2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-22 20:23:57 +08:00
linux-next/net/xdp/xsk_queue.h
Magnus Karlsson 30744a6862 xsk: Publish global consumer pointers when NAPI is finished
The commit 4b638f13ba ("xsk: Eliminate the RX batch size")
introduced a much more lazy way of updating the global consumer
pointers from the kernel side, by only doing so when running out of
entries in the fill or Tx rings (the rings consumed by the
kernel). This can result in a deadlock with the user application if
the kernel requires more than one entry to proceed and the application
cannot put these entries in the fill ring because the kernel has not
updated the global consumer pointer since the ring is not empty.

Fix this by publishing the local kernel side consumer pointer whenever
we have completed Rx or Tx processing in the kernel. This way, user
space will have an up-to-date view of the consumer pointers whenever it
gets to execute in the one core case (application and driver on the
same core), or after a certain number of packets have been processed
in the two core case (application and driver on different cores).

A side effect of this patch is that the one core case gets better
performance, but the two core case gets worse. The reason that the one
core case improves is that updating the global consumer pointer is
relatively cheap since the application by definition is not running
when the kernel is (they are on the same core) and it is beneficial
for the application, once it gets to run, to have pointers that are
as up to date as possible since it then can operate on more packets
and buffers. In the two core case, the most important performance
aspect is to minimize the number of accesses to the global pointers
since they are shared between two cores and bounces between the caches
of those cores. This patch results in more updates to global state,
which means lower performance in the two core case.

Fixes: 4b638f13ba ("xsk: Eliminate the RX batch size")
Reported-by: Ryan Goodfellow <rgoodfel@isi.edu>
Reported-by: Maxim Mikityanskiy <maximmi@mellanox.com>
Signed-off-by: Magnus Karlsson <magnus.karlsson@intel.com>
Signed-off-by: Daniel Borkmann <daniel@iogearbox.net>
Acked-by: Jonathan Lemon <jonathan.lemon@gmail.com>
Acked-by: Maxim Mikityanskiy <maximmi@mellanox.com>
Link: https://lore.kernel.org/bpf/1581348432-6747-1-git-send-email-magnus.karlsson@intel.com
2020-02-11 15:51:11 +01:00

390 lines
10 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* XDP user-space ring structure
* Copyright(c) 2018 Intel Corporation.
*/
#ifndef _LINUX_XSK_QUEUE_H
#define _LINUX_XSK_QUEUE_H
#include <linux/types.h>
#include <linux/if_xdp.h>
#include <net/xdp_sock.h>
struct xdp_ring {
u32 producer ____cacheline_aligned_in_smp;
u32 consumer ____cacheline_aligned_in_smp;
u32 flags;
};
/* Used for the RX and TX queues for packets */
struct xdp_rxtx_ring {
struct xdp_ring ptrs;
struct xdp_desc desc[0] ____cacheline_aligned_in_smp;
};
/* Used for the fill and completion queues for buffers */
struct xdp_umem_ring {
struct xdp_ring ptrs;
u64 desc[0] ____cacheline_aligned_in_smp;
};
struct xsk_queue {
u64 chunk_mask;
u64 size;
u32 ring_mask;
u32 nentries;
u32 cached_prod;
u32 cached_cons;
struct xdp_ring *ring;
u64 invalid_descs;
};
/* The structure of the shared state of the rings are the same as the
* ring buffer in kernel/events/ring_buffer.c. For the Rx and completion
* ring, the kernel is the producer and user space is the consumer. For
* the Tx and fill rings, the kernel is the consumer and user space is
* the producer.
*
* producer consumer
*
* if (LOAD ->consumer) { LOAD ->producer
* (A) smp_rmb() (C)
* STORE $data LOAD $data
* smp_wmb() (B) smp_mb() (D)
* STORE ->producer STORE ->consumer
* }
*
* (A) pairs with (D), and (B) pairs with (C).
*
* Starting with (B), it protects the data from being written after
* the producer pointer. If this barrier was missing, the consumer
* could observe the producer pointer being set and thus load the data
* before the producer has written the new data. The consumer would in
* this case load the old data.
*
* (C) protects the consumer from speculatively loading the data before
* the producer pointer actually has been read. If we do not have this
* barrier, some architectures could load old data as speculative loads
* are not discarded as the CPU does not know there is a dependency
* between ->producer and data.
