nbytes < 64 && !(op->flags & SS_HASH_FINAL)) {
|
|
/* linearize data to op->buf */
|
|
copied = sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
|
|
op->buf + op->len, areq->nbytes, 0);
|
|
op->len += copied;
|
|
return 0;
|
|
}
|
|
|
|
spin_lock_bh(&ss->slock);
|
|
|
|
/*
|
|
* if some data have been processed before,
|
|
* we need to restore the partial hash state
|
|
*/
|
|
if (op->byte_count) {
|
|
ivmode = SS_IV_ARBITRARY;
|
|
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
|
|
writel(op->hash[i], ss->base + SS_IV0 + i * 4);
|
|
}
|
|
/* Enable the device */
|
|
writel(op->mode | SS_ENABLED | ivmode, ss->base + SS_CTL);
|
|
|
|
if (!(op->flags & SS_HASH_UPDATE))
|
|
goto hash_final;
|
|
|
|
/* start of handling data */
|
|
if (!(op->flags & SS_HASH_FINAL)) {
|
|
end = ((areq->nbytes + op->len) / 64) * 64 - op->len;
|
|
|
|
if (end > areq->nbytes || areq->nbytes - end > 63) {
|
|
dev_err(ss->dev, "ERROR: Bound error %u %u\n",
|
|
end, areq->nbytes);
|
|
err = -EINVAL;
|
|
goto release_ss;
|
|
}
|
|
} else {
|
|
/* Since we have the flag final, we can go up to modulo 4 */
|
|
if (areq->nbytes < 4)
|
|
end = 0;
|
|
else
|
|
end = ((areq->nbytes + op->len) / 4) * 4 - op->len;
|
|
}
|
|
|
|
/* TODO if SGlen % 4 and !op->len then DMA */
|
|
i = 1;
|
|
while (in_sg && i == 1) {
|
|
if (in_sg->length % 4)
|
|
i = 0;
|
|
in_sg = sg_next(in_sg);
|
|
}
|
|
if (i == 1 && !op->len && areq->nbytes)
|
|
dev_dbg(ss->dev, "We can DMA\n");
|
|
|
|
i = 0;
|
|
sg_miter_start(&mi, areq->src, sg_nents(areq->src),
|
|
SG_MITER_FROM_SG | SG_MITER_ATOMIC);
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
|
|
do {
|
|
/*
|
|
* we need to linearize in two case:
|
|
* - the buffer is already used
|
|
* - the SG does not have enough byte remaining ( < 4)
|
|
*/
|
|
if (op->len || (mi.length - in_i) < 4) {
|
|
/*
|
|
* if we have entered here we have two reason to stop
|
|
* - the buffer is full
|
|
* - reach the end
|
|
*/
|
|
while (op->len < 64 && i < end) {
|
|
/* how many bytes we can read from current SG */
|
|
in_r = min(end - i, 64 - op->len);
|
|
in_r = min_t(size_t, mi.length - in_i, in_r);
|
|
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
|
|
op->len += in_r;
|
|
i += in_r;
|
|
in_i += in_r;
|
|
if (in_i == mi.length) {
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
}
|
|
}
|
|
if (op->len > 3 && !(op->len % 4)) {
|
|
/* write buf to the device */
|
|
writesl(ss->base + SS_RXFIFO, op->buf,
|
|
op->len / 4);
|
|
op->byte_count += op->len;
|
|
op->len = 0;
|
|
}
|
|
}
|
|
if (mi.length - in_i > 3 && i < end) {
|
|
/* how many bytes we can read from current SG */
|
|
in_r = min_t(size_t, mi.length - in_i, areq->nbytes - i);
|
|
in_r = min_t(size_t, ((mi.length - in_i) / 4) * 4, in_r);
|
|
/* how many bytes we can write in the device*/
|
|
todo = min3((u32)(end - i) / 4, rx_cnt, (u32)in_r / 4);
|
|
writesl(ss->base + SS_RXFIFO, mi.addr + in_i, todo);
|
|
op->byte_count += todo * 4;
|
|
i += todo * 4;
|
|
in_i += todo * 4;
|
|
rx_cnt -= todo;
|
|
if (!rx_cnt) {
|
|
spaces = readl(ss->base + SS_FCSR);
|
|
rx_cnt = SS_RXFIFO_SPACES(spaces);
|
|
}
|
|
if (in_i == mi.length) {
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
}
|
|
}
|
|
} while (i < end);
|
|
|
|
/*
|
|
* Now we have written to the device all that we can,
|
|
* store the remaining bytes in op->buf
|
|
*/
|
|
if ((areq->nbytes - i) < 64) {
|
|
while (i < areq->nbytes && in_i < mi.length && op->len < 64) {
