2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 07:04:00 +08:00
linux-next/arch/blackfin/kernel/trace.c
David Howells df9ee29270 Fix IRQ flag handling naming
Fix the IRQ flag handling naming.  In linux/irqflags.h under one configuration,
it maps:

	local_irq_enable() -> raw_local_irq_enable()
	local_irq_disable() -> raw_local_irq_disable()
	local_irq_save() -> raw_local_irq_save()
	...

and under the other configuration, it maps:

	raw_local_irq_enable() -> local_irq_enable()
	raw_local_irq_disable() -> local_irq_disable()
	raw_local_irq_save() -> local_irq_save()
	...

This is quite confusing.  There should be one set of names expected of the
arch, and this should be wrapped to give another set of names that are expected
by users of this facility.

Change this to have the arch provide:

	flags = arch_local_save_flags()
	flags = arch_local_irq_save()
	arch_local_irq_restore(flags)
	arch_local_irq_disable()
	arch_local_irq_enable()
	arch_irqs_disabled_flags(flags)
	arch_irqs_disabled()
	arch_safe_halt()

Then linux/irqflags.h wraps these to provide:

	raw_local_save_flags(flags)
	raw_local_irq_save(flags)
	raw_local_irq_restore(flags)
	raw_local_irq_disable()
	raw_local_irq_enable()
	raw_irqs_disabled_flags(flags)
	raw_irqs_disabled()
	raw_safe_halt()

with type checking on the flags 'arguments', and then wraps those to provide:

	local_save_flags(flags)
	local_irq_save(flags)
	local_irq_restore(flags)
	local_irq_disable()
	local_irq_enable()
	irqs_disabled_flags(flags)
	irqs_disabled()
	safe_halt()

with tracing included if enabled.

The arch functions can now all be inline functions rather than some of them
having to be macros.

Signed-off-by: David Howells <dhowells@redhat.com> [X86, FRV, MN10300]
Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> [Tile]
Signed-off-by: Michal Simek <monstr@monstr.eu> [Microblaze]
Tested-by: Catalin Marinas <catalin.marinas@arm.com> [ARM]
Acked-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Haavard Skinnemoen <haavard.skinnemoen@atmel.com> [AVR]
Acked-by: Tony Luck <tony.luck@intel.com> [IA-64]
Acked-by: Hirokazu Takata <takata@linux-m32r.org> [M32R]
Acked-by: Greg Ungerer <gerg@uclinux.org> [M68K/M68KNOMMU]
Acked-by: Ralf Baechle <ralf@linux-mips.org> [MIPS]
Acked-by: Kyle McMartin <kyle@mcmartin.ca> [PA-RISC]
Acked-by: Paul Mackerras <paulus@samba.org> [PowerPC]
Acked-by: Martin Schwidefsky <schwidefsky@de.ibm.com> [S390]
Acked-by: Chen Liqin <liqin.chen@sunplusct.com> [Score]
Acked-by: Matt Fleming <matt@console-pimps.org> [SH]
Acked-by: David S. Miller <davem@davemloft.net> [Sparc]
Acked-by: Chris Zankel <chris@zankel.net> [Xtensa]
Reviewed-by: Richard Henderson <rth@twiddle.net> [Alpha]
Reviewed-by: Yoshinori Sato <ysato@users.sourceforge.jp> [H8300]
Cc: starvik@axis.com [CRIS]
Cc: jesper.nilsson@axis.com [CRIS]
Cc: linux-cris-kernel@axis.com
2010-10-07 14:08:55 +01:00

