mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-25 13:43:55 +08:00
b504882da5
Freescale high-speed USB SOC can be found on some Freescale processors among different architectures. It supports both host and device functions. This driver adds its device support for Linux USB Gadget layer. It is tested on MPC8349 and MPC8313, but should work on other platforms with minor tweaks. The driver passed USBCV 1.3 compliance tests. Note that this driver doesn't yet include OTG support. Signed-off-by: Li Yang <leoli@freescale.com> Signed-off-by: Jiang Bo <tanya.jiang@freescale.com> Signed-off-by: Bruce Schmid <duck@freescale.com> Signed-off-by: David Brownell <dbrownell@users.sourceforge.net> Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
452 lines
16 KiB
Plaintext
452 lines
16 KiB
Plaintext
#
|
|
# USB Gadget support on a system involves
|
|
# (a) a peripheral controller, and
|
|
# (b) the gadget driver using it.
|
|
#
|
|
# NOTE: Gadget support ** DOES NOT ** depend on host-side CONFIG_USB !!
|
|
#
|
|
# - Host systems (like PCs) need CONFIG_USB (with "A" jacks).
|
|
# - Peripherals (like PDAs) need CONFIG_USB_GADGET (with "B" jacks).
|
|
# - Some systems have both kinds of controllers.
|
|
#
|
|
# With help from a special transceiver and a "Mini-AB" jack, systems with
|
|
# both kinds of controller can also support "USB On-the-Go" (CONFIG_USB_OTG).
|
|
#
|
|
menu "USB Gadget Support"
|
|
|
|
config USB_GADGET
|
|
tristate "Support for USB Gadgets"
|
|
help
|
|
USB is a master/slave protocol, organized with one master
|
|
host (such as a PC) controlling up to 127 peripheral devices.
|
|
The USB hardware is asymmetric, which makes it easier to set up:
|
|
you can't connect a "to-the-host" connector to a peripheral.
|
|
|
|
Linux can run in the host, or in the peripheral. In both cases
|
|
you need a low level bus controller driver, and some software
|
|
talking to it. Peripheral controllers are often discrete silicon,
|
|
or are integrated with the CPU in a microcontroller. The more
|
|
familiar host side controllers have names like "EHCI", "OHCI",
|
|
or "UHCI", and are usually integrated into southbridges on PC
|
|
motherboards.
|
|
|
|
Enable this configuration option if you want to run Linux inside
|
|
a USB peripheral device. Configure one hardware driver for your
|
|
peripheral/device side bus controller, and a "gadget driver" for
|
|
your peripheral protocol. (If you use modular gadget drivers,
|
|
you may configure more than one.)
|
|
|
|
If in doubt, say "N" and don't enable these drivers; most people
|
|
don't have this kind of hardware (except maybe inside Linux PDAs).
|
|
|
|
For more information, see <http://www.linux-usb.org/gadget> and
|
|
the kernel DocBook documentation for this API.
|
|
|
|
config USB_GADGET_DEBUG_FILES
|
|
boolean "Debugging information files"
|
|
depends on USB_GADGET && PROC_FS
|
|
help
|
|
Some of the drivers in the "gadget" framework can expose
|
|
debugging information in files such as /proc/driver/udc
|
|
(for a peripheral controller). The information in these
|
|
files may help when you're troubleshooting or bringing up a
|
|
driver on a new board. Enable these files by choosing "Y"
|
|
here. If in doubt, or to conserve kernel memory, say "N".
|
|
|
|
config USB_GADGET_SELECTED
|
|
boolean
|
|
|
|
#
|
|
# USB Peripheral Controller Support
|
|
#
|
|
choice
|
|
prompt "USB Peripheral Controller"
|
|
depends on USB_GADGET
|
|
help
|
|
A USB device uses a controller to talk to its host.
|
|
Systems should have only one such upstream link.
|
|
Many controller drivers are platform-specific; these
|
|
often need board-specific hooks.
|
|
|
|
config USB_GADGET_FSL_USB2
|
|
boolean "Freescale Highspeed USB DR Peripheral Controller"
|
|
depends on MPC834x || PPC_MPC831x
|
|
select USB_GADGET_DUALSPEED
|
|
help
|
|
Some of Freescale PowerPC processors have a High Speed
|
|
Dual-Role(DR) USB controller, which supports device mode.
|
|
|
|
The number of programmable endpoints is different through
|
|
SOC revisions.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "fsl_usb2_udc" and force
|
|
all gadget drivers to also be dynamically linked.
|
|
|
|
config USB_FSL_USB2
|
|
tristate
|
|
depends on USB_GADGET_FSL_USB2
|
|
default USB_GADGET
|
|
select USB_GADGET_SELECTED
|
|
|
|
config USB_GADGET_NET2280
|
|
boolean "NetChip 228x"
|
|
depends on PCI
|
|
select USB_GADGET_DUALSPEED
|
|
help
|
|
NetChip 2280 / 2282 is a PCI based USB peripheral controller which
|
|
supports both full and high speed USB 2.0 data transfers.
