2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 10:13:58 +08:00
linux-next/drivers/usb/host/xhci-mtk-sch.c
Chunfeng Yun b765a16a11 usb: xhci-mtk: fix bpkts value of LS/HS periodic eps not behind TT
when a LS or FS device doesn't connect though a HS hub,
the @bPkts field of its periodic endpoint context should
be set to 1.

Signed-off-by: Chunfeng Yun <chunfeng.yun@mediatek.com>
Signed-off-by: Mathias Nyman <mathias.nyman@linux.intel.com>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-02-03 14:01:47 -08:00

426 lines
12 KiB
C

/*
* Copyright (c) 2015 MediaTek Inc.
* Author:
* Zhigang.Wei <zhigang.wei@mediatek.com>
* Chunfeng.Yun <chunfeng.yun@mediatek.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/slab.h>
#include "xhci.h"
#include "xhci-mtk.h"
#define SS_BW_BOUNDARY 51000
/* table 5-5. High-speed Isoc Transaction Limits in usb_20 spec */
#define HS_BW_BOUNDARY 6144
/* usb2 spec section11.18.1: at most 188 FS bytes per microframe */
#define FS_PAYLOAD_MAX 188
/* mtk scheduler bitmasks */
#define EP_BPKTS(p) ((p) & 0x3f)
#define EP_BCSCOUNT(p) (((p) & 0x7) << 8)
#define EP_BBM(p) ((p) << 11)
#define EP_BOFFSET(p) ((p) & 0x3fff)
#define EP_BREPEAT(p) (((p) & 0x7fff) << 16)
static int is_fs_or_ls(enum usb_device_speed speed)
{
return speed == USB_SPEED_FULL || speed == USB_SPEED_LOW;
}
/*
* get the index of bandwidth domains array which @ep belongs to.
*
* the bandwidth domain array is saved to @sch_array of struct xhci_hcd_mtk,
* each HS root port is treated as a single bandwidth domain,
* but each SS root port is treated as two bandwidth domains, one for IN eps,
* one for OUT eps.
* @real_port value is defined as follow according to xHCI spec:
* 1 for SSport0, ..., N+1 for SSportN, N+2 for HSport0, N+3 for HSport1, etc
* so the bandwidth domain array is organized as follow for simplification:
* SSport0-OUT, SSport0-IN, ..., SSportX-OUT, SSportX-IN, HSport0, ..., HSportY
*/
static int get_bw_index(struct xhci_hcd *xhci, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_virt_device *virt_dev;
int bw_index;
virt_dev = xhci->devs[udev->slot_id];
if (udev->speed == USB_SPEED_SUPER) {
if (usb_endpoint_dir_out(&ep->desc))
bw_index = (virt_dev->real_port - 1) * 2;
else
bw_index = (virt_dev->real_port - 1) * 2 + 1;
} else {
/* add one more for each SS port */
bw_index = virt_dev->real_port + xhci->num_usb3_ports - 1;
}
return bw_index;
}
static void setup_sch_info(struct usb_device *udev,
struct xhci_ep_ctx *ep_ctx, struct mu3h_sch_ep_info *sch_ep)
{
u32 ep_type;
u32 ep_interval;
u32 max_packet_size;
u32 max_burst;
u32 mult;
u32 esit_pkts;
ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
ep_interval = CTX_TO_EP_INTERVAL(le32_to_cpu(ep_ctx->ep_info));
max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
max_burst = CTX_TO_MAX_BURST(le32_to_cpu(ep_ctx->ep_info2));
mult = CTX_TO_EP_MULT(le32_to_cpu(ep_ctx->ep_info));
sch_ep->esit = 1 << ep_interval;
sch_ep->offset = 0;
sch_ep->burst_mode = 0;
if (udev->speed == USB_SPEED_HIGH) {
sch_ep->cs_count = 0;
/*
* usb_20 spec section5.9
* a single microframe is enough for HS synchromous endpoints
* in a interval
*/
sch_ep->num_budget_microframes = 1;
sch_ep->repeat = 0;
/*
* xHCI spec section6.2.3.4
* @max_burst is the number of additional transactions
* opportunities per microframe
*/
sch_ep->pkts = max_burst + 1;
sch_ep->bw_cost_per_microframe = max_packet_size * sch_ep->pkts;
} else if (udev->speed == USB_SPEED_SUPER) {
/* usb3_r1 spec section4.4.7 & 4.4.8 */
sch_ep->cs_count = 0;
esit_pkts = (mult + 1) * (max_burst + 1);
if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
sch_ep->pkts = esit_pkts;
sch_ep->num_budget_microframes = 1;
sch_ep->repeat = 0;
}
if (ep_type == ISOC_IN_EP || ep_type == ISOC_OUT_EP) {
if (esit_pkts <= sch_ep->esit)