983 lines
27 KiB
C

/* provide some functions which dump the trace buffer, in a nice way for people
* to read it, and understand what is going on
*
* Copyright 2004-2010 Analog Devices Inc.
*
* Licensed under the GPL-2 or later
*/
#include <linux/kernel.h>
#include <linux/hardirq.h>
#include <linux/thread_info.h>
#include <linux/mm.h>
#include <linux/uaccess.h>
#include <linux/module.h>
#include <linux/kallsyms.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/irq.h>
#include <asm/dma.h>
#include <asm/trace.h>
#include <asm/fixed_code.h>
#include <asm/traps.h>
#include <asm/irq_handler.h>
void decode_address(char *buf, unsigned long address)
{
struct task_struct *p;
struct mm_struct *mm;
unsigned long flags, offset;
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
struct rb_node *n;
#ifdef CONFIG_KALLSYMS
unsigned long symsize;
const char *symname;
char *modname;
char *delim = ":";
char namebuf[128];
#endif
buf += sprintf(buf, "<0x%08lx> ", address);
#ifdef CONFIG_KALLSYMS
/* look up the address and see if we are in kernel space */
symname = kallsyms_lookup(address, &symsize, &offset, &modname, namebuf);
if (symname) {
/* yeah! kernel space! */
if (!modname)
modname = delim = "";
sprintf(buf, "{ %s%s%s%s + 0x%lx }",
delim, modname, delim, symname,
(unsigned long)offset);
return;
}
#endif
if (address >= FIXED_CODE_START && address < FIXED_CODE_END) {
/* Problem in fixed code section? */
strcat(buf, "/* Maybe fixed code section */");
return;
} else if (address < CONFIG_BOOT_LOAD) {
/* Problem somewhere before the kernel start address */
strcat(buf, "/* Maybe null pointer? */");
return;
} else if (address >= COREMMR_BASE) {
strcat(buf, "/* core mmrs */");
return;
} else if (address >= SYSMMR_BASE) {
strcat(buf, "/* system mmrs */");
return;
} else if (address >= L1_ROM_START && address < L1_ROM_START + L1_ROM_LENGTH) {
strcat(buf, "/* on-chip L1 ROM */");
return;
} else if (address >= L1_SCRATCH_START && address < L1_SCRATCH_START + L1_SCRATCH_LENGTH) {
strcat(buf, "/* on-chip scratchpad */");
return;
} else if (address >= physical_mem_end && address < ASYNC_BANK0_BASE) {
strcat(buf, "/* unconnected memory */");
return;
} else if (address >= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE && address < BOOT_ROM_START) {
strcat(buf, "/* reserved memory */");
return;
} else if (address >= L1_DATA_A_START && address < L1_DATA_A_START + L1_DATA_A_LENGTH) {
strcat(buf, "/* on-chip Data Bank A */");
return;
} else if (address >= L1_DATA_B_START && address < L1_DATA_B_START + L1_DATA_B_LENGTH) {
strcat(buf, "/* on-chip Data Bank B */");
return;
}
/*
* Don't walk any of the vmas if we are oopsing, it has been known
* to cause problems - corrupt vmas (kernel crashes) cause double faults
*/
if (oops_in_progress) {
strcat(buf, "/* kernel dynamic memory (maybe user-space) */");
return;
}
/* looks like we're off in user-land, so let's walk all the
* mappings of all our processes and see if we can't be a whee
* bit more specific
*/
write_lock_irqsave(&tasklist_lock, flags);
for_each_process(p) {
mm = (in_atomic ? p->mm : get_task_mm(p));
if (!mm)
continue;
if (!down_read_trylock(&mm->mmap_sem)) {
if (!in_atomic)
mmput(mm);
continue;
}
for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
struct vm_area_struct *vma;
vma = rb_entry(n, struct vm_area_struct, vm_rb);
if (address >= vma->vm_start && address < vma->vm_end) {
char _tmpbuf[256];
char *name = p->comm;
struct file *file = vma->vm_file;
if (file) {
char *d_name = d_path(&file->f_path, _tmpbuf,
sizeof(_tmpbuf));
if (!IS_ERR(d_name))
name = d_name;
}
/* FLAT does not have its text aligned to the start of
