mirror of
https://github.com/edk2-porting/linux-next.git
synced 2025-01-04 03:33:58 +08:00
5dd3c9949a
Impact: cleanup, futureproof In fact, all cpumask ops will only be valid (in general) for bit numbers < nr_cpu_ids. So use that instead of NR_CPUS in various places. This is always safe: no cpu number can be >= nr_cpu_ids, and nr_cpu_ids is initialized to NR_CPUS at boot. Signed-off-by: Rusty Russell <rusty@rustcorp.com.au> Signed-off-by: Mike Travis <travis@sgi.com> Acked-by: Ingo Molnar <mingo@elte.hu>
705 lines
20 KiB
C
705 lines
20 KiB
C
/*
|
|
* salinfo.c
|
|
*
|
|
* Creates entries in /proc/sal for various system features.
|
|
*
|
|
* Copyright (c) 2003, 2006 Silicon Graphics, Inc. All rights reserved.
|
|
* Copyright (c) 2003 Hewlett-Packard Co
|
|
* Bjorn Helgaas <bjorn.helgaas@hp.com>
|
|
*
|
|
* 10/30/2001 jbarnes@sgi.com copied much of Stephane's palinfo
|
|
* code to create this file
|
|
* Oct 23 2003 kaos@sgi.com
|
|
* Replace IPI with set_cpus_allowed() to read a record from the required cpu.
|
|
* Redesign salinfo log processing to separate interrupt and user space
|
|
* contexts.
|
|
* Cache the record across multi-block reads from user space.
|
|
* Support > 64 cpus.
|
|
* Delete module_exit and MOD_INC/DEC_COUNT, salinfo cannot be a module.
|
|
*
|
|
* Jan 28 2004 kaos@sgi.com
|
|
* Periodically check for outstanding MCA or INIT records.
|
|
*
|
|
* Dec 5 2004 kaos@sgi.com
|
|
* Standardize which records are cleared automatically.
|
|
*
|
|
* Aug 18 2005 kaos@sgi.com
|
|
* mca.c may not pass a buffer, a NULL buffer just indicates that a new
|
|
* record is available in SAL.
|
|
* Replace some NR_CPUS by cpus_online, for hotplug cpu.
|
|
*
|
|
* Jan 5 2006 kaos@sgi.com
|
|
* Handle hotplug cpus coming online.
|
|
* Handle hotplug cpus going offline while they still have outstanding records.
|
|
* Use the cpu_* macros consistently.
|
|
* Replace the counting semaphore with a mutex and a test if the cpumask is non-empty.
|
|
* Modify the locking to make the test for "work to do" an atomic operation.
|
|
*/
|
|
|
|
#include <linux/capability.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/types.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/module.h>
|
|
#include <linux/smp.h>
|
|
#include <linux/timer.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/semaphore.h>
|
|
|
|
#include <asm/sal.h>
|
|
#include <asm/uaccess.h>
|
|
|
|
MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
|
|
MODULE_DESCRIPTION("/proc interface to IA-64 SAL features");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static int salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data);
|
|
|
|
typedef struct {
|
|
const char *name; /* name of the proc entry */
|
|
unsigned long feature; /* feature bit */
|
|
struct proc_dir_entry *entry; /* registered entry (removal) */
|
|
} salinfo_entry_t;
|
|
|
|
/*
|
|
* List {name,feature} pairs for every entry in /proc/sal/<feature>
|
|
* that this module exports
|
|
*/
|
|
static salinfo_entry_t salinfo_entries[]={
|
|
{ "bus_lock", IA64_SAL_PLATFORM_FEATURE_BUS_LOCK, },
|
|
{ "irq_redirection", IA64_SAL_PLATFORM_FEATURE_IRQ_REDIR_HINT, },
|
|
{ "ipi_redirection", IA64_SAL_PLATFORM_FEATURE_IPI_REDIR_HINT, },
|
|
{ "itc_drift", IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT, },
|
|
};
|
|
|
|
#define NR_SALINFO_ENTRIES ARRAY_SIZE(salinfo_entries)
|
|
|
|
static char *salinfo_log_name[] = {
|
|
"mca",
|
|
"init",
|
|
"cmc",
|
|
"cpe",
|
|
};
|
|
|
|
static struct proc_dir_entry *salinfo_proc_entries[
|
|
ARRAY_SIZE(salinfo_entries) + /* /proc/sal/bus_lock */
|
|
ARRAY_SIZE(salinfo_log_name) + /* /proc/sal/{mca,...} */
|
|
(2 * ARRAY_SIZE(salinfo_log_name)) + /* /proc/sal/mca/{event,data} */
|
|
1]; /* /proc/sal */
|
|
|
|
/* Some records we get ourselves, some are accessed as saved data in buffers
|
|
* that are owned by mca.c.