|
|
/* how many bytes we can read from current SG */
|
|
in_r = min(areq->nbytes - i, 64 - op->len);
|
|
in_r = min_t(size_t, mi.length - in_i, in_r);
|
|
memcpy(op->buf + op->len, mi.addr + in_i, in_r);
|
|
op->len += in_r;
|
|
i += in_r;
|
|
in_i += in_r;
|
|
if (in_i == mi.length) {
|
|
sg_miter_next(&mi);
|
|
in_i = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
sg_miter_stop(&mi);
|
|
|
|
/*
|
|
* End of data process
|
|
* Now if we have the flag final go to finalize part
|
|
* If not, store the partial hash
|
|
*/
|
|
if (op->flags & SS_HASH_FINAL)
|
|
goto hash_final;
|
|
|
|
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
|
|
i = 0;
|
|
do {
|
|
v = readl(ss->base + SS_CTL);
|
|
i++;
|
|
} while (i < SS_TIMEOUT && (v & SS_DATA_END));
|
|
if (unlikely(i >= SS_TIMEOUT)) {
|
|
dev_err_ratelimited(ss->dev,
|
|
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
|
|
i, SS_TIMEOUT, v, areq->nbytes);
|
|
err = -EIO;
|
|
goto release_ss;
|
|
}
|
|
|
|
/*
|
|
* The datasheet isn't very clear about when to retrieve the digest. The
|
|
* bit SS_DATA_END is cleared when the engine has processed the data and
|
|
* when the digest is computed *but* it doesn't mean the digest is
|
|
* available in the digest registers. Hence the delay to be sure we can
|
|
* read it.
|
|
*/
|
|
ndelay(1);
|
|
|
|
for (i = 0; i < crypto_ahash_digestsize(tfm) / 4; i++)
|
|
op->hash[i] = readl(ss->base + SS_MD0 + i * 4);
|
|
|
|
goto release_ss;
|
|
|
|
/*
|
|
* hash_final: finalize hashing operation
|
|
*
|
|
* If we have some remaining bytes, we write them.
|
|
* Then ask the SS for finalizing the hashing operation
|
|
*
|
|
* I do not check RX FIFO size in this function since the size is 32
|
|
* after each enabling and this function neither write more than 32 words.
|
|
* If we come from the update part, we cannot have more than
|
|
* 3 remaining bytes to write and SS is fast enough to not care about it.
|
|
*/
|
|
|
|
hash_final:
|
|
|
|
/* write the remaining words of the wait buffer */
|
|
if (op->len) {
|
|
nwait = op->len / 4;
|
|
if (nwait) {
|
|
writesl(ss->base + SS_RXFIFO, op->buf, nwait);
|
|
op->byte_count += 4 * nwait;
|
|
}
|
|
|
|
nbw = op->len - 4 * nwait;
|
|
if (nbw) {
|
|
wb = cpu_to_le32(*(u32 *)(op->buf + nwait * 4));
|
|
wb &= GENMASK((nbw * 8) - 1, 0);
|
|
|
|
op->byte_count += nbw;
|
|
}
|
|
}
|
|
|
|
/* write the remaining bytes of the nbw buffer */
|
|
wb |= ((1 << 7) << (nbw * 8));
|
|
bf[j++] = le32_to_cpu(wb);
|
|
|
|
/*
|
|
* number of space to pad to obtain 64o minus 8(size) minus 4 (final 1)
|
|
* I take the operations from other MD5/SHA1 implementations
|
|
*/
|
|
|
|
/* last block size */
|
|
fill = 64 - (op->byte_count % 64);
|
|
min_fill = 2 * sizeof(u32) + (nbw ? 0 : sizeof(u32));
|
|
|
|
/* if we can't fill all data, jump to the next 64 block */
|
|
if (fill < min_fill)
|
|
fill += 64;
|
|
|
|
j += (fill - min_fill) / sizeof(u32);
|
|
|
|
/* write the length of data */
|
|
if (op->mode == SS_OP_SHA1) {
|
|
__be64 *bits = (__be64 *)&bf[j];
|
|
*bits = cpu_to_be64(op->byte_count << 3);
|
|
j += 2;
|
|
} else {
|
|
__le64 *bits = (__le64 *)&bf[j];
|
|
*bits = cpu_to_le64(op->byte_count << 3);
|
|
j += 2;
|
|
}
|
|
writesl(ss->base + SS_RXFIFO, bf, j);
|
|
|
|
/* Tell the SS to stop the hashing */
|
|
writel(op->mode | SS_ENABLED | SS_DATA_END, ss->base + SS_CTL);
|
|
|
|
/*
|
|
* Wait for SS to finish the hash.
