2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 17:14:00 +08:00
linux-next/drivers/net/wireguard/device.c
Jason A. Donenfeld 8b5553ace8 wireguard: queueing: get rid of per-peer ring buffers
Having two ring buffers per-peer means that every peer results in two
massive ring allocations. On an 8-core x86_64 machine, this commit
reduces the per-peer allocation from 18,688 bytes to 1,856 bytes, which
is an 90% reduction. Ninety percent! With some single-machine
deployments approaching 500,000 peers, we're talking about a reduction
from 7 gigs of memory down to 700 megs of memory.

In order to get rid of these per-peer allocations, this commit switches
to using a list-based queueing approach. Currently GSO fragments are
chained together using the skb->next pointer (the skb_list_* singly
linked list approach), so we form the per-peer queue around the unused
skb->prev pointer (which sort of makes sense because the links are
pointing backwards). Use of skb_queue_* is not possible here, because
that is based on doubly linked lists and spinlocks. Multiple cores can
write into the queue at any given time, because its writes occur in the
start_xmit path or in the udp_recv path. But reads happen in a single
workqueue item per-peer, amounting to a multi-producer, single-consumer
paradigm.

The MPSC queue is implemented locklessly and never blocks. However, it
is not linearizable (though it is serializable), with a very tight and
unlikely race on writes, which, when hit (some tiny fraction of the
0.15% of partial adds on a fully loaded 16-core x86_64 system), causes
the queue reader to terminate early. However, because every packet sent
queues up the same workqueue item after it is fully added, the worker
resumes again, and stopping early isn't actually a problem, since at
that point the packet wouldn't have yet been added to the encryption
queue. These properties allow us to avoid disabling interrupts or
spinning. The design is based on Dmitry Vyukov's algorithm [1].

Performance-wise, ordinarily list-based queues aren't preferable to
ringbuffers, because of cache misses when following pointers around.
However, we *already* have to follow the adjacent pointers when working
through fragments, so there shouldn't actually be any change there. A
potential downside is that dequeueing is a bit more complicated, but the
ptr_ring structure used prior had a spinlock when dequeueing, so all and
all the difference appears to be a wash.

Actually, from profiling, the biggest performance hit, by far, of this
commit winds up being atomic_add_unless(count, 1, max) and atomic_
dec(count), which account for the majority of CPU time, according to
perf. In that sense, the previous ring buffer was superior in that it
could check if it was full by head==tail, which the list-based approach
cannot do.

But all and all, this enables us to get massive memory savings, allowing
WireGuard to scale for real world deployments, without taking much of a
performance hit.

[1] http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue

Reviewed-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Toke Høiland-Jørgensen <toke@redhat.com>
Fixes: e7096c131e ("net: WireGuard secure network tunnel")
Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com>
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2021-02-23 15:59:34 -08:00

