2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/net/core/sock_diag.c
Daniel Borkmann 92acdc58ab bpf, net: Rework cookie generator as per-cpu one
With its use in BPF, the cookie generator can be called very frequently
in particular when used out of cgroup v2 hooks (e.g. connect / sendmsg)
and attached to the root cgroup, for example, when used in v1/v2 mixed
environments. In particular, when there's a high churn on sockets in the
system there can be many parallel requests to the bpf_get_socket_cookie()
and bpf_get_netns_cookie() helpers which then cause contention on the
atomic counter.

As similarly done in f991bd2e14 ("fs: introduce a per-cpu last_ino
allocator"), add a small helper library that both can use for the 64 bit
counters. Given this can be called from different contexts, we also need
to deal with potential nested calls even though in practice they are
considered extremely rare. One idea as suggested by Eric Dumazet was
to use a reverse counter for this situation since we don't expect 64 bit
overflows anyways; that way, we can avoid bigger gaps in the 64 bit
counter space compared to just batch-wise increase. Even on machines
with small number of cores (e.g. 4) the cookie generation shrinks from
min/max/med/avg (ns) of 22/50/40/38.9 down to 10/35/14/17.3 when run
in parallel from multiple CPUs.

Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
Reviewed-by: Eric Dumazet <edumazet@google.com>
Acked-by: Martin KaFai Lau <kafai@fb.com>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Link: https://lore.kernel.org/bpf/8a80b8d27d3c49f9a14e1d5213c19d8be87d1dc8.1601477936.git.daniel@iogearbox.net
2020-09-30 11:50:35 -07:00

340 lines
7.8 KiB
C

/* License: GPL */
#include <linux/mutex.h>
#include <linux/socket.h>
#include <linux/skbuff.h>
#include <net/netlink.h>
#include <net/net_namespace.h>
#include <linux/module.h>
#include <net/sock.h>
#include <linux/kernel.h>
#include <linux/tcp.h>
#include <linux/workqueue.h>
#include <linux/nospec.h>
#include <linux/cookie.h>
#include <linux/inet_diag.h>
#include <linux/sock_diag.h>
static const struct sock_diag_handler *sock_diag_handlers[AF_MAX];
static int (*inet_rcv_compat)(struct sk_buff *skb, struct nlmsghdr *nlh);
static DEFINE_MUTEX(sock_diag_table_mutex);
static struct workqueue_struct *broadcast_wq;
DEFINE_COOKIE(sock_cookie);
u64 __sock_gen_cookie(struct sock *sk)
{
while (1) {
u64 res = atomic64_read(&sk->sk_cookie);
if (res)
return res;
res = gen_cookie_next(&sock_cookie);
atomic64_cmpxchg(&sk->sk_cookie, 0, res);
}
}
int sock_diag_check_cookie(struct sock *sk, const __u32 *cookie)
{
u64 res;
if (cookie[0] == INET_DIAG_NOCOOKIE && cookie[1] == INET_DIAG_NOCOOKIE)
return 0;
res = sock_gen_cookie(sk);
if ((u32)res != cookie[0] || (u32)(res >> 32) != cookie[1])
return -ESTALE;
return 0;
}
EXPORT_SYMBOL_GPL(sock_diag_check_cookie);
void sock_diag_save_cookie(struct sock *sk, __u32 *cookie)
{
u64 res = sock_gen_cookie(sk);
cookie[0] = (u32)res;
cookie[1] = (u32)(res >> 32);
}
EXPORT_SYMBOL_GPL(sock_diag_save_cookie);
int sock_diag_put_meminfo(struct sock *sk, struct sk_buff *skb, int attrtype)
