2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-23 14:13:58 +08:00
linux-next/kernel/debug/kdb/kdb_bt.c
Jason Wessel d1871b38fc kdb: Fix dmesg/bta scroll to quit with 'q'
If you press 'q' the pager should exit instead of printing everything
from dmesg which can really bog down a 9600 baud serial link.

The same is true for the bta command.

Signed-off-by: Jason Wessel <jason.wessel@windriver.com>
2012-10-12 06:37:35 -05:00

211 lines
5.2 KiB
C

/*
* Kernel Debugger Architecture Independent Stack Traceback
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* Copyright (c) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
* Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
*/
#include <linux/ctype.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/kdb.h>
#include <linux/nmi.h>
#include "kdb_private.h"
static void kdb_show_stack(struct task_struct *p, void *addr)
{
int old_lvl = console_loglevel;
console_loglevel = 15;
kdb_trap_printk++;
kdb_set_current_task(p);
if (addr) {
show_stack((struct task_struct *)p, addr);
} else if (kdb_current_regs) {
#ifdef CONFIG_X86
show_stack(p, &kdb_current_regs->sp);
#else
show_stack(p, NULL);
#endif
} else {
show_stack(p, NULL);
}
console_loglevel = old_lvl;
kdb_trap_printk--;
}
/*
* kdb_bt
*
* This function implements the 'bt' command. Print a stack
* traceback.
*
* bt [<address-expression>] (addr-exp is for alternate stacks)
* btp <pid> Kernel stack for <pid>
* btt <address-expression> Kernel stack for task structure at
* <address-expression>
* bta [DRSTCZEUIMA] All useful processes, optionally
* filtered by state
* btc [<cpu>] The current process on one cpu,
* default is all cpus
*
* bt <address-expression> refers to a address on the stack, that location
* is assumed to contain a return address.
*
* btt <address-expression> refers to the address of a struct task.
*
* Inputs:
* argc argument count
* argv argument vector
* Outputs:
* None.
* Returns:
* zero for success, a kdb diagnostic if error
* Locking:
* none.
* Remarks:
* Backtrack works best when the code uses frame pointers. But even
* without frame pointers we should get a reasonable trace.
*
* mds comes in handy when examining the stack to do a manual traceback or
* to get a starting point for bt <address-expression>.
*/
static int
kdb_bt1(struct task_struct *p, unsigned long mask,
int argcount, int btaprompt)
{
char buffer[2];
if (kdb_getarea(buffer[0], (unsigned long)p) ||
kdb_getarea(buffer[0], (unsigned long)(p+1)-1))
return KDB_BADADDR;
if (!kdb_task_state(p, mask))
return 0;
kdb_printf("Stack traceback for pid %d\n", p->pid);
kdb_ps1(p);
kdb_show_stack(p, NULL);
if (btaprompt) {
kdb_getstr(buffer, sizeof(buffer),
"Enter <q> to end, <cr> to continue:");
if (buffer[0] == 'q') {
kdb_printf("\n");
return 1;
}
}
touch_nmi_watchdog();
return 0;
}
int
kdb_bt(int argc, const char **argv)
{
int diag;
int argcount = 5;
int btaprompt = 1;
int nextarg;
unsigned long addr;
long offset;
/* Prompt after each proc in bta */
kdbgetintenv("BTAPROMPT", &btaprompt);
if (strcmp(argv[0], "bta") == 0) {
struct task_struct *g, *p;
unsigned long cpu;
unsigned long mask = kdb_task_state_string(argc ? argv[1] :
NULL);
if (argc == 0)
kdb_ps_suppressed();
/* Run the active tasks first */
for_each_online_cpu(cpu) {
p = kdb_curr_task(cpu);
if (kdb_bt1(p, mask, argcount, btaprompt))
return 0;
}
/* Now the inactive tasks */
kdb_do_each_thread(g, p) {
if (KDB_FLAG(CMD_INTERRUPT))
return 0;
if (task_curr(p))
continue;
if (kdb_bt1(p, mask, argcount, btaprompt))
return 0;
} kdb_while_each_thread(g, p);
} else if (strcmp(argv[0], "btp") == 0) {
struct task_struct *p;
unsigned long pid;
if (argc != 1)
return KDB_ARGCOUNT;
diag = kdbgetularg((char *)argv[1], &pid);
if (diag)
return diag;
p = find_task_by_pid_ns(pid, &init_pid_ns);
if (p) {
kdb_set_current_task(p);
return kdb_bt1(p, ~0UL, argcount, 0);
}
kdb_printf("No process with pid == %ld found\n", pid);
return 0;
} else if (strcmp(argv[0], "btt") == 0) {
if (argc != 1)
return KDB_ARGCOUNT;
diag = kdbgetularg((char *)argv[1], &addr);
if (diag)
return diag;
kdb_set_current_task((struct task_struct *)addr);
return kdb_bt1((struct task_struct *)addr, ~0UL, argcount, 0);
} else if (strcmp(argv[0], "btc") == 0) {
unsigned long cpu = ~0;
struct task_struct *save_current_task = kdb_current_task;
char buf[80];
if (argc > 1)
return KDB_ARGCOUNT;
if (argc == 1) {
diag = kdbgetularg((char *)argv[1], &cpu);
if (diag)
return diag;
}
/* Recursive use of kdb_parse, do not use argv after
* this point */
argv = NULL;
if (cpu != ~0) {
if (cpu >= num_possible_cpus() || !cpu_online(cpu)) {
kdb_printf("no process for cpu %ld\n", cpu);
return 0;
}
sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu));
kdb_parse(buf);
return 0;
}
kdb_printf("btc: cpu status: ");
kdb_parse("cpu\n");
for_each_online_cpu(cpu) {
sprintf(buf, "btt 0x%p\n", KDB_TSK(cpu));
kdb_parse(buf);
touch_nmi_watchdog();
}
kdb_set_current_task(save_current_task);
return 0;
} else {
if (argc) {
nextarg = 1;
diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
&offset, NULL);
if (diag)
return diag;
kdb_show_stack(kdb_current_task, (void *)addr);
return 0;
} else {
return kdb_bt1(kdb_current_task, ~0UL, argcount, 0);
}
}
/* NOTREACHED */
return 0;
}