458 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015-2019 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*/
#include "queueing.h"
#include "socket.h"
#include "timers.h"
#include "device.h"
#include "ratelimiter.h"
#include "peer.h"
#include "messages.h"
#include <linux/module.h>
#include <linux/rtnetlink.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/inetdevice.h>
#include <linux/if_arp.h>
#include <linux/icmp.h>
#include <linux/suspend.h>
#include <net/icmp.h>
#include <net/rtnetlink.h>
#include <net/ip_tunnels.h>
#include <net/addrconf.h>
static LIST_HEAD(device_list);
static int wg_open(struct net_device *dev)
{
struct in_device *dev_v4 = __in_dev_get_rtnl(dev);
struct inet6_dev *dev_v6 = __in6_dev_get(dev);
struct wg_device *wg = netdev_priv(dev);
struct wg_peer *peer;
int ret;
if (dev_v4) {
/* At some point we might put this check near the ip_rt_send_
* redirect call of ip_forward in net/ipv4/ip_forward.c, similar
* to the current secpath check.
*/
IN_DEV_CONF_SET(dev_v4, SEND_REDIRECTS, false);
IPV4_DEVCONF_ALL(dev_net(dev), SEND_REDIRECTS) = false;
}
if (dev_v6)
dev_v6->cnf.addr_gen_mode = IN6_ADDR_GEN_MODE_NONE;
mutex_lock(&wg->device_update_lock);
ret = wg_socket_init(wg, wg->incoming_port);
if (ret < 0)
goto out;
list_for_each_entry(peer, &wg->peer_list, peer_list) {
wg_packet_send_staged_packets(peer);
if (peer->persistent_keepalive_interval)
wg_packet_send_keepalive(peer);
}
out:
mutex_unlock(&wg->device_update_lock);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static int wg_pm_notification(struct notifier_block *nb, unsigned long action,
void *data)
{
struct wg_device *wg;
struct wg_peer *peer;
/* If the machine is constantly suspending and resuming, as part of
* its normal operation rather than as a somewhat rare event, then we
* don't actually want to clear keys.
*/
if (IS_ENABLED(CONFIG_PM_AUTOSLEEP) || IS_ENABLED(CONFIG_ANDROID))
return 0;
if (action != PM_HIBERNATION_PREPARE && action != PM_SUSPEND_PREPARE)
return 0;
rtnl_lock();
list_for_each_entry(wg, &device_list, device_list) {
mutex_lock(&wg->device_update_lock);
list_for_each_entry(peer, &wg->peer_list, peer_list) {
del_timer(&peer->timer_zero_key_material);
wg_noise_handshake_clear(&peer->handshake);
wg_noise_keypairs_clear(&peer->keypairs);
}
mutex_unlock(&wg->device_update_lock);
}
rtnl_unlock();
rcu_barrier();
return 0;
}
static struct notifier_block pm_notifier = { .notifier_call = wg_pm_notification };
#endif
static int wg_stop(struct net_device *dev)
{
struct wg_device *wg = netdev_priv(dev);
struct wg_peer *peer;
mutex_lock(&wg->device_update_lock);
list_for_each_entry(peer, &wg->peer_list, peer_list) {
wg_packet_purge_staged_packets(peer);
wg_timers_stop(peer);
wg_noise_handshake_clear(&peer->handshake);
wg_noise_keypairs_clear(&peer->keypairs);
wg_noise_reset_last_sent_handshake(&peer->last_sent_handshake);
}
mutex_unlock(&wg->device_update_lock);
skb_queue_purge(&wg->incoming_handshakes);
wg_socket_reinit(wg, NULL, NULL);
return 0;
}
static netdev_tx_t wg_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct wg_device *wg = netdev_priv(dev);
struct sk_buff_head packets;
struct wg_peer *peer;
struct sk_buff *next;
sa_family_t family;
u32 mtu;
int ret;
if (unlikely(!wg_check_packet_protocol(skb))) {
ret = -EPROTONOSUPPORT;
net_dbg_ratelimited("%s: Invalid IP packet\n", dev->name);
goto err;
}
peer = wg_allowedips_lookup_dst(&wg->peer_allowedips, skb);
if (unlikely(!peer)) {
ret = -ENOKEY;
if (skb->protocol == htons(ETH_P_IP))
net_dbg_ratelimited("%s: No peer has allowed IPs matching %pI4\n",
dev->name, &ip_hdr(skb)->daddr);
else if (skb->protocol == htons(ETH_P_IPV6))
net_dbg_ratelimited("%s: No peer has allowed IPs matching %pI6\n",
dev->name, &ipv6_hdr(skb)->daddr);
goto err_icmp;
}
family = READ_ONCE(peer->endpoint.addr.sa_family);
if (unlikely(family != AF_INET && family != AF_INET6)) {
ret = -EDESTADDRREQ;
net_dbg_ratelimited("%s: No valid endpoint has been configured or discovered for peer %llu\n",
dev->name, peer->internal_id);
goto err_peer;