sch_ep->pkts = 1;
else
sch_ep->pkts = roundup_pow_of_two(esit_pkts)
/ sch_ep->esit;
sch_ep->num_budget_microframes =
DIV_ROUND_UP(esit_pkts, sch_ep->pkts);
if (sch_ep->num_budget_microframes > 1)
sch_ep->repeat = 1;
else
sch_ep->repeat = 0;
}
sch_ep->bw_cost_per_microframe = max_packet_size * sch_ep->pkts;
} else if (is_fs_or_ls(udev->speed)) {
/*
* usb_20 spec section11.18.4
* assume worst cases
*/
sch_ep->repeat = 0;
sch_ep->pkts = 1; /* at most one packet for each microframe */
if (ep_type == INT_IN_EP || ep_type == INT_OUT_EP) {
sch_ep->cs_count = 3; /* at most need 3 CS*/
/* one for SS and one for budgeted transaction */
sch_ep->num_budget_microframes = sch_ep->cs_count + 2;
sch_ep->bw_cost_per_microframe = max_packet_size;
}
if (ep_type == ISOC_OUT_EP) {
/*
* the best case FS budget assumes that 188 FS bytes
* occur in each microframe
*/
sch_ep->num_budget_microframes = DIV_ROUND_UP(
max_packet_size, FS_PAYLOAD_MAX);
sch_ep->bw_cost_per_microframe = FS_PAYLOAD_MAX;
sch_ep->cs_count = sch_ep->num_budget_microframes;
}
if (ep_type == ISOC_IN_EP) {
/* at most need additional two CS. */
sch_ep->cs_count = DIV_ROUND_UP(
max_packet_size, FS_PAYLOAD_MAX) + 2;
sch_ep->num_budget_microframes = sch_ep->cs_count + 2;
sch_ep->bw_cost_per_microframe = FS_PAYLOAD_MAX;
}
}
}
/* Get maximum bandwidth when we schedule at offset slot. */
static u32 get_max_bw(struct mu3h_sch_bw_info *sch_bw,
struct mu3h_sch_ep_info *sch_ep, u32 offset)
{
u32 num_esit;
u32 max_bw = 0;
int i;
int j;
num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
for (i = 0; i < num_esit; i++) {
u32 base = offset + i * sch_ep->esit;
for (j = 0; j < sch_ep->num_budget_microframes; j++) {
if (sch_bw->bus_bw[base + j] > max_bw)
max_bw = sch_bw->bus_bw[base + j];
}
}
return max_bw;
}
static void update_bus_bw(struct mu3h_sch_bw_info *sch_bw,
struct mu3h_sch_ep_info *sch_ep, int bw_cost)
{
u32 num_esit;
u32 base;
int i;
int j;
num_esit = XHCI_MTK_MAX_ESIT / sch_ep->esit;
for (i = 0; i < num_esit; i++) {
base = sch_ep->offset + i * sch_ep->esit;
for (j = 0; j < sch_ep->num_budget_microframes; j++)
sch_bw->bus_bw[base + j] += bw_cost;
}
}
static int check_sch_bw(struct usb_device *udev,
struct mu3h_sch_bw_info *sch_bw, struct mu3h_sch_ep_info *sch_ep)
{
u32 offset;
u32 esit;
u32 num_budget_microframes;
u32 min_bw;
u32 min_index;
u32 worst_bw;
u32 bw_boundary;
if (sch_ep->esit > XHCI_MTK_MAX_ESIT)
sch_ep->esit = XHCI_MTK_MAX_ESIT;
esit = sch_ep->esit;
num_budget_microframes = sch_ep->num_budget_microframes;
/*
* Search through all possible schedule microframes.
* and find a microframe where its worst bandwidth is minimum.
*/
min_bw = ~0;
min_index = 0;
for (offset = 0; offset < esit; offset++) {
if ((offset + num_budget_microframes) > sch_ep->esit)
break;
/*
* usb_20 spec section11.18:
* must never schedule Start-Split in Y6
*/
if (is_fs_or_ls(udev->speed) && (offset % 8 == 6))
continue;
worst_bw = get_max_bw(sch_bw, sch_ep, offset);
if (min_bw > worst_bw) {
min_bw = worst_bw;
min_index = offset;
}
if (min_bw == 0)
break;
}
sch_ep->offset = min_index;
bw_boundary = (udev->speed == USB_SPEED_SUPER)
? SS_BW_BOUNDARY : HS_BW_BOUNDARY;
/* check bandwidth */
if (min_bw + sch_ep->bw_cost_per_microframe > bw_boundary)
return -ERANGE;
/* update bus bandwidth info */
update_bus_bw(sch_bw, sch_ep, sch_ep->bw_cost_per_microframe);
return 0;
}
static bool need_bw_sch(struct usb_host_endpoint *ep,
enum usb_device_speed speed, int has_tt)
{
/* only for periodic endpoints */
if (usb_endpoint_xfer_control(&ep->desc)
|| usb_endpoint_xfer_bulk(&ep->desc))
return false;
/*
* for LS & FS periodic endpoints which its device is not behind
* a TT are also ignored, root-hub will schedule them directly,
* but need set @bpkts field of endpoint context to 1.