*
* (A) is a control dependency that separates the load of ->consumer
* from the stores of $data. In case ->consumer indicates there is no
* room in the buffer to store $data we do not. So no barrier is needed.
*
* (D) protects the load of the data to be observed to happen after the
* store of the consumer pointer. If we did not have this memory
* barrier, the producer could observe the consumer pointer being set
* and overwrite the data with a new value before the consumer got the
* chance to read the old value. The consumer would thus miss reading
* the old entry and very likely read the new entry twice, once right
* now and again after circling through the ring.
*/
/* The operations on the rings are the following:
*
* producer consumer
*
* RESERVE entries PEEK in the ring for entries
* WRITE data into the ring READ data from the ring
* SUBMIT entries RELEASE entries
*
* The producer reserves one or more entries in the ring. It can then
* fill in these entries and finally submit them so that they can be
* seen and read by the consumer.
*
* The consumer peeks into the ring to see if the producer has written
* any new entries. If so, the producer can then read these entries
* and when it is done reading them release them back to the producer
* so that the producer can use these slots to fill in new entries.
*
* The function names below reflect these operations.
*/
/* Functions that read and validate content from consumer rings. */
static inline bool xskq_cons_crosses_non_contig_pg(struct xdp_umem *umem,
u64 addr,
u64 length)
{
bool cross_pg = (addr & (PAGE_SIZE - 1)) + length > PAGE_SIZE;
bool next_pg_contig =
(unsigned long)umem->pages[(addr >> PAGE_SHIFT)].addr &
XSK_NEXT_PG_CONTIG_MASK;
return cross_pg && !next_pg_contig;
}
static inline bool xskq_cons_is_valid_unaligned(struct xsk_queue *q,
u64 addr,
u64 length,
struct xdp_umem *umem)
{
u64 base_addr = xsk_umem_extract_addr(addr);
addr = xsk_umem_add_offset_to_addr(addr);
if (base_addr >= q->size || addr >= q->size ||
xskq_cons_crosses_non_contig_pg(umem, addr, length)) {
q->invalid_descs++;
return false;
}
return true;
}
static inline bool xskq_cons_is_valid_addr(struct xsk_queue *q, u64 addr)
{
if (addr >= q->size) {
q->invalid_descs++;
return false;
}
return true;
}
static inline bool xskq_cons_read_addr(struct xsk_queue *q, u64 *addr,
struct xdp_umem *umem)
{
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
while (q->cached_cons != q->cached_prod) {
u32 idx = q->cached_cons & q->ring_mask;
*addr = ring->desc[idx] & q->chunk_mask;
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
if (xskq_cons_is_valid_unaligned(q, *addr,
umem->chunk_size_nohr,
umem))
return true;
goto out;
}
if (xskq_cons_is_valid_addr(q, *addr))
return true;
out:
q->cached_cons++;
}
return false;
}
static inline bool xskq_cons_is_valid_desc(struct xsk_queue *q,
struct xdp_desc *d,
struct xdp_umem *umem)
{
if (umem->flags & XDP_UMEM_UNALIGNED_CHUNK_FLAG) {
if (!xskq_cons_is_valid_unaligned(q, d->addr, d->len, umem))
return false;
if (d->len > umem->chunk_size_nohr || d->options) {
q->invalid_descs++;
return false;
}
return true;
}
if (!xskq_cons_is_valid_addr(q, d->addr))
return false;
if (((d->addr + d->len) & q->chunk_mask) != (d->addr & q->chunk_mask) ||
d->options) {
q->invalid_descs++;
return false;
}
return true;
}
static inline bool xskq_cons_read_desc(struct xsk_queue *q,
struct xdp_desc *desc,
struct xdp_umem *umem)
{
while (q->cached_cons != q->cached_prod) {
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
u32 idx = q->cached_cons & q->ring_mask;
*desc = ring->desc[idx];
if (xskq_cons_is_valid_desc(q, desc, umem))
return true;
q->cached_cons++;
}
return false;
}
/* Functions for consumers */
static inline void __xskq_cons_release(struct xsk_queue *q)
{
smp_mb(); /* D, matches A */
WRITE_ONCE(q->ring->consumer, q->cached_cons);
}
static inline void __xskq_cons_peek(struct xsk_queue *q)
{
/* Refresh the local pointer */
q->cached_prod = READ_ONCE(q->ring->producer);
smp_rmb(); /* C, matches B */
}
static inline void xskq_cons_get_entries(struct xsk_queue *q)
{
__xskq_cons_release(q);
__xskq_cons_peek(q);
}
static inline bool xskq_cons_has_entries(struct xsk_queue *q, u32 cnt)
{
u32 entries = q->cached_prod - q->cached_cons;
if (entries >= cnt)
return true;
__xskq_cons_peek(q);
entries = q->cached_prod - q->cached_cons;
return entries >= cnt;
}
static inline bool xskq_cons_peek_addr(struct xsk_queue *q, u64 *addr,
struct xdp_umem *umem)
{
if (q->cached_prod == q->cached_cons)
xskq_cons_get_entries(q);
return xskq_cons_read_addr(q, addr, umem);
}
static inline bool xskq_cons_peek_desc(struct xsk_queue *q,
struct xdp_desc *desc,
struct xdp_umem *umem)
{
if (q->cached_prod == q->cached_cons)
xskq_cons_get_entries(q);
return xskq_cons_read_desc(q, desc, umem);
}
static inline void xskq_cons_release(struct xsk_queue *q)
{
/* To improve performance, only update local state here.