* the map while FDPIC ELF does ...
*/
/* before we can check flat/fdpic, we need to
* make sure current is valid
*/
if ((unsigned long)current >= FIXED_CODE_START &&
!((unsigned long)current & 0x3)) {
if (current->mm &&
(address > current->mm->start_code) &&
(address < current->mm->end_code))
offset = address - current->mm->start_code;
else
offset = (address - vma->vm_start) +
(vma->vm_pgoff << PAGE_SHIFT);
sprintf(buf, "[ %s + 0x%lx ]", name, offset);
} else
sprintf(buf, "[ %s vma:0x%lx-0x%lx]",
name, vma->vm_start, vma->vm_end);
up_read(&mm->mmap_sem);
if (!in_atomic)
mmput(mm);
if (buf[0] == '\0')
sprintf(buf, "[ %s ] dynamic memory", name);
goto done;
}
}
up_read(&mm->mmap_sem);
if (!in_atomic)
mmput(mm);
}
/*
* we were unable to find this address anywhere,
* or some MMs were skipped because they were in use.
*/
sprintf(buf, "/* kernel dynamic memory */");
done:
write_unlock_irqrestore(&tasklist_lock, flags);
}
#define EXPAND_LEN ((1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 256 - 1)
/*
* Similar to get_user, do some address checking, then dereference
* Return true on success, false on bad address
*/
bool get_mem16(unsigned short *val, unsigned short *address)
{
unsigned long addr = (unsigned long)address;
/* Check for odd addresses */
if (addr & 0x1)
return false;
switch (bfin_mem_access_type(addr, 2)) {
case BFIN_MEM_ACCESS_CORE:
case BFIN_MEM_ACCESS_CORE_ONLY:
*val = *address;
return true;
case BFIN_MEM_ACCESS_DMA:
dma_memcpy(val, address, 2);
return true;
case BFIN_MEM_ACCESS_ITEST:
isram_memcpy(val, address, 2);
return true;
default: /* invalid access */
return false;
}
}
bool get_instruction(unsigned int *val, unsigned short *address)
{
unsigned long addr = (unsigned long)address;
unsigned short opcode0, opcode1;
/* Check for odd addresses */
if (addr & 0x1)
return false;
/* MMR region will never have instructions */
if (addr >= SYSMMR_BASE)
return false;
/* Scratchpad will never have instructions */
if (addr >= L1_SCRATCH_START && addr < L1_SCRATCH_START + L1_SCRATCH_LENGTH)
return false;
/* Data banks will never have instructions */
if (addr >= BOOT_ROM_START + BOOT_ROM_LENGTH && addr < L1_CODE_START)
return false;
if (!get_mem16(&opcode0, address))
return false;
/* was this a 32-bit instruction? If so, get the next 16 bits */
if ((opcode0 & 0xc000) == 0xc000) {
if (!get_mem16(&opcode1, address + 1))
return false;
*val = (opcode0 << 16) + opcode1;
} else
*val = opcode0;
return true;
}
#if defined(CONFIG_DEBUG_BFIN_HWTRACE_ON)
/*
* decode the instruction if we are printing out the trace, as it
* makes things easier to follow, without running it through objdump
* Decode the change of flow, and the common load/store instructions
* which are the main cause for faults, and discontinuities in the trace
* buffer.
*/
#define ProgCtrl_opcode 0x0000
#define ProgCtrl_poprnd_bits 0
#define ProgCtrl_poprnd_mask 0xf
#define ProgCtrl_prgfunc_bits 4
#define ProgCtrl_prgfunc_mask 0xf
#define ProgCtrl_code_bits 8
#define ProgCtrl_code_mask 0xff
static void decode_ProgCtrl_0(unsigned int opcode)
{
int poprnd = ((opcode >> ProgCtrl_poprnd_bits) & ProgCtrl_poprnd_mask);
int prgfunc = ((opcode >> ProgCtrl_prgfunc_bits) & ProgCtrl_prgfunc_mask);
if (prgfunc == 0 && poprnd == 0)
pr_cont("NOP");
else if (prgfunc == 1 && poprnd == 0)
pr_cont("RTS");
else if (prgfunc == 1 && poprnd == 1)
pr_cont("RTI");
else if (prgfunc == 1 && poprnd == 2)
pr_cont("RTX");
else if (prgfunc == 1 && poprnd == 3)
pr_cont("RTN");
else if (prgfunc == 1 && poprnd == 4)
pr_cont("RTE");
else if (prgfunc == 2 && poprnd == 0)
pr_cont("IDLE");
else if (prgfunc == 2 && poprnd == 3)
pr_cont("CSYNC");