|
|
|
|
It has six configurable endpoints, as well as endpoint zero
|
|
(for control transfers) and several endpoints with dedicated
|
|
functions.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "net2280" and force all
|
|
gadget drivers to also be dynamically linked.
|
|
|
|
config USB_NET2280
|
|
tristate
|
|
depends on USB_GADGET_NET2280
|
|
default USB_GADGET
|
|
select USB_GADGET_SELECTED
|
|
|
|
config USB_GADGET_PXA2XX
|
|
boolean "PXA 25x or IXP 4xx"
|
|
depends on (ARCH_PXA && PXA25x) || ARCH_IXP4XX
|
|
help
|
|
Intel's PXA 25x series XScale ARM-5TE processors include
|
|
an integrated full speed USB 1.1 device controller. The
|
|
controller in the IXP 4xx series is register-compatible.
|
|
|
|
It has fifteen fixed-function endpoints, as well as endpoint
|
|
zero (for control transfers).
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "pxa2xx_udc" and force all
|
|
gadget drivers to also be dynamically linked.
|
|
|
|
config USB_PXA2XX
|
|
tristate
|
|
depends on USB_GADGET_PXA2XX
|
|
default USB_GADGET
|
|
select USB_GADGET_SELECTED
|
|
|
|
# if there's only one gadget driver, using only two bulk endpoints,
|
|
# don't waste memory for the other endpoints
|
|
config USB_PXA2XX_SMALL
|
|
depends on USB_GADGET_PXA2XX
|
|
bool
|
|
default n if USB_ETH_RNDIS
|
|
default y if USB_ZERO
|
|
default y if USB_ETH
|
|
default y if USB_G_SERIAL
|
|
|
|
config USB_GADGET_GOKU
|
|
boolean "Toshiba TC86C001 'Goku-S'"
|
|
depends on PCI
|
|
help
|
|
The Toshiba TC86C001 is a PCI device which includes controllers
|
|
for full speed USB devices, IDE, I2C, SIO, plus a USB host (OHCI).
|
|
|
|
The device controller has three configurable (bulk or interrupt)
|
|
endpoints, plus endpoint zero (for control transfers).
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "goku_udc" and to force all
|
|
gadget drivers to also be dynamically linked.
|
|
|
|
config USB_GOKU
|
|
tristate
|
|
depends on USB_GADGET_GOKU
|
|
default USB_GADGET
|
|
select USB_GADGET_SELECTED
|
|
|
|
|
|
config USB_GADGET_LH7A40X
|
|
boolean "LH7A40X"
|
|
depends on ARCH_LH7A40X
|
|
help
|
|
This driver provides USB Device Controller driver for LH7A40x
|
|
|
|
config USB_LH7A40X
|
|
tristate
|
|
depends on USB_GADGET_LH7A40X
|
|
default USB_GADGET
|
|
select USB_GADGET_SELECTED
|
|
|
|
|
|
config USB_GADGET_OMAP
|
|
boolean "OMAP USB Device Controller"
|
|
depends on ARCH_OMAP
|
|
select ISP1301_OMAP if MACH_OMAP_H2 || MACH_OMAP_H3
|
|
help
|
|
Many Texas Instruments OMAP processors have flexible full
|
|
speed USB device controllers, with support for up to 30
|
|
endpoints (plus endpoint zero). This driver supports the
|
|
controller in the OMAP 1611, and should work with controllers
|
|
in other OMAP processors too, given minor tweaks.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "omap_udc" and force all
|
|
gadget drivers to also be dynamically linked.
|
|
|
|
config USB_OMAP
|
|
tristate
|
|
depends on USB_GADGET_OMAP
|
|
default USB_GADGET
|
|
select USB_GADGET_SELECTED
|
|
|
|
config USB_OTG
|
|
boolean "OTG Support"
|
|
depends on USB_GADGET_OMAP && ARCH_OMAP_OTG && USB_OHCI_HCD
|
|
help
|
|
The most notable feature of USB OTG is support for a
|
|
"Dual-Role" device, which can act as either a device
|
|
or a host. The initial role choice can be changed
|
|
later, when two dual-role devices talk to each other.
|
|
|
|
Select this only if your OMAP board has a Mini-AB connector.
|
|
|
|
config USB_GADGET_AT91
|
|
boolean "AT91 USB Device Port"
|
|
depends on ARCH_AT91
|
|
select USB_GADGET_SELECTED
|
|
help
|
|
Many Atmel AT91 processors (such as the AT91RM2000) have a
|
|
full speed USB Device Port with support for five configurable
|
|
endpoints (plus endpoint zero).