* Reflect this to global state when we get new entries
* from the ring in xskq_cons_get_entries() and whenever
* Rx or Tx processing are completed in the NAPI loop.
*/
q->cached_cons++;
}
static inline bool xskq_cons_is_full(struct xsk_queue *q)
{
/* No barriers needed since data is not accessed */
return READ_ONCE(q->ring->producer) - READ_ONCE(q->ring->consumer) ==
q->nentries;
}
/* Functions for producers */
static inline bool xskq_prod_is_full(struct xsk_queue *q)
{
u32 free_entries = q->nentries - (q->cached_prod - q->cached_cons);
if (free_entries)
return false;
/* Refresh the local tail pointer */
q->cached_cons = READ_ONCE(q->ring->consumer);
free_entries = q->nentries - (q->cached_prod - q->cached_cons);
return !free_entries;
}
static inline int xskq_prod_reserve(struct xsk_queue *q)
{
if (xskq_prod_is_full(q))
return -ENOSPC;
/* A, matches D */
q->cached_prod++;
return 0;
}
static inline int xskq_prod_reserve_addr(struct xsk_queue *q, u64 addr)
{
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
if (xskq_prod_is_full(q))
return -ENOSPC;
/* A, matches D */
ring->desc[q->cached_prod++ & q->ring_mask] = addr;
return 0;
}
static inline int xskq_prod_reserve_desc(struct xsk_queue *q,
u64 addr, u32 len)
{
struct xdp_rxtx_ring *ring = (struct xdp_rxtx_ring *)q->ring;
u32 idx;
if (xskq_prod_is_full(q))
return -ENOSPC;
/* A, matches D */
idx = q->cached_prod++ & q->ring_mask;
ring->desc[idx].addr = addr;
ring->desc[idx].len = len;
return 0;
}
static inline void __xskq_prod_submit(struct xsk_queue *q, u32 idx)
{
smp_wmb(); /* B, matches C */
WRITE_ONCE(q->ring->producer, idx);
}
static inline void xskq_prod_submit(struct xsk_queue *q)
{
__xskq_prod_submit(q, q->cached_prod);
}
static inline void xskq_prod_submit_addr(struct xsk_queue *q, u64 addr)
{
struct xdp_umem_ring *ring = (struct xdp_umem_ring *)q->ring;
u32 idx = q->ring->producer;
ring->desc[idx++ & q->ring_mask] = addr;
__xskq_prod_submit(q, idx);
}
static inline void xskq_prod_submit_n(struct xsk_queue *q, u32 nb_entries)
{
__xskq_prod_submit(q, q->ring->producer + nb_entries);
}
static inline bool xskq_prod_is_empty(struct xsk_queue *q)
{
/* No barriers needed since data is not accessed */
return READ_ONCE(q->ring->consumer) == READ_ONCE(q->ring->producer);
}
/* For both producers and consumers */
static inline u64 xskq_nb_invalid_descs(struct xsk_queue *q)
{
return q ? q->invalid_descs : 0;
}
void xskq_set_umem(struct xsk_queue *q, u64 size, u64 chunk_mask);
struct xsk_queue *xskq_create(u32 nentries, bool umem_queue);
void xskq_destroy(struct xsk_queue *q_ops);
/* Executed by the core when the entire UMEM gets freed */
void xsk_reuseq_destroy(struct xdp_umem *umem);
#endif /* _LINUX_XSK_QUEUE_H */