else if (prgfunc == 2 && poprnd == 4)
pr_cont("SSYNC");
else if (prgfunc == 2 && poprnd == 5)
pr_cont("EMUEXCPT");
else if (prgfunc == 3)
pr_cont("CLI R%i", poprnd);
else if (prgfunc == 4)
pr_cont("STI R%i", poprnd);
else if (prgfunc == 5)
pr_cont("JUMP (P%i)", poprnd);
else if (prgfunc == 6)
pr_cont("CALL (P%i)", poprnd);
else if (prgfunc == 7)
pr_cont("CALL (PC + P%i)", poprnd);
else if (prgfunc == 8)
pr_cont("JUMP (PC + P%i", poprnd);
else if (prgfunc == 9)
pr_cont("RAISE %i", poprnd);
else if (prgfunc == 10)
pr_cont("EXCPT %i", poprnd);
else
pr_cont("0x%04x", opcode);
}
#define BRCC_opcode 0x1000
#define BRCC_offset_bits 0
#define BRCC_offset_mask 0x3ff
#define BRCC_B_bits 10
#define BRCC_B_mask 0x1
#define BRCC_T_bits 11
#define BRCC_T_mask 0x1
#define BRCC_code_bits 12
#define BRCC_code_mask 0xf
static void decode_BRCC_0(unsigned int opcode)
{
int B = ((opcode >> BRCC_B_bits) & BRCC_B_mask);
int T = ((opcode >> BRCC_T_bits) & BRCC_T_mask);
pr_cont("IF %sCC JUMP pcrel %s", T ? "" : "!", B ? "(BP)" : "");
}
#define CALLa_opcode 0xe2000000
#define CALLa_addr_bits 0
#define CALLa_addr_mask 0xffffff
#define CALLa_S_bits 24
#define CALLa_S_mask 0x1
#define CALLa_code_bits 25
#define CALLa_code_mask 0x7f
static void decode_CALLa_0(unsigned int opcode)
{
int S = ((opcode >> (CALLa_S_bits - 16)) & CALLa_S_mask);
if (S)
pr_cont("CALL pcrel");
else
pr_cont("JUMP.L");
}
#define LoopSetup_opcode 0xe0800000
#define LoopSetup_eoffset_bits 0
#define LoopSetup_eoffset_mask 0x3ff
#define LoopSetup_dontcare_bits 10
#define LoopSetup_dontcare_mask 0x3
#define LoopSetup_reg_bits 12
#define LoopSetup_reg_mask 0xf
#define LoopSetup_soffset_bits 16
#define LoopSetup_soffset_mask 0xf
#define LoopSetup_c_bits 20
#define LoopSetup_c_mask 0x1
#define LoopSetup_rop_bits 21
#define LoopSetup_rop_mask 0x3
#define LoopSetup_code_bits 23
#define LoopSetup_code_mask 0x1ff
static void decode_LoopSetup_0(unsigned int opcode)
{
int c = ((opcode >> LoopSetup_c_bits) & LoopSetup_c_mask);
int reg = ((opcode >> LoopSetup_reg_bits) & LoopSetup_reg_mask);
int rop = ((opcode >> LoopSetup_rop_bits) & LoopSetup_rop_mask);
pr_cont("LSETUP <> LC%i", c);
if ((rop & 1) == 1)
pr_cont("= P%i", reg);
if ((rop & 2) == 2)
pr_cont(" >> 0x1");
}
#define DspLDST_opcode 0x9c00
#define DspLDST_reg_bits 0
#define DspLDST_reg_mask 0x7
#define DspLDST_i_bits 3
#define DspLDST_i_mask 0x3
#define DspLDST_m_bits 5
#define DspLDST_m_mask 0x3
#define DspLDST_aop_bits 7
#define DspLDST_aop_mask 0x3
#define DspLDST_W_bits 9
#define DspLDST_W_mask 0x1
#define DspLDST_code_bits 10
#define DspLDST_code_mask 0x3f
static void decode_dspLDST_0(unsigned int opcode)
{
int i = ((opcode >> DspLDST_i_bits) & DspLDST_i_mask);
int m = ((opcode >> DspLDST_m_bits) & DspLDST_m_mask);
int W = ((opcode >> DspLDST_W_bits) & DspLDST_W_mask);
int aop = ((opcode >> DspLDST_aop_bits) & DspLDST_aop_mask);
int reg = ((opcode >> DspLDST_reg_bits) & DspLDST_reg_mask);
if (W == 0) {
pr_cont("R%i", reg);
switch (m) {
case 0:
pr_cont(" = ");
break;
case 1:
pr_cont(".L = ");
break;
case 2:
pr_cont(".W = ");
break;
}
}
pr_cont("[ I%i", i);
switch (aop) {
case 0:
pr_cont("++ ]");
break;
case 1:
pr_cont("-- ]");
break;
}
if (W == 1) {
pr_cont(" = R%i", reg);
switch (m) {
case 1:
pr_cont(".L = ");
break;
case 2:
pr_cont(".W = ");
break;
}
}
}
#define LDST_opcode 0x9000
#define LDST_reg_bits 0
#define LDST_reg_mask 0x7
#define LDST_ptr_bits 3
#define LDST_ptr_mask 0x7
#define LDST_Z_bits 6
#define LDST_Z_mask 0x1
#define LDST_aop_bits 7
#define LDST_aop_mask 0x3
#define LDST_W_bits 9
#define LDST_W_mask 0x1
#define LDST_sz_bits 10
#define LDST_sz_mask 0x3
