2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/fs/cifs/md5.c
Steve French 6a7f8d36c0 [CIFS] Rename md5 functions to avoid collision with new rt modules
When rt modules were added they (each) included their own md5
with names which collided with the existing names of cifs's md5 functions.

Renaming cifs's md5 modules so we don't collide with them.

> Stephen Rothwell wrote:
> When CIFS is built-in (=y) and staging/rt28[67]0 =y, there are multiple
> definitions of:
>
> build-r8250.out:(.text+0x1d8ad0): multiple definition of `MD5Init'
> build-r8250.out:(.text+0x1dbb30): multiple definition of `MD5Update'
> build-r8250.out:(.text+0x1db9b0): multiple definition of `MD5Final'
>
> all of which need to have more unique identifiers for their global
> symbols (e.g., rt28_md5_init, cifs_md5_init, foo, blah, bar).
>

CC: Greg K-H <gregkh@suse.de>
Signed-off-by: Steve French <sfrench@us.ibm.com>
2009-01-29 03:32:12 +00:00

367 lines
11 KiB
C

/*
* This code implements the MD5 message-digest algorithm.
* The algorithm is due to Ron Rivest. This code was
* written by Colin Plumb in 1993, no copyright is claimed.
* This code is in the public domain; do with it what you wish.
*
* Equivalent code is available from RSA Data Security, Inc.
* This code has been tested against that, and is equivalent,
* except that you don't need to include two pages of legalese
* with every copy.
*
* To compute the message digest of a chunk of bytes, declare an
* MD5Context structure, pass it to cifs_MD5_init, call cifs_MD5_update as
* needed on buffers full of bytes, and then call cifs_MD5_final, which
* will fill a supplied 16-byte array with the digest.
*/
/* This code slightly modified to fit into Samba by
abartlet@samba.org Jun 2001
and to fit the cifs vfs by
Steve French sfrench@us.ibm.com */
#include <linux/string.h>
#include "md5.h"
static void MD5Transform(__u32 buf[4], __u32 const in[16]);
/*
* Note: this code is harmless on little-endian machines.
*/
static void
byteReverse(unsigned char *buf, unsigned longs)
{
__u32 t;
do {
t = (__u32) ((unsigned) buf[3] << 8 | buf[2]) << 16 |
((unsigned) buf[1] << 8 | buf[0]);
*(__u32 *) buf = t;
buf += 4;
} while (--longs);
}
/*
* Start MD5 accumulation. Set bit count to 0 and buffer to mysterious
* initialization constants.
*/
void
cifs_MD5_init(struct MD5Context *ctx)
{
ctx->buf[0] = 0x67452301;
ctx->buf[1] = 0xefcdab89;
ctx->buf[2] = 0x98badcfe;
ctx->buf[3] = 0x10325476;
ctx->bits[0] = 0;
ctx->bits[1] = 0;
}
/*
* Update context to reflect the concatenation of another buffer full
* of bytes.
*/
void
cifs_MD5_update(struct MD5Context *ctx, unsigned char const *buf, unsigned len)
{
register __u32 t;
/* Update bitcount */
t = ctx->bits[0];
if ((ctx->bits[0] = t + ((__u32) len << 3)) < t)
ctx->bits[1]++; /* Carry from low to high */
ctx->bits[1] += len >> 29;
t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */
/* Handle any leading odd-sized chunks */
if (t) {
unsigned char *p = (unsigned char *) ctx->in + t;
t = 64 - t;
if (len < t) {
memmove(p, buf, len);
return;
}
memmove(p, buf, t);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (__u32 *) ctx->in);
buf += t;
len -= t;
}
/* Process data in 64-byte chunks */
while (len >= 64) {
memmove(ctx->in, buf, 64);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (__u32 *) ctx->in);
buf += 64;
len -= 64;
}
/* Handle any remaining bytes of data. */
memmove(ctx->in, buf, len);
}
/*
* Final wrapup - pad to 64-byte boundary with the bit pattern
* 1 0* (64-bit count of bits processed, MSB-first)
*/
void
cifs_MD5_final(unsigned char digest[16], struct MD5Context *ctx)
{
unsigned int count;
unsigned char *p;
/* Compute number of bytes mod 64 */
count = (ctx->bits[0] >> 3) & 0x3F;
/* Set the first char of padding to 0x80. This is safe since there is
always at least one byte free */
p = ctx->in + count;
*p++ = 0x80;
/* Bytes of padding needed to make 64 bytes */
count = 64 - 1 - count;
/* Pad out to 56 mod 64 */
if (count < 8) {
/* Two lots of padding: Pad the first block to 64 bytes */
memset(p, 0, count);
byteReverse(ctx->in, 16);
MD5Transform(ctx->buf, (__u32 *) ctx->in);
/* Now fill the next block with 56 bytes */
memset(ctx->in, 0, 56);
} else {
/* Pad block to 56 bytes */
memset(p, 0, count - 8);
}
byteReverse(ctx->in, 14);
/* Append length in bits and transform */
((__u32 *) ctx->in)[14] = ctx->bits[0];
((__u32 *) ctx->in)[15] = ctx->bits[1];
MD5Transform(ctx->buf, (__u32 *) ctx->in);
byteReverse((unsigned char *) ctx->buf, 4);
memmove(digest, ctx->buf, 16);
memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */
}
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
(w += f(x, y, z) + data, w = w<<s | w>>(32-s), w += x)
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. cifs_MD5_update blocks
* the data and converts bytes into longwords for this routine.
*/
static void
MD5Transform(__u32 buf[4], __u32 const in[16])
{
register __u32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[0] + 0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[1] + 0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[2] + 0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[3] + 0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[4] + 0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[5] + 0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[6] + 0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[7] + 0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[8] + 0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[9] + 0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10] + 0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11] + 0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12] + 0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13] + 0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14] + 0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15] + 0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[1] + 