{
u32 mem[SK_MEMINFO_VARS];
sk_get_meminfo(sk, mem);
return nla_put(skb, attrtype, sizeof(mem), &mem);
}
EXPORT_SYMBOL_GPL(sock_diag_put_meminfo);
int sock_diag_put_filterinfo(bool may_report_filterinfo, struct sock *sk,
struct sk_buff *skb, int attrtype)
{
struct sock_fprog_kern *fprog;
struct sk_filter *filter;
struct nlattr *attr;
unsigned int flen;
int err = 0;
if (!may_report_filterinfo) {
nla_reserve(skb, attrtype, 0);
return 0;
}
rcu_read_lock();
filter = rcu_dereference(sk->sk_filter);
if (!filter)
goto out;
fprog = filter->prog->orig_prog;
if (!fprog)
goto out;
flen = bpf_classic_proglen(fprog);
attr = nla_reserve(skb, attrtype, flen);
if (attr == NULL) {
err = -EMSGSIZE;
goto out;
}
memcpy(nla_data(attr), fprog->filter, flen);
out:
rcu_read_unlock();
return err;
}
EXPORT_SYMBOL(sock_diag_put_filterinfo);
struct broadcast_sk {
struct sock *sk;
struct work_struct work;
};
static size_t sock_diag_nlmsg_size(void)
{
return NLMSG_ALIGN(sizeof(struct inet_diag_msg)
+ nla_total_size(sizeof(u8)) /* INET_DIAG_PROTOCOL */
+ nla_total_size_64bit(sizeof(struct tcp_info))); /* INET_DIAG_INFO */
}
static void sock_diag_broadcast_destroy_work(struct work_struct *work)
{
struct broadcast_sk *bsk =
container_of(work, struct broadcast_sk, work);
struct sock *sk = bsk->sk;
const struct sock_diag_handler *hndl;
struct sk_buff *skb;
const enum sknetlink_groups group = sock_diag_destroy_group(sk);
int err = -1;
WARN_ON(group == SKNLGRP_NONE);
skb = nlmsg_new(sock_diag_nlmsg_size(), GFP_KERNEL);
if (!skb)
goto out;
mutex_lock(&sock_diag_table_mutex);
hndl = sock_diag_handlers[sk->sk_family];
if (hndl && hndl->get_info)
err = hndl->get_info(skb, sk);
mutex_unlock(&sock_diag_table_mutex);
if (!err)
nlmsg_multicast(sock_net(sk)->diag_nlsk, skb, 0, group,
GFP_KERNEL);
else
kfree_skb(skb);
out:
sk_destruct(sk);
kfree(bsk);
}
void sock_diag_broadcast_destroy(struct sock *sk)
{
/* Note, this function is often called from an interrupt context. */
struct broadcast_sk *bsk =
kmalloc(sizeof(struct broadcast_sk), GFP_ATOMIC);
if (!bsk)
return sk_destruct(sk);
bsk->sk = sk;
INIT_WORK(&bsk->work, sock_diag_broadcast_destroy_work);
queue_work(broadcast_wq, &bsk->work);
}
void sock_diag_register_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh))
{
mutex_lock(&sock_diag_table_mutex);
inet_rcv_compat = fn;
mutex_unlock(&sock_diag_table_mutex);
}
EXPORT_SYMBOL_GPL(sock_diag_register_inet_compat);
void sock_diag_unregister_inet_compat(int (*fn)(struct sk_buff *skb, struct nlmsghdr *nlh))
{
mutex_lock(&sock_diag_table_mutex);
inet_rcv_compat = NULL;
mutex_unlock(&sock_diag_table_mutex);
}
EXPORT_SYMBOL_GPL(sock_diag_unregister_inet_compat);
int sock_diag_register(const struct sock_diag_handler *hndl)
{
int err = 0;
if (hndl->family >= AF_MAX)
return -EINVAL;
mutex_lock(&sock_diag_table_mutex);
if (sock_diag_handlers[hndl->family])
err = -EBUSY;
else
sock_diag_handlers[hndl->family] = hndl;
mutex_unlock(&sock_diag_table_mutex);
return err;
}
EXPORT_SYMBOL_GPL(sock_diag_register);
void sock_diag_unregister(const struct sock_diag_handler *hnld)
{
int family = hnld->family;