}
mtu = skb_dst(skb) ? dst_mtu(skb_dst(skb)) : dev->mtu;
__skb_queue_head_init(&packets);
if (!skb_is_gso(skb)) {
skb_mark_not_on_list(skb);
} else {
struct sk_buff *segs = skb_gso_segment(skb, 0);
if (IS_ERR(segs)) {
ret = PTR_ERR(segs);
goto err_peer;
}
dev_kfree_skb(skb);
skb = segs;
}
skb_list_walk_safe(skb, skb, next) {
skb_mark_not_on_list(skb);
skb = skb_share_check(skb, GFP_ATOMIC);
if (unlikely(!skb))
continue;
/* We only need to keep the original dst around for icmp,
* so at this point we're in a position to drop it.
*/
skb_dst_drop(skb);
PACKET_CB(skb)->mtu = mtu;
__skb_queue_tail(&packets, skb);
}
spin_lock_bh(&peer->staged_packet_queue.lock);
/* If the queue is getting too big, we start removing the oldest packets
* until it's small again. We do this before adding the new packet, so
* we don't remove GSO segments that are in excess.
*/
while (skb_queue_len(&peer->staged_packet_queue) > MAX_STAGED_PACKETS) {
dev_kfree_skb(__skb_dequeue(&peer->staged_packet_queue));
++dev->stats.tx_dropped;
}
skb_queue_splice_tail(&packets, &peer->staged_packet_queue);
spin_unlock_bh(&peer->staged_packet_queue.lock);
wg_packet_send_staged_packets(peer);
wg_peer_put(peer);
return NETDEV_TX_OK;
err_peer:
wg_peer_put(peer);
err_icmp:
if (skb->protocol == htons(ETH_P_IP))
icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_HOST_UNREACH, 0);
else if (skb->protocol == htons(ETH_P_IPV6))
icmpv6_ndo_send(skb, ICMPV6_DEST_UNREACH, ICMPV6_ADDR_UNREACH, 0);
err:
++dev->stats.tx_errors;
kfree_skb(skb);
return ret;
}
static const struct net_device_ops netdev_ops = {
.ndo_open = wg_open,
.ndo_stop = wg_stop,
.ndo_start_xmit = wg_xmit,
.ndo_get_stats64 = dev_get_tstats64
};
static void wg_destruct(struct net_device *dev)
{
struct wg_device *wg = netdev_priv(dev);
rtnl_lock();
list_del(&wg->device_list);
rtnl_unlock();
mutex_lock(&wg->device_update_lock);
rcu_assign_pointer(wg->creating_net, NULL);
wg->incoming_port = 0;
wg_socket_reinit(wg, NULL, NULL);
/* The final references are cleared in the below calls to destroy_workqueue. */
wg_peer_remove_all(wg);
destroy_workqueue(wg->handshake_receive_wq);
destroy_workqueue(wg->handshake_send_wq);
destroy_workqueue(wg->packet_crypt_wq);
wg_packet_queue_free(&wg->decrypt_queue);
wg_packet_queue_free(&wg->encrypt_queue);
rcu_barrier(); /* Wait for all the peers to be actually freed. */
wg_ratelimiter_uninit();
memzero_explicit(&wg->static_identity, sizeof(wg->static_identity));
skb_queue_purge(&wg->incoming_handshakes);
free_percpu(dev->tstats);
free_percpu(wg->incoming_handshakes_worker);
kvfree(wg->index_hashtable);
kvfree(wg->peer_hashtable);
mutex_unlock(&wg->device_update_lock);
pr_debug("%s: Interface destroyed\n", dev->name);
free_netdev(dev);
}
static const struct device_type device_type = { .name = KBUILD_MODNAME };
static void wg_setup(struct net_device *dev)
{
struct wg_device *wg = netdev_priv(dev);
enum { WG_NETDEV_FEATURES = NETIF_F_HW_CSUM | NETIF_F_RXCSUM |
NETIF_F_SG | NETIF_F_GSO |
NETIF_F_GSO_SOFTWARE | NETIF_F_HIGHDMA };
const int overhead = MESSAGE_MINIMUM_LENGTH + sizeof(struct udphdr) +
max(sizeof(struct ipv6hdr), sizeof(struct iphdr));
dev->netdev_ops = &netdev_ops;
dev->header_ops = &ip_tunnel_header_ops;
dev->hard_header_len = 0;
dev->addr_len = 0;
dev->needed_headroom = DATA_PACKET_HEAD_ROOM;
dev->needed_tailroom = noise_encrypted_len(MESSAGE_PADDING_MULTIPLE);
dev->type = ARPHRD_NONE;
dev->flags = IFF_POINTOPOINT | IFF_NOARP;
dev->priv_flags |= IFF_NO_QUEUE;
dev->features |= NETIF_F_LLTX;
dev->features |= WG_NETDEV_FEATURES;
dev->hw_features |= WG_NETDEV_FEATURES;
dev->hw_enc_features |= WG_NETDEV_FEATURES;
dev->mtu = ETH_DATA_LEN - overhead;
dev->max_mtu = round_down(INT_MAX, MESSAGE_PADDING_MULTIPLE) - overhead;
SET_NETDEV_DEVTYPE(dev, &device_type);
/* We need to keep the dst around in case of icmp replies. */
netif_keep_dst(dev);
memset(wg, 0, sizeof(*wg));
wg->dev = dev;
}
static int wg_newlink(struct net *src_net, struct net_device *dev,
struct nlattr *tb[], struct nlattr *data[],