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "at91_udc" and force all
|
|
gadget drivers to also be dynamically linked.
|
|
|
|
config USB_AT91
|
|
tristate
|
|
depends on USB_GADGET_AT91
|
|
default USB_GADGET
|
|
|
|
config USB_GADGET_DUMMY_HCD
|
|
boolean "Dummy HCD (DEVELOPMENT)"
|
|
depends on (USB=y || (USB=m && USB_GADGET=m)) && EXPERIMENTAL
|
|
select USB_GADGET_DUALSPEED
|
|
help
|
|
This host controller driver emulates USB, looping all data transfer
|
|
requests back to a USB "gadget driver" in the same host. The host
|
|
side is the master; the gadget side is the slave. Gadget drivers
|
|
can be high, full, or low speed; and they have access to endpoints
|
|
like those from NET2280, PXA2xx, or SA1100 hardware.
|
|
|
|
This may help in some stages of creating a driver to embed in a
|
|
Linux device, since it lets you debug several parts of the gadget
|
|
driver without its hardware or drivers being involved.
|
|
|
|
Since such a gadget side driver needs to interoperate with a host
|
|
side Linux-USB device driver, this may help to debug both sides
|
|
of a USB protocol stack.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "dummy_hcd" and force all
|
|
gadget drivers to also be dynamically linked.
|
|
|
|
config USB_DUMMY_HCD
|
|
tristate
|
|
depends on USB_GADGET_DUMMY_HCD
|
|
default USB_GADGET
|
|
select USB_GADGET_SELECTED
|
|
|
|
# NOTE: Please keep dummy_hcd LAST so that "real hardware" appears
|
|
# first and will be selected by default.
|
|
|
|
endchoice
|
|
|
|
config USB_GADGET_DUALSPEED
|
|
bool
|
|
depends on USB_GADGET
|
|
default n
|
|
help
|
|
Means that gadget drivers should include extra descriptors
|
|
and code to handle dual-speed controllers.
|
|
|
|
#
|
|
# USB Gadget Drivers
|
|
#
|
|
choice
|
|
tristate "USB Gadget Drivers"
|
|
depends on USB_GADGET && USB_GADGET_SELECTED
|
|
default USB_ETH
|
|
help
|
|
A Linux "Gadget Driver" talks to the USB Peripheral Controller
|
|
driver through the abstract "gadget" API. Some other operating
|
|
systems call these "client" drivers, of which "class drivers"
|
|
are a subset (implementing a USB device class specification).
|
|
A gadget driver implements one or more USB functions using
|
|
the peripheral hardware.
|
|
|
|
Gadget drivers are hardware-neutral, or "platform independent",
|
|
except that they sometimes must understand quirks or limitations
|
|
of the particular controllers they work with. For example, when
|
|
a controller doesn't support alternate configurations or provide
|
|
enough of the right types of endpoints, the gadget driver might
|
|
not be able work with that controller, or might need to implement
|
|
a less common variant of a device class protocol.
|
|
|
|
# this first set of drivers all depend on bulk-capable hardware.
|
|
|
|
config USB_ZERO
|
|
tristate "Gadget Zero (DEVELOPMENT)"
|
|
depends on EXPERIMENTAL
|
|
help
|
|
Gadget Zero is a two-configuration device. It either sinks and
|
|
sources bulk data; or it loops back a configurable number of
|
|
transfers. It also implements control requests, for "chapter 9"
|
|
conformance. The driver needs only two bulk-capable endpoints, so
|
|
it can work on top of most device-side usb controllers. It's
|
|
useful for testing, and is also a working example showing how
|
|
USB "gadget drivers" can be written.
|
|
|
|
Make this be the first driver you try using on top of any new
|
|
USB peripheral controller driver. Then you can use host-side
|
|
test software, like the "usbtest" driver, to put your hardware
|
|
and its driver through a basic set of functional tests.
|
|
|
|
Gadget Zero also works with the host-side "usb-skeleton" driver,
|
|
and with many kinds of host-side test software. You may need
|
|
to tweak product and vendor IDs before host software knows about
|
|
this device, and arrange to select an appropriate configuration.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "g_zero".
|
|
|
|
config USB_ZERO_HNPTEST
|
|
boolean "HNP Test Device"
|
|
depends on USB_ZERO && USB_OTG
|
|
help
|
|
You can configure this device to enumerate using the device
|
|
identifiers of the USB-OTG test device. That means that when
|
|
this gadget connects to another OTG device, with this one using
|
|
the "B-Peripheral" role, that device will use HNP to let this
|
|
one serve as the USB host instead (in the "B-Host" role).