#define LDST_code_bits 12
#define LDST_code_mask 0xf
static void decode_LDST_0(unsigned int opcode)
{
int Z = ((opcode >> LDST_Z_bits) & LDST_Z_mask);
int W = ((opcode >> LDST_W_bits) & LDST_W_mask);
int sz = ((opcode >> LDST_sz_bits) & LDST_sz_mask);
int aop = ((opcode >> LDST_aop_bits) & LDST_aop_mask);
int reg = ((opcode >> LDST_reg_bits) & LDST_reg_mask);
int ptr = ((opcode >> LDST_ptr_bits) & LDST_ptr_mask);
if (W == 0)
pr_cont("%s%i = ", (sz == 0 && Z == 1) ? "P" : "R", reg);
switch (sz) {
case 1:
pr_cont("W");
break;
case 2:
pr_cont("B");
break;
}
pr_cont("[P%i", ptr);
switch (aop) {
case 0:
pr_cont("++");
break;
case 1:
pr_cont("--");
break;
}
pr_cont("]");
if (W == 1)
pr_cont(" = %s%i ", (sz == 0 && Z == 1) ? "P" : "R", reg);
if (sz) {
if (Z)
pr_cont(" (X)");
else
pr_cont(" (Z)");
}
}
#define LDSTii_opcode 0xa000
#define LDSTii_reg_bit 0
#define LDSTii_reg_mask 0x7
#define LDSTii_ptr_bit 3
#define LDSTii_ptr_mask 0x7
#define LDSTii_offset_bit 6
#define LDSTii_offset_mask 0xf
#define LDSTii_op_bit 10
#define LDSTii_op_mask 0x3
#define LDSTii_W_bit 12
#define LDSTii_W_mask 0x1
#define LDSTii_code_bit 13
#define LDSTii_code_mask 0x7
static void decode_LDSTii_0(unsigned int opcode)
{
int reg = ((opcode >> LDSTii_reg_bit) & LDSTii_reg_mask);
int ptr = ((opcode >> LDSTii_ptr_bit) & LDSTii_ptr_mask);
int offset = ((opcode >> LDSTii_offset_bit) & LDSTii_offset_mask);
int op = ((opcode >> LDSTii_op_bit) & LDSTii_op_mask);
int W = ((opcode >> LDSTii_W_bit) & LDSTii_W_mask);
if (W == 0) {
pr_cont("%s%i = %s[P%i + %i]", op == 3 ? "R" : "P", reg,
op == 1 || op == 2 ? "" : "W", ptr, offset);
if (op == 2)
pr_cont("(Z)");
if (op == 3)
pr_cont("(X)");
} else {
pr_cont("%s[P%i + %i] = %s%i", op == 0 ? "" : "W", ptr,
offset, op == 3 ? "P" : "R", reg);
}
}
#define LDSTidxI_opcode 0xe4000000
#define LDSTidxI_offset_bits 0
#define LDSTidxI_offset_mask 0xffff
#define LDSTidxI_reg_bits 16
#define LDSTidxI_reg_mask 0x7
#define LDSTidxI_ptr_bits 19
#define LDSTidxI_ptr_mask 0x7
#define LDSTidxI_sz_bits 22
#define LDSTidxI_sz_mask 0x3
#define LDSTidxI_Z_bits 24
#define LDSTidxI_Z_mask 0x1
#define LDSTidxI_W_bits 25
#define LDSTidxI_W_mask 0x1
#define LDSTidxI_code_bits 26
#define LDSTidxI_code_mask 0x3f
static void decode_LDSTidxI_0(unsigned int opcode)
{
int Z = ((opcode >> LDSTidxI_Z_bits) & LDSTidxI_Z_mask);
int W = ((opcode >> LDSTidxI_W_bits) & LDSTidxI_W_mask);
int sz = ((opcode >> LDSTidxI_sz_bits) & LDSTidxI_sz_mask);
int reg = ((opcode >> LDSTidxI_reg_bits) & LDSTidxI_reg_mask);
int ptr = ((opcode >> LDSTidxI_ptr_bits) & LDSTidxI_ptr_mask);
int offset = ((opcode >> LDSTidxI_offset_bits) & LDSTidxI_offset_mask);
if (W == 0)
pr_cont("%s%i = ", sz == 0 && Z == 1 ? "P" : "R", reg);
if (sz == 1)
pr_cont("W");
if (sz == 2)
pr_cont("B");
pr_cont("[P%i + %s0x%x]", ptr, offset & 0x20 ? "-" : "",
(offset & 0x1f) << 2);
if (W == 0 && sz != 0) {
if (Z)
pr_cont("(X)");
else
pr_cont("(Z)");
}
if (W == 1)
pr_cont("= %s%i", (sz == 0 && Z == 1) ? "P" : "R", reg);
}
static void decode_opcode(unsigned int opcode)
{
#ifdef CONFIG_BUG
if (opcode == BFIN_BUG_OPCODE)
pr_cont("BUG");
else
#endif
if ((opcode & 0xffffff00) == ProgCtrl_opcode)
decode_ProgCtrl_0(opcode);
else if ((opcode & 0xfffff000) == BRCC_opcode)
decode_BRCC_0(opcode);
else if ((opcode & 0xfffff000) == 0x2000)
pr_cont("JUMP.S");
else if ((opcode & 0xfe000000) == CALLa_opcode)
decode_CALLa_0(opcode);
else if ((opcode & 0xff8000C0) == LoopSetup_opcode)
decode_LoopSetup_0(opcode);
else if ((opcode & 0xfffffc00) == DspLDST_opcode)
decode_dspLDST_0(opcode);
else if ((opcode & 0xfffff000) == LDST_opcode)
decode_LDST_0(opcode);