|
|
*/
|
|
struct salinfo_data_saved {
|
|
u8* buffer;
|
|
u64 size;
|
|
u64 id;
|
|
int cpu;
|
|
};
|
|
|
|
/* State transitions. Actions are :-
|
|
* Write "read <cpunum>" to the data file.
|
|
* Write "clear <cpunum>" to the data file.
|
|
* Write "oemdata <cpunum> <offset> to the data file.
|
|
* Read from the data file.
|
|
* Close the data file.
|
|
*
|
|
* Start state is NO_DATA.
|
|
*
|
|
* NO_DATA
|
|
* write "read <cpunum>" -> NO_DATA or LOG_RECORD.
|
|
* write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
|
|
* write "oemdata <cpunum> <offset> -> return -EINVAL.
|
|
* read data -> return EOF.
|
|
* close -> unchanged. Free record areas.
|
|
*
|
|
* LOG_RECORD
|
|
* write "read <cpunum>" -> NO_DATA or LOG_RECORD.
|
|
* write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
|
|
* write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
|
|
* read data -> return the INIT/MCA/CMC/CPE record.
|
|
* close -> unchanged. Keep record areas.
|
|
*
|
|
* OEMDATA
|
|
* write "read <cpunum>" -> NO_DATA or LOG_RECORD.
|
|
* write "clear <cpunum>" -> NO_DATA or LOG_RECORD.
|
|
* write "oemdata <cpunum> <offset> -> format the oem data, goto OEMDATA.
|
|
* read data -> return the formatted oemdata.
|
|
* close -> unchanged. Keep record areas.
|
|
*
|
|
* Closing the data file does not change the state. This allows shell scripts
|
|
* to manipulate salinfo data, each shell redirection opens the file, does one
|
|
* action then closes it again. The record areas are only freed at close when
|
|
* the state is NO_DATA.
|
|
*/
|
|
enum salinfo_state {
|
|
STATE_NO_DATA,
|
|
STATE_LOG_RECORD,
|
|
STATE_OEMDATA,
|
|
};
|
|
|
|
struct salinfo_data {
|
|
cpumask_t cpu_event; /* which cpus have outstanding events */
|
|
struct semaphore mutex;
|
|
u8 *log_buffer;
|
|
u64 log_size;
|
|
u8 *oemdata; /* decoded oem data */
|
|
u64 oemdata_size;
|
|
int open; /* single-open to prevent races */
|
|
u8 type;
|
|
u8 saved_num; /* using a saved record? */
|
|
enum salinfo_state state :8; /* processing state */
|
|
u8 padding;
|
|
int cpu_check; /* next CPU to check */
|
|
struct salinfo_data_saved data_saved[5];/* save last 5 records from mca.c, must be < 255 */
|
|
};
|
|
|
|
static struct salinfo_data salinfo_data[ARRAY_SIZE(salinfo_log_name)];
|
|
|
|
static DEFINE_SPINLOCK(data_lock);
|
|
static DEFINE_SPINLOCK(data_saved_lock);
|
|
|
|
/** salinfo_platform_oemdata - optional callback to decode oemdata from an error
|
|
* record.
|
|
* @sect_header: pointer to the start of the section to decode.
|
|
* @oemdata: returns vmalloc area containing the decoded output.
|
|
* @oemdata_size: returns length of decoded output (strlen).
|
|
*
|
|
* Description: If user space asks for oem data to be decoded by the kernel
|
|
* and/or prom and the platform has set salinfo_platform_oemdata to the address
|
|
* of a platform specific routine then call that routine. salinfo_platform_oemdata
|
|
* vmalloc's and formats its output area, returning the address of the text
|
|
* and its strlen. Returns 0 for success, -ve for error. The callback is
|
|
* invoked on the cpu that generated the error record.
|
|
*/
|
|
int (*salinfo_platform_oemdata)(const u8 *sect_header, u8 **oemdata, u64 *oemdata_size);
|
|
|
|
struct salinfo_platform_oemdata_parms {
|
|
const u8 *efi_guid;
|
|
u8 **oemdata;
|
|
u64 *oemdata_size;
|
|
int ret;
|
|
};
|
|
|
|
/* Kick the mutex that tells user space that there is work to do. Instead of
|
|
* trying to track the state of the mutex across multiple cpus, in user
|
|
* context, interrupt context, non-maskable interrupt context and hotplug cpu,
|
|
* it is far easier just to grab the mutex if it is free then release it.
|
|
*
|
|
* This routine must be called with data_saved_lock held, to make the down/up
|
|
* operation atomic.