struct netlink_ext_ack *extack)
{
struct wg_device *wg = netdev_priv(dev);
int ret = -ENOMEM;
rcu_assign_pointer(wg->creating_net, src_net);
init_rwsem(&wg->static_identity.lock);
mutex_init(&wg->socket_update_lock);
mutex_init(&wg->device_update_lock);
skb_queue_head_init(&wg->incoming_handshakes);
wg_allowedips_init(&wg->peer_allowedips);
wg_cookie_checker_init(&wg->cookie_checker, wg);
INIT_LIST_HEAD(&wg->peer_list);
wg->device_update_gen = 1;
wg->peer_hashtable = wg_pubkey_hashtable_alloc();
if (!wg->peer_hashtable)
return ret;
wg->index_hashtable = wg_index_hashtable_alloc();
if (!wg->index_hashtable)
goto err_free_peer_hashtable;
dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
if (!dev->tstats)
goto err_free_index_hashtable;
wg->incoming_handshakes_worker =
wg_packet_percpu_multicore_worker_alloc(
wg_packet_handshake_receive_worker, wg);
if (!wg->incoming_handshakes_worker)
goto err_free_tstats;
wg->handshake_receive_wq = alloc_workqueue("wg-kex-%s",
WQ_CPU_INTENSIVE | WQ_FREEZABLE, 0, dev->name);
if (!wg->handshake_receive_wq)
goto err_free_incoming_handshakes;
wg->handshake_send_wq = alloc_workqueue("wg-kex-%s",
WQ_UNBOUND | WQ_FREEZABLE, 0, dev->name);
if (!wg->handshake_send_wq)
goto err_destroy_handshake_receive;
wg->packet_crypt_wq = alloc_workqueue("wg-crypt-%s",
WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM, 0, dev->name);
if (!wg->packet_crypt_wq)
goto err_destroy_handshake_send;
ret = wg_packet_queue_init(&wg->encrypt_queue, wg_packet_encrypt_worker,
MAX_QUEUED_PACKETS);
if (ret < 0)
goto err_destroy_packet_crypt;
ret = wg_packet_queue_init(&wg->decrypt_queue, wg_packet_decrypt_worker,
MAX_QUEUED_PACKETS);
if (ret < 0)
goto err_free_encrypt_queue;
ret = wg_ratelimiter_init();
if (ret < 0)
goto err_free_decrypt_queue;
ret = register_netdevice(dev);
if (ret < 0)
goto err_uninit_ratelimiter;
list_add(&wg->device_list, &device_list);
/* We wait until the end to assign priv_destructor, so that
* register_netdevice doesn't call it for us if it fails.
*/
dev->priv_destructor = wg_destruct;
pr_debug("%s: Interface created\n", dev->name);
return ret;
err_uninit_ratelimiter:
wg_ratelimiter_uninit();
err_free_decrypt_queue:
wg_packet_queue_free(&wg->decrypt_queue);
err_free_encrypt_queue:
wg_packet_queue_free(&wg->encrypt_queue);
err_destroy_packet_crypt:
destroy_workqueue(wg->packet_crypt_wq);
err_destroy_handshake_send:
destroy_workqueue(wg->handshake_send_wq);
err_destroy_handshake_receive:
destroy_workqueue(wg->handshake_receive_wq);
err_free_incoming_handshakes:
free_percpu(wg->incoming_handshakes_worker);
err_free_tstats:
free_percpu(dev->tstats);
err_free_index_hashtable:
kvfree(wg->index_hashtable);
err_free_peer_hashtable:
kvfree(wg->peer_hashtable);
return ret;
}
static struct rtnl_link_ops link_ops __read_mostly = {
.kind = KBUILD_MODNAME,
.priv_size = sizeof(struct wg_device),
.setup = wg_setup,
.newlink = wg_newlink,
};
static void wg_netns_pre_exit(struct net *net)
{
struct wg_device *wg;
rtnl_lock();
list_for_each_entry(wg, &device_list, device_list) {
if (rcu_access_pointer(wg->creating_net) == net) {
pr_debug("%s: Creating namespace exiting\n", wg->dev->name);
netif_carrier_off(wg->dev);
mutex_lock(&wg->device_update_lock);
rcu_assign_pointer(wg->creating_net, NULL);
wg_socket_reinit(wg, NULL, NULL);
mutex_unlock(&wg->device_update_lock);
}
}
rtnl_unlock();
}
static struct pernet_operations pernet_ops = {
.pre_exit = wg_netns_pre_exit
};
int __init wg_device_init(void)
{
int ret;
#ifdef CONFIG_PM_SLEEP
ret = register_pm_notifier(&pm_notifier);
if (ret)
return ret;
#endif
ret = register_pernet_device(&pernet_ops);
if (ret)
goto error_pm;
ret = rtnl_link_register(&link_ops);
if (ret)
goto error_pernet;
return 0;
error_pernet:
unregister_pernet_device(&pernet_ops);
error_pm:
#ifdef CONFIG_PM_SLEEP
unregister_pm_notifier(&pm_notifier);
#endif
return ret;
}
void wg_device_uninit(void)
{
rtnl_link_unregister(&link_ops);
unregister_pernet_device(&pernet_ops);
#ifdef CONFIG_PM_SLEEP
unregister_pm_notifier(&pm_notifier);
#endif
rcu_barrier();
}