else if ((opcode & 0xffffe000) == LDSTii_opcode)
decode_LDSTii_0(opcode);
else if ((opcode & 0xfc000000) == LDSTidxI_opcode)
decode_LDSTidxI_0(opcode);
else if (opcode & 0xffff0000)
pr_cont("0x%08x", opcode);
else
pr_cont("0x%04x", opcode);
}
#define BIT_MULTI_INS 0x08000000
static void decode_instruction(unsigned short *address)
{
unsigned int opcode;
if (!get_instruction(&opcode, address))
return;
decode_opcode(opcode);
/* If things are a 32-bit instruction, it has the possibility of being
* a multi-issue instruction (a 32-bit, and 2 16 bit instrucitions)
* This test collidates with the unlink instruction, so disallow that
*/
if ((opcode & 0xc0000000) == 0xc0000000 &&
(opcode & BIT_MULTI_INS) &&
(opcode & 0xe8000000) != 0xe8000000) {
pr_cont(" || ");
if (!get_instruction(&opcode, address + 2))
return;
decode_opcode(opcode);
pr_cont(" || ");
if (!get_instruction(&opcode, address + 3))
return;
decode_opcode(opcode);
}
}
#endif
void dump_bfin_trace_buffer(void)
{
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_ON
int tflags, i = 0, fault = 0;
char buf[150];
unsigned short *addr;
unsigned int cpu = raw_smp_processor_id();
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
int j, index;
#endif
trace_buffer_save(tflags);
pr_notice("Hardware Trace:\n");
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
pr_notice("WARNING: Expanded trace turned on - can not trace exceptions\n");
#endif
if (likely(bfin_read_TBUFSTAT() & TBUFCNT)) {
for (; bfin_read_TBUFSTAT() & TBUFCNT; i++) {
addr = (unsigned short *)bfin_read_TBUF();
decode_address(buf, (unsigned long)addr);
pr_notice("%4i Target : %s\n", i, buf);
/* Normally, the faulting instruction doesn't go into
* the trace buffer, (since it doesn't commit), so
* we print out the fault address here
*/
if (!fault && addr == ((unsigned short *)evt_ivhw)) {
addr = (unsigned short *)bfin_read_TBUF();
decode_address(buf, (unsigned long)addr);
pr_notice(" FAULT : %s ", buf);
decode_instruction(addr);
pr_cont("\n");
fault = 1;
continue;
}
if (!fault && addr == (unsigned short *)trap &&
(cpu_pda[cpu].seqstat & SEQSTAT_EXCAUSE) > VEC_EXCPT15) {
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
pr_notice(" FAULT : %s ", buf);
decode_instruction((unsigned short *)cpu_pda[cpu].icplb_fault_addr);
pr_cont("\n");
fault = 1;
}
addr = (unsigned short *)bfin_read_TBUF();
decode_address(buf, (unsigned long)addr);
pr_notice(" Source : %s ", buf);
decode_instruction(addr);
pr_cont("\n");
}
}
#ifdef CONFIG_DEBUG_BFIN_HWTRACE_EXPAND
if (trace_buff_offset)
index = trace_buff_offset / 4;
else
index = EXPAND_LEN;
j = (1 << CONFIG_DEBUG_BFIN_HWTRACE_EXPAND_LEN) * 128;
while (j) {
decode_address(buf, software_trace_buff[index]);
pr_notice("%4i Target : %s\n", i, buf);
index -= 1;
if (index < 0)
index = EXPAND_LEN;
decode_address(buf, software_trace_buff[index]);
pr_notice(" Source : %s ", buf);
decode_instruction((unsigned short *)software_trace_buff[index]);
pr_cont("\n");
index -= 1;
if (index < 0)
index = EXPAND_LEN;
j--;
i++;
}
#endif
trace_buffer_restore(tflags);
#endif
}
EXPORT_SYMBOL(dump_bfin_trace_buffer);
void dump_bfin_process(struct pt_regs *fp)
{
/* We should be able to look at fp->ipend, but we don't push it on the
* stack all the time, so do this until we fix that */
unsigned int context = bfin_read_IPEND();
if (oops_in_progress)
pr_emerg("Kernel OOPS in progress\n");
if (context & 0x0020 && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR)
pr_notice("HW Error context\n");
else if (context & 0x0020)
pr_notice("Deferred Exception context\n");
else if (context & 0x3FC0)
pr_notice("Interrupt context\n");