|
|
* The timeout could happen only in case of bad overclocking
|
|
* or driver bug.
|
|
*/
|
|
i = 0;
|
|
do {
|
|
v = readl(ss->base + SS_CTL);
|
|
i++;
|
|
} while (i < SS_TIMEOUT && (v & SS_DATA_END));
|
|
if (unlikely(i >= SS_TIMEOUT)) {
|
|
dev_err_ratelimited(ss->dev,
|
|
"ERROR: hash end timeout %d>%d ctl=%x len=%u\n",
|
|
i, SS_TIMEOUT, v, areq->nbytes);
|
|
err = -EIO;
|
|
goto release_ss;
|
|
}
|
|
|
|
/*
|
|
* The datasheet isn't very clear about when to retrieve the digest. The
|
|
* bit SS_DATA_END is cleared when the engine has processed the data and
|
|
* when the digest is computed *but* it doesn't mean the digest is
|
|
* available in the digest registers. Hence the delay to be sure we can
|
|
* read it.
|
|
*/
|
|
ndelay(1);
|
|
|
|
/* Get the hash from the device */
|
|
if (op->mode == SS_OP_SHA1) {
|
|
for (i = 0; i < 5; i++) {
|
|
if (ss->variant->sha1_in_be)
|
|
v = cpu_to_le32(readl(ss->base + SS_MD0 + i * 4));
|
|
else
|
|
v = cpu_to_be32(readl(ss->base + SS_MD0 + i * 4));
|
|
memcpy(areq->result + i * 4, &v, 4);
|
|
}
|
|
} else {
|
|
for (i = 0; i < 4; i++) {
|
|
v = cpu_to_le32(readl(ss->base + SS_MD0 + i * 4));
|
|
memcpy(areq->result + i * 4, &v, 4);
|
|
}
|
|
}
|
|
|
|
release_ss:
|
|
writel(0, ss->base + SS_CTL);
|
|
spin_unlock_bh(&ss->slock);
|
|
return err;
|
|
}
|
|
|
|
int sun4i_hash_final(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
op->flags = SS_HASH_FINAL;
|
|
return sun4i_hash(areq);
|
|
}
|
|
|
|
int sun4i_hash_update(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
op->flags = SS_HASH_UPDATE;
|
|
return sun4i_hash(areq);
|
|
}
|
|
|
|
/* sun4i_hash_finup: finalize hashing operation after an update */
|
|
int sun4i_hash_finup(struct ahash_request *areq)
|
|
{
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
|
|
return sun4i_hash(areq);
|
|
}
|
|
|
|
/* combo of init/update/final functions */
|
|
int sun4i_hash_digest(struct ahash_request *areq)
|
|
{
|
|
int err;
|
|
struct sun4i_req_ctx *op = ahash_request_ctx(areq);
|
|
|
|
err = sun4i_hash_init(areq);
|
|
if (err)
|
|
return err;
|
|
|
|
op->flags = SS_HASH_UPDATE | SS_HASH_FINAL;
|
|
return sun4i_hash(areq);
|
|
}
|