|
|
*/
|
|
static void
|
|
salinfo_work_to_do(struct salinfo_data *data)
|
|
{
|
|
down_trylock(&data->mutex);
|
|
up(&data->mutex);
|
|
}
|
|
|
|
static void
|
|
salinfo_platform_oemdata_cpu(void *context)
|
|
{
|
|
struct salinfo_platform_oemdata_parms *parms = context;
|
|
parms->ret = salinfo_platform_oemdata(parms->efi_guid, parms->oemdata, parms->oemdata_size);
|
|
}
|
|
|
|
static void
|
|
shift1_data_saved (struct salinfo_data *data, int shift)
|
|
{
|
|
memcpy(data->data_saved+shift, data->data_saved+shift+1,
|
|
(ARRAY_SIZE(data->data_saved) - (shift+1)) * sizeof(data->data_saved[0]));
|
|
memset(data->data_saved + ARRAY_SIZE(data->data_saved) - 1, 0,
|
|
sizeof(data->data_saved[0]));
|
|
}
|
|
|
|
/* This routine is invoked in interrupt context. Note: mca.c enables
|
|
* interrupts before calling this code for CMC/CPE. MCA and INIT events are
|
|
* not irq safe, do not call any routines that use spinlocks, they may deadlock.
|
|
* MCA and INIT records are recorded, a timer event will look for any
|
|
* outstanding events and wake up the user space code.
|
|
*
|
|
* The buffer passed from mca.c points to the output from ia64_log_get. This is
|
|
* a persistent buffer but its contents can change between the interrupt and
|
|
* when user space processes the record. Save the record id to identify
|
|
* changes. If the buffer is NULL then just update the bitmap.
|
|
*/
|
|
void
|
|
salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe)
|
|
{
|
|
struct salinfo_data *data = salinfo_data + type;
|
|
struct salinfo_data_saved *data_saved;
|
|
unsigned long flags = 0;
|
|
int i;
|
|
int saved_size = ARRAY_SIZE(data->data_saved);
|
|
|
|
BUG_ON(type >= ARRAY_SIZE(salinfo_log_name));
|
|
|
|
if (irqsafe)
|
|
spin_lock_irqsave(&data_saved_lock, flags);
|
|
if (buffer) {
|
|
for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
|
|
if (!data_saved->buffer)
|
|
break;
|
|
}
|
|
if (i == saved_size) {
|
|
if (!data->saved_num) {
|
|
shift1_data_saved(data, 0);
|
|
data_saved = data->data_saved + saved_size - 1;
|
|
} else
|
|
data_saved = NULL;
|
|
}
|
|
if (data_saved) {
|
|
data_saved->cpu = smp_processor_id();
|
|
data_saved->id = ((sal_log_record_header_t *)buffer)->id;
|
|
data_saved->size = size;
|
|
data_saved->buffer = buffer;
|
|
}
|
|
}
|
|
cpu_set(smp_processor_id(), data->cpu_event);
|
|
if (irqsafe) {
|
|
salinfo_work_to_do(data);
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
}
|
|
}
|
|
|
|
/* Check for outstanding MCA/INIT records every minute (arbitrary) */
|
|
#define SALINFO_TIMER_DELAY (60*HZ)
|
|
static struct timer_list salinfo_timer;
|
|
extern void ia64_mlogbuf_dump(void);
|
|
|
|
static void
|
|
salinfo_timeout_check(struct salinfo_data *data)
|
|
{
|
|
unsigned long flags;
|
|
if (!data->open)
|
|
return;
|
|
if (!cpus_empty(data->cpu_event)) {
|
|
spin_lock_irqsave(&data_saved_lock, flags);
|
|
salinfo_work_to_do(data);
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
}
|
|
}
|
|
|
|
static void
|
|
salinfo_timeout (unsigned long arg)
|
|
{
|
|
ia64_mlogbuf_dump();
|
|
salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_MCA);
|
|
salinfo_timeout_check(salinfo_data + SAL_INFO_TYPE_INIT);
|
|
salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
|
|
add_timer(&salinfo_timer);
|
|
}
|
|
|
|
static int
|
|
salinfo_event_open(struct inode *inode, struct file *file)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t
|
|
salinfo_event_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
|
|
{
|
|
struct inode *inode = file->f_path.dentry->d_inode;
|
|
struct proc_dir_entry *entry = PDE(inode);
|
|