else if (context & 0x4000)
pr_notice("Deferred Interrupt context\n");
else if (context & 0x8000)
pr_notice("Kernel process context\n");
/* Because we are crashing, and pointers could be bad, we check things
* pretty closely before we use them
*/
if ((unsigned long)current >= FIXED_CODE_START &&
!((unsigned long)current & 0x3) && current->pid) {
pr_notice("CURRENT PROCESS:\n");
if (current->comm >= (char *)FIXED_CODE_START)
pr_notice("COMM=%s PID=%d",
current->comm, current->pid);
else
pr_notice("COMM= invalid");
pr_cont(" CPU=%d\n", current_thread_info()->cpu);
if (!((unsigned long)current->mm & 0x3) &&
(unsigned long)current->mm >= FIXED_CODE_START) {
pr_notice("TEXT = 0x%p-0x%p DATA = 0x%p-0x%p\n",
(void *)current->mm->start_code,
(void *)current->mm->end_code,
(void *)current->mm->start_data,
(void *)current->mm->end_data);
pr_notice(" BSS = 0x%p-0x%p USER-STACK = 0x%p\n\n",
(void *)current->mm->end_data,
(void *)current->mm->brk,
(void *)current->mm->start_stack);
} else
pr_notice("invalid mm\n");
} else
pr_notice("No Valid process in current context\n");
}
void dump_bfin_mem(struct pt_regs *fp)
{
unsigned short *addr, *erraddr, val = 0, err = 0;
char sti = 0, buf[6];
erraddr = (void *)fp->pc;
pr_notice("return address: [0x%p]; contents of:", erraddr);
for (addr = (unsigned short *)((unsigned long)erraddr & ~0xF) - 0x10;
addr < (unsigned short *)((unsigned long)erraddr & ~0xF) + 0x10;
addr++) {
if (!((unsigned long)addr & 0xF))
pr_notice("0x%p: ", addr);
if (!get_mem16(&val, addr)) {
val = 0;
sprintf(buf, "????");
} else
sprintf(buf, "%04x", val);
if (addr == erraddr) {
pr_cont("[%s]", buf);
err = val;
} else
pr_cont(" %s ", buf);
/* Do any previous instructions turn on interrupts? */
if (addr <= erraddr && /* in the past */
((val >= 0x0040 && val <= 0x0047) || /* STI instruction */
val == 0x017b)) /* [SP++] = RETI */
sti = 1;
}
pr_cont("\n");
/* Hardware error interrupts can be deferred */
if (unlikely(sti && (fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR &&
oops_in_progress)){
pr_notice("Looks like this was a deferred error - sorry\n");
#ifndef CONFIG_DEBUG_HWERR
pr_notice("The remaining message may be meaningless\n");
pr_notice("You should enable CONFIG_DEBUG_HWERR to get a better idea where it came from\n");
#else
/* If we are handling only one peripheral interrupt
* and current mm and pid are valid, and the last error
* was in that user space process's text area
* print it out - because that is where the problem exists
*/
if ((!(((fp)->ipend & ~0x30) & (((fp)->ipend & ~0x30) - 1))) &&
(current->pid && current->mm)) {
/* And the last RETI points to the current userspace context */
if ((fp + 1)->pc >= current->mm->start_code &&
(fp + 1)->pc <= current->mm->end_code) {
pr_notice("It might be better to look around here :\n");
pr_notice("-------------------------------------------\n");
show_regs(fp + 1);
pr_notice("-------------------------------------------\n");
}
}
#endif
}
}
void show_regs(struct pt_regs *fp)
{
char buf[150];
struct irqaction *action;
unsigned int i;
unsigned long flags = 0;
unsigned int cpu = raw_smp_processor_id();
unsigned char in_atomic = (bfin_read_IPEND() & 0x10) || in_atomic();
pr_notice("\n");
if (CPUID != bfin_cpuid())
pr_notice("Compiled for cpu family 0x%04x (Rev %d), "
"but running on:0x%04x (Rev %d)\n",
CPUID, bfin_compiled_revid(), bfin_cpuid(), bfin_revid());
pr_notice("ADSP-%s-0.%d",
CPU, bfin_compiled_revid());
if (bfin_compiled_revid() != bfin_revid())
pr_cont("(Detected 0.%d)", bfin_revid());
pr_cont(" %lu(MHz CCLK) %lu(MHz SCLK) (%s)\n",
get_cclk()/1000000, get_sclk()/1000000,
#ifdef CONFIG_MPU
"mpu on"
#else
"mpu off"