if (family >= AF_MAX)
return;
mutex_lock(&sock_diag_table_mutex);
BUG_ON(sock_diag_handlers[family] != hnld);
sock_diag_handlers[family] = NULL;
mutex_unlock(&sock_diag_table_mutex);
}
EXPORT_SYMBOL_GPL(sock_diag_unregister);
static int __sock_diag_cmd(struct sk_buff *skb, struct nlmsghdr *nlh)
{
int err;
struct sock_diag_req *req = nlmsg_data(nlh);
const struct sock_diag_handler *hndl;
if (nlmsg_len(nlh) < sizeof(*req))
return -EINVAL;
if (req->sdiag_family >= AF_MAX)
return -EINVAL;
req->sdiag_family = array_index_nospec(req->sdiag_family, AF_MAX);
if (sock_diag_handlers[req->sdiag_family] == NULL)
sock_load_diag_module(req->sdiag_family, 0);
mutex_lock(&sock_diag_table_mutex);
hndl = sock_diag_handlers[req->sdiag_family];
if (hndl == NULL)
err = -ENOENT;
else if (nlh->nlmsg_type == SOCK_DIAG_BY_FAMILY)
err = hndl->dump(skb, nlh);
else if (nlh->nlmsg_type == SOCK_DESTROY && hndl->destroy)
err = hndl->destroy(skb, nlh);
else
err = -EOPNOTSUPP;
mutex_unlock(&sock_diag_table_mutex);
return err;
}
static int sock_diag_rcv_msg(struct sk_buff *skb, struct nlmsghdr *nlh,
struct netlink_ext_ack *extack)
{
int ret;
switch (nlh->nlmsg_type) {
case TCPDIAG_GETSOCK:
case DCCPDIAG_GETSOCK:
if (inet_rcv_compat == NULL)
sock_load_diag_module(AF_INET, 0);
mutex_lock(&sock_diag_table_mutex);
if (inet_rcv_compat != NULL)
ret = inet_rcv_compat(skb, nlh);
else
ret = -EOPNOTSUPP;
mutex_unlock(&sock_diag_table_mutex);
return ret;
case SOCK_DIAG_BY_FAMILY:
case SOCK_DESTROY:
return __sock_diag_cmd(skb, nlh);
default:
return -EINVAL;
}
}
static DEFINE_MUTEX(sock_diag_mutex);
static void sock_diag_rcv(struct sk_buff *skb)
{
mutex_lock(&sock_diag_mutex);
netlink_rcv_skb(skb, &sock_diag_rcv_msg);
mutex_unlock(&sock_diag_mutex);
}
static int sock_diag_bind(struct net *net, int group)
{
switch (group) {
case SKNLGRP_INET_TCP_DESTROY:
case SKNLGRP_INET_UDP_DESTROY:
if (!sock_diag_handlers[AF_INET])
sock_load_diag_module(AF_INET, 0);
break;
case SKNLGRP_INET6_TCP_DESTROY:
case SKNLGRP_INET6_UDP_DESTROY:
if (!sock_diag_handlers[AF_INET6])
sock_load_diag_module(AF_INET6, 0);
break;
}
return 0;
}
int sock_diag_destroy(struct sock *sk, int err)
{
if (!ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN))
return -EPERM;
if (!sk->sk_prot->diag_destroy)
return -EOPNOTSUPP;
return sk->sk_prot->diag_destroy(sk, err);
}
EXPORT_SYMBOL_GPL(sock_diag_destroy);
static int __net_init diag_net_init(struct net *net)
{
struct netlink_kernel_cfg cfg = {
.groups = SKNLGRP_MAX,
.input = sock_diag_rcv,
.bind = sock_diag_bind,
.flags = NL_CFG_F_NONROOT_RECV,
};
net->diag_nlsk = netlink_kernel_create(net, NETLINK_SOCK_DIAG, &cfg);
return net->diag_nlsk == NULL ? -ENOMEM : 0;
}
static void __net_exit diag_net_exit(struct net *net)
{
netlink_kernel_release(net->diag_nlsk);
net->diag_nlsk = NULL;
}
static struct pernet_operations diag_net_ops = {
.init = diag_net_init,
.exit = diag_net_exit,
};
static int __init sock_diag_init(void)
{
broadcast_wq = alloc_workqueue("sock_diag_events", 0, 0);
BUG_ON(!broadcast_wq);
return register_pernet_subsys(&diag_net_ops);
}
device_initcall(sock_diag_init);