*/
if (is_fs_or_ls(speed) && !has_tt)
return false;
return true;
}
int xhci_mtk_sch_init(struct xhci_hcd_mtk *mtk)
{
struct mu3h_sch_bw_info *sch_array;
int num_usb_bus;
int i;
/* ss IN and OUT are separated */
num_usb_bus = mtk->num_u3_ports * 2 + mtk->num_u2_ports;
sch_array = kcalloc(num_usb_bus, sizeof(*sch_array), GFP_KERNEL);
if (sch_array == NULL)
return -ENOMEM;
for (i = 0; i < num_usb_bus; i++)
INIT_LIST_HEAD(&sch_array[i].bw_ep_list);
mtk->sch_array = sch_array;
return 0;
}
EXPORT_SYMBOL_GPL(xhci_mtk_sch_init);
void xhci_mtk_sch_exit(struct xhci_hcd_mtk *mtk)
{
kfree(mtk->sch_array);
}
EXPORT_SYMBOL_GPL(xhci_mtk_sch_exit);
int xhci_mtk_add_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
struct xhci_hcd *xhci;
struct xhci_ep_ctx *ep_ctx;
struct xhci_slot_ctx *slot_ctx;
struct xhci_virt_device *virt_dev;
struct mu3h_sch_bw_info *sch_bw;
struct mu3h_sch_ep_info *sch_ep;
struct mu3h_sch_bw_info *sch_array;
unsigned int ep_index;
int bw_index;
int ret = 0;
xhci = hcd_to_xhci(hcd);
virt_dev = xhci->devs[udev->slot_id];
ep_index = xhci_get_endpoint_index(&ep->desc);
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
sch_array = mtk->sch_array;
xhci_dbg(xhci, "%s() type:%d, speed:%d, mpkt:%d, dir:%d, ep:%p\n",
__func__, usb_endpoint_type(&ep->desc), udev->speed,
GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)),
usb_endpoint_dir_in(&ep->desc), ep);
if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT)) {
/*
* set @bpkts to 1 if it is LS or FS periodic endpoint, and its
* device does not connected through an external HS hub
*/
if (usb_endpoint_xfer_int(&ep->desc)
|| usb_endpoint_xfer_isoc(&ep->desc))
ep_ctx->reserved[0] |= cpu_to_le32(EP_BPKTS(1));
return 0;
}
bw_index = get_bw_index(xhci, udev, ep);
sch_bw = &sch_array[bw_index];
sch_ep = kzalloc(sizeof(struct mu3h_sch_ep_info), GFP_NOIO);
if (!sch_ep)
return -ENOMEM;
setup_sch_info(udev, ep_ctx, sch_ep);
ret = check_sch_bw(udev, sch_bw, sch_ep);
if (ret) {
xhci_err(xhci, "Not enough bandwidth!\n");
kfree(sch_ep);
return -ENOSPC;
}
list_add_tail(&sch_ep->endpoint, &sch_bw->bw_ep_list);
sch_ep->ep = ep;
ep_ctx->reserved[0] |= cpu_to_le32(EP_BPKTS(sch_ep->pkts)
| EP_BCSCOUNT(sch_ep->cs_count) | EP_BBM(sch_ep->burst_mode));
ep_ctx->reserved[1] |= cpu_to_le32(EP_BOFFSET(sch_ep->offset)
| EP_BREPEAT(sch_ep->repeat));
xhci_dbg(xhci, " PKTS:%x, CSCOUNT:%x, BM:%x, OFFSET:%x, REPEAT:%x\n",
sch_ep->pkts, sch_ep->cs_count, sch_ep->burst_mode,
sch_ep->offset, sch_ep->repeat);
return 0;
}
EXPORT_SYMBOL_GPL(xhci_mtk_add_ep_quirk);
void xhci_mtk_drop_ep_quirk(struct usb_hcd *hcd, struct usb_device *udev,
struct usb_host_endpoint *ep)
{
struct xhci_hcd_mtk *mtk = hcd_to_mtk(hcd);
struct xhci_hcd *xhci;
struct xhci_slot_ctx *slot_ctx;
struct xhci_virt_device *virt_dev;
struct mu3h_sch_bw_info *sch_array;
struct mu3h_sch_bw_info *sch_bw;
struct mu3h_sch_ep_info *sch_ep;
int bw_index;
xhci = hcd_to_xhci(hcd);
virt_dev = xhci->devs[udev->slot_id];
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
sch_array = mtk->sch_array;
xhci_dbg(xhci, "%s() type:%d, speed:%d, mpks:%d, dir:%d, ep:%p\n",
__func__, usb_endpoint_type(&ep->desc), udev->speed,
GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc)),
usb_endpoint_dir_in(&ep->desc), ep);
if (!need_bw_sch(ep, udev->speed, slot_ctx->tt_info & TT_SLOT))
return;
bw_index = get_bw_index(xhci, udev, ep);
sch_bw = &sch_array[bw_index];
list_for_each_entry(sch_ep, &sch_bw->bw_ep_list, endpoint) {
if (sch_ep->ep == ep) {
update_bus_bw(sch_bw, sch_ep,
-sch_ep->bw_cost_per_microframe);
list_del(&sch_ep->endpoint);
kfree(sch_ep);
break;
}
}
}
EXPORT_SYMBOL_GPL(xhci_mtk_drop_ep_quirk);