#endif
);
pr_notice("%s", linux_banner);
pr_notice("\nSEQUENCER STATUS:\t\t%s\n", print_tainted());
pr_notice(" SEQSTAT: %08lx IPEND: %04lx IMASK: %04lx SYSCFG: %04lx\n",
(long)fp->seqstat, fp->ipend, cpu_pda[raw_smp_processor_id()].ex_imask, fp->syscfg);
if (fp->ipend & EVT_IRPTEN)
pr_notice(" Global Interrupts Disabled (IPEND[4])\n");
if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG13 | EVT_IVG12 | EVT_IVG11 |
EVT_IVG10 | EVT_IVG9 | EVT_IVG8 | EVT_IVG7 | EVT_IVTMR)))
pr_notice(" Peripheral interrupts masked off\n");
if (!(cpu_pda[raw_smp_processor_id()].ex_imask & (EVT_IVG15 | EVT_IVG14)))
pr_notice(" Kernel interrupts masked off\n");
if ((fp->seqstat & SEQSTAT_EXCAUSE) == VEC_HWERR) {
pr_notice(" HWERRCAUSE: 0x%lx\n",
(fp->seqstat & SEQSTAT_HWERRCAUSE) >> 14);
#ifdef EBIU_ERRMST
/* If the error was from the EBIU, print it out */
if (bfin_read_EBIU_ERRMST() & CORE_ERROR) {
pr_notice(" EBIU Error Reason : 0x%04x\n",
bfin_read_EBIU_ERRMST());
pr_notice(" EBIU Error Address : 0x%08x\n",
bfin_read_EBIU_ERRADD());
}
#endif
}
pr_notice(" EXCAUSE : 0x%lx\n",
fp->seqstat & SEQSTAT_EXCAUSE);
for (i = 2; i <= 15 ; i++) {
if (fp->ipend & (1 << i)) {
if (i != 4) {
decode_address(buf, bfin_read32(EVT0 + 4*i));
pr_notice(" physical IVG%i asserted : %s\n", i, buf);
} else
pr_notice(" interrupts disabled\n");
}
}
/* if no interrupts are going off, don't print this out */
if (fp->ipend & ~0x3F) {
for (i = 0; i < (NR_IRQS - 1); i++) {
if (!in_atomic)
raw_spin_lock_irqsave(&irq_desc[i].lock, flags);
action = irq_desc[i].action;
if (!action)
goto unlock;
decode_address(buf, (unsigned int)action->handler);
pr_notice(" logical irq %3d mapped : %s", i, buf);
for (action = action->next; action; action = action->next) {
decode_address(buf, (unsigned int)action->handler);
pr_cont(", %s", buf);
}
pr_cont("\n");
unlock:
if (!in_atomic)
raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags);
}
}
decode_address(buf, fp->rete);
pr_notice(" RETE: %s\n", buf);
decode_address(buf, fp->retn);
pr_notice(" RETN: %s\n", buf);
decode_address(buf, fp->retx);
pr_notice(" RETX: %s\n", buf);
decode_address(buf, fp->rets);
pr_notice(" RETS: %s\n", buf);
decode_address(buf, fp->pc);
pr_notice(" PC : %s\n", buf);
if (((long)fp->seqstat & SEQSTAT_EXCAUSE) &&
(((long)fp->seqstat & SEQSTAT_EXCAUSE) != VEC_HWERR)) {
decode_address(buf, cpu_pda[cpu].dcplb_fault_addr);
pr_notice("DCPLB_FAULT_ADDR: %s\n", buf);
decode_address(buf, cpu_pda[cpu].icplb_fault_addr);
pr_notice("ICPLB_FAULT_ADDR: %s\n", buf);
}
pr_notice("PROCESSOR STATE:\n");
pr_notice(" R0 : %08lx R1 : %08lx R2 : %08lx R3 : %08lx\n",
fp->r0, fp->r1, fp->r2, fp->r3);
pr_notice(" R4 : %08lx R5 : %08lx R6 : %08lx R7 : %08lx\n",
fp->r4, fp->r5, fp->r6, fp->r7);
pr_notice(" P0 : %08lx P1 : %08lx P2 : %08lx P3 : %08lx\n",
fp->p0, fp->p1, fp->p2, fp->p3);
pr_notice(" P4 : %08lx P5 : %08lx FP : %08lx SP : %08lx\n",
fp->p4, fp->p5, fp->fp, (long)fp);
pr_notice(" LB0: %08lx LT0: %08lx LC0: %08lx\n",
fp->lb0, fp->lt0, fp->lc0);
pr_notice(" LB1: %08lx LT1: %08lx LC1: %08lx\n",
fp->lb1, fp->lt1, fp->lc1);
pr_notice(" B0 : %08lx L0 : %08lx M0 : %08lx I0 : %08lx\n",
fp->b0, fp->l0, fp->m0, fp->i0);
pr_notice(" B1 : %08lx L1 : %08lx M1 : %08lx I1 : %08lx\n",
fp->b1, fp->l1, fp->m1, fp->i1);
pr_notice(" B2 : %08lx L2 : %08lx M2 : %08lx I2 : %08lx\n",
fp->b2, fp->l2, fp->m2, fp->i2);
pr_notice(" B3 : %08lx L3 : %08lx M3 : %08lx I3 : %08lx\n",
fp->b3, fp->l3, fp->m3, fp->i3);
pr_notice("A0.w: %08lx A0.x: %08lx A1.w: %08lx A1.x: %08lx\n",
fp->a0w, fp->a0x, fp->a1w, fp->a1x);
pr_notice("USP : %08lx ASTAT: %08lx\n",
rdusp(), fp->astat);
pr_notice("\n");
}