0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[6] + 0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11] + 0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[0] + 0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[5] + 0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10] + 0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15] + 0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[4] + 0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[9] + 0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14] + 0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[3] + 0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[8] + 0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13] + 0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[2] + 0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[7] + 0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12] + 0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[5] + 0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[8] + 0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11] + 0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14] + 0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[1] + 0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[4] + 0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[7] + 0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10] + 0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13] + 0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[0] + 0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[3] + 0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[6] + 0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[9] + 0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12] + 0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15] + 0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[2] + 0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[0] + 0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[7] + 0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14] + 0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[5] + 0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12] + 0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[3] + 0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10] + 0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[1] + 0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[8] + 0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15] + 0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[6] + 0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13] + 0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[4] + 0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11] + 0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[2] + 0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[9] + 0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
#if 0 /* currently unused */
/***********************************************************************
the rfc 2104 version of hmac_md5 initialisation.
***********************************************************************/
static void
hmac_md5_init_rfc2104(unsigned char *key, int key_len,
struct HMACMD5Context *ctx)
{
int i;
/* if key is longer than 64 bytes reset it to key=MD5(key) */
if (key_len > 64) {
unsigned char tk[16];
struct MD5Context tctx;
cifs_MD5_init(&tctx);
cifs_MD5_update(&tctx, key, key_len);
cifs_MD5_final(tk, &tctx);
key = tk;
key_len = 16;
}
/* start out by storing key in pads */
memset(ctx->k_ipad, 0, sizeof(ctx->k_ipad));
memset(ctx->k_opad, 0, sizeof(ctx->k_opad));
memcpy(ctx->k_ipad, key, key_len);
memcpy(ctx->k_opad, key, key_len);
/* XOR key with ipad and opad values */
for (i = 0; i < 64; i++) {
ctx->k_ipad[i] ^= 0x36;
ctx->k_opad[i] ^= 0x5c;
}
cifs_MD5_init(&ctx->ctx);
cifs_MD5_update(&ctx->ctx, ctx->k_ipad, 64);
}
#endif
/***********************************************************************
the microsoft version of hmac_md5 initialisation.
***********************************************************************/
void
hmac_md5_init_limK_to_64(const unsigned char *key, int key_len,
struct HMACMD5Context *ctx)
{
int i;
/* if key is longer than 64 bytes truncate it */
if (key_len > 64)
key_len = 64;
/* start out by storing key in pads */
memset(ctx->k_ipad, 0, sizeof(ctx->k_ipad));
memset(ctx->k_opad, 0, sizeof(ctx->k_opad));
memcpy(ctx->k_ipad, key, key_len);
memcpy(ctx->k_opad, key, key_len);
/* XOR key with ipad and opad values */
for (i = 0; i < 64; i++) {
ctx->k_ipad[i] ^= 0x36;
ctx->k_opad[i] ^= 0x5c;
}
cifs_MD5_init(&ctx->ctx);
cifs_MD5_update(&ctx->ctx, ctx->k_ipad, 64);
}
/***********************************************************************
update hmac_md5 "inner" buffer
***********************************************************************/
void
hmac_md5_update(const unsigned char *text, int text_len,
struct HMACMD5Context *ctx)
{
cifs_MD5_update(&ctx->ctx, text, text_len); /* then text of datagram */
}
/***********************************************************************
finish off hmac_md5 "inner" buffer and generate outer one.
***********************************************************************/
void
hmac_md5_final(unsigned char *digest, struct HMACMD5Context *ctx)
{
struct MD5Context ctx_o;
cifs_MD5_final(digest, &ctx->ctx);
cifs_MD5_init(&ctx_o);
cifs_MD5_update(&ctx_o, ctx->k_opad, 64);
cifs_MD5_update(&ctx_o, digest, 16);
cifs_MD5_final(digest, &ctx_o);
}
/***********************************************************
single function to calculate an HMAC MD5 digest from data.
use the microsoft hmacmd5 init method because the key is 16 bytes.
************************************************************/
#if 0 /* currently unused */
static void
hmac_md5(unsigned char key[16], unsigned char *data, int data_len,
unsigned char *digest)
{
struct HMACMD5Context ctx;
hmac_md5_init_limK_to_64(key, 16, &ctx);
if (data_len != 0)
hmac_md5_update(data, data_len, &ctx);
hmac_md5_final(digest, &ctx);
}
#endif