|
|
|
|
config USB_ETH
|
|
tristate "Ethernet Gadget (with CDC Ethernet support)"
|
|
depends on NET
|
|
help
|
|
This driver implements Ethernet style communication, in either
|
|
of two ways:
|
|
|
|
- The "Communication Device Class" (CDC) Ethernet Control Model.
|
|
That protocol is often avoided with pure Ethernet adapters, in
|
|
favor of simpler vendor-specific hardware, but is widely
|
|
supported by firmware for smart network devices.
|
|
|
|
- On hardware can't implement that protocol, a simple CDC subset
|
|
is used, placing fewer demands on USB.
|
|
|
|
RNDIS support is a third option, more demanding than that subset.
|
|
|
|
Within the USB device, this gadget driver exposes a network device
|
|
"usbX", where X depends on what other networking devices you have.
|
|
Treat it like a two-node Ethernet link: host, and gadget.
|
|
|
|
The Linux-USB host-side "usbnet" driver interoperates with this
|
|
driver, so that deep I/O queues can be supported. On 2.4 kernels,
|
|
use "CDCEther" instead, if you're using the CDC option. That CDC
|
|
mode should also interoperate with standard CDC Ethernet class
|
|
drivers on other host operating systems.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "g_ether".
|
|
|
|
config USB_ETH_RNDIS
|
|
bool "RNDIS support (EXPERIMENTAL)"
|
|
depends on USB_ETH && EXPERIMENTAL
|
|
default y
|
|
help
|
|
Microsoft Windows XP bundles the "Remote NDIS" (RNDIS) protocol,
|
|
and Microsoft provides redistributable binary RNDIS drivers for
|
|
older versions of Windows.
|
|
|
|
If you say "y" here, the Ethernet gadget driver will try to provide
|
|
a second device configuration, supporting RNDIS to talk to such
|
|
Microsoft USB hosts.
|
|
|
|
To make MS-Windows work with this, use Documentation/usb/linux.inf
|
|
as the "driver info file". For versions of MS-Windows older than
|
|
XP, you'll need to download drivers from Microsoft's website; a URL
|
|
is given in comments found in that info file.
|
|
|
|
config USB_GADGETFS
|
|
tristate "Gadget Filesystem (EXPERIMENTAL)"
|
|
depends on EXPERIMENTAL
|
|
help
|
|
This driver provides a filesystem based API that lets user mode
|
|
programs implement a single-configuration USB device, including
|
|
endpoint I/O and control requests that don't relate to enumeration.
|
|
All endpoints, transfer speeds, and transfer types supported by
|
|
the hardware are available, through read() and write() calls.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "gadgetfs".
|
|
|
|
config USB_FILE_STORAGE
|
|
tristate "File-backed Storage Gadget"
|
|
depends on BLOCK
|
|
help
|
|
The File-backed Storage Gadget acts as a USB Mass Storage
|
|
disk drive. As its storage repository it can use a regular
|
|
file or a block device (in much the same way as the "loop"
|
|
device driver), specified as a module parameter.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "g_file_storage".
|
|
|
|
config USB_FILE_STORAGE_TEST
|
|
bool "File-backed Storage Gadget testing version"
|
|
depends on USB_FILE_STORAGE
|
|
default n
|
|
help
|
|
Say "y" to generate the larger testing version of the
|
|
File-backed Storage Gadget, useful for probing the
|
|
behavior of USB Mass Storage hosts. Not needed for
|
|
normal operation.
|
|
|
|
config USB_G_SERIAL
|
|
tristate "Serial Gadget (with CDC ACM support)"
|
|
help
|
|
The Serial Gadget talks to the Linux-USB generic serial driver.
|
|
This driver supports a CDC-ACM module option, which can be used
|
|
to interoperate with MS-Windows hosts or with the Linux-USB
|
|
"cdc-acm" driver.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "g_serial".
|
|
|
|
For more information, see Documentation/usb/gadget_serial.txt
|
|
which includes instructions and a "driver info file" needed to
|
|
make MS-Windows work with this driver.
|
|
|
|
config USB_MIDI_GADGET
|
|
tristate "MIDI Gadget (EXPERIMENTAL)"
|
|
depends on SND && EXPERIMENTAL
|
|
select SND_RAWMIDI
|
|
help
|
|
The MIDI Gadget acts as a USB Audio device, with one MIDI
|
|
input and one MIDI output. These MIDI jacks appear as
|
|
a sound "card" in the ALSA sound system. Other MIDI
|
|
connections can then be made on the gadget system, using
|
|
ALSA's aconnect utility etc.
|
|
|
|
Say "y" to link the driver statically, or "m" to build a
|
|
dynamically linked module called "g_midi".
|
|
|
|
|
|
# put drivers that need isochronous transfer support (for audio
|
|
# or video class gadget drivers), or specific hardware, here.
|
|
|
|
# - none yet
|
|
|
|
endchoice
|
|
|
|
endmenu
|