struct salinfo_data *data = entry->data;
|
|
char cmd[32];
|
|
size_t size;
|
|
int i, n, cpu = -1;
|
|
|
|
retry:
|
|
if (cpus_empty(data->cpu_event) && down_trylock(&data->mutex)) {
|
|
if (file->f_flags & O_NONBLOCK)
|
|
return -EAGAIN;
|
|
if (down_interruptible(&data->mutex))
|
|
return -EINTR;
|
|
}
|
|
|
|
n = data->cpu_check;
|
|
for (i = 0; i < nr_cpu_ids; i++) {
|
|
if (cpu_isset(n, data->cpu_event)) {
|
|
if (!cpu_online(n)) {
|
|
cpu_clear(n, data->cpu_event);
|
|
continue;
|
|
}
|
|
cpu = n;
|
|
break;
|
|
}
|
|
if (++n == nr_cpu_ids)
|
|
n = 0;
|
|
}
|
|
|
|
if (cpu == -1)
|
|
goto retry;
|
|
|
|
ia64_mlogbuf_dump();
|
|
|
|
/* for next read, start checking at next CPU */
|
|
data->cpu_check = cpu;
|
|
if (++data->cpu_check == nr_cpu_ids)
|
|
data->cpu_check = 0;
|
|
|
|
snprintf(cmd, sizeof(cmd), "read %d\n", cpu);
|
|
|
|
size = strlen(cmd);
|
|
if (size > count)
|
|
size = count;
|
|
if (copy_to_user(buffer, cmd, size))
|
|
return -EFAULT;
|
|
|
|
return size;
|
|
}
|
|
|
|
static const struct file_operations salinfo_event_fops = {
|
|
.open = salinfo_event_open,
|
|
.read = salinfo_event_read,
|
|
};
|
|
|
|
static int
|
|
salinfo_log_open(struct inode *inode, struct file *file)
|
|
{
|
|
struct proc_dir_entry *entry = PDE(inode);
|
|
struct salinfo_data *data = entry->data;
|
|
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return -EPERM;
|
|
|
|
spin_lock(&data_lock);
|
|
if (data->open) {
|
|
spin_unlock(&data_lock);
|
|
return -EBUSY;
|
|
}
|
|
data->open = 1;
|
|
spin_unlock(&data_lock);
|
|
|
|
if (data->state == STATE_NO_DATA &&
|
|
!(data->log_buffer = vmalloc(ia64_sal_get_state_info_size(data->type)))) {
|
|
data->open = 0;
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
salinfo_log_release(struct inode *inode, struct file *file)
|
|
{
|
|
struct proc_dir_entry *entry = PDE(inode);
|
|
struct salinfo_data *data = entry->data;
|
|
|
|
if (data->state == STATE_NO_DATA) {
|
|
vfree(data->log_buffer);
|
|
vfree(data->oemdata);
|
|
data->log_buffer = NULL;
|
|
data->oemdata = NULL;
|
|
}
|
|
spin_lock(&data_lock);
|
|
data->open = 0;
|
|
spin_unlock(&data_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
call_on_cpu(int cpu, void (*fn)(void *), void *arg)
|
|
{
|
|
cpumask_t save_cpus_allowed = current->cpus_allowed;
|
|
cpumask_t new_cpus_allowed = cpumask_of_cpu(cpu);
|
|
set_cpus_allowed(current, new_cpus_allowed);
|
|
(*fn)(arg);
|
|
set_cpus_allowed(current, save_cpus_allowed);
|
|
}
|
|
|
|
static void
|
|
salinfo_log_read_cpu(void *context)
|
|
{
|
|
struct salinfo_data *data = context;
|
|
sal_log_record_header_t *rh;
|
|
data->log_size = ia64_sal_get_state_info(data->type, (u64 *) data->log_buffer);
|
|
rh = (sal_log_record_header_t *)(data->log_buffer);
|
|
/* Clear corrected errors as they are read from SAL */
|
|
if (rh->severity == sal_log_severity_corrected)
|
|
ia64_sal_clear_state_info(data->type);
|
|
}
|
|
|
|
static void
|
|
salinfo_log_new_read(int cpu, struct salinfo_data *data)
|
|
{
|
|
struct salinfo_data_saved *data_saved;
|
|
unsigned long flags;
|
|
int i;
|
|
int saved_size = ARRAY_SIZE(data->data_saved);
|
|
|
|
data->saved_num = 0;
|
|
spin_lock_irqsave(&data_saved_lock, flags);
|
|
retry:
|
|
for (i = 0, data_saved = data->data_saved; i < saved_size; ++i, ++data_saved) {
|
|
if (data_saved->buffer && data_saved->cpu == cpu) {
|
|
sal_log_record_header_t *rh = (sal_log_record_header_t *)(data_saved->buffer);
|
|
data->log_size = data_saved->size;
|
|
memcpy(data->log_buffer, rh, data->log_size);
|
|
barrier(); /* id check must not be moved */
|
|
if (rh->id == data_saved->id) {
|
|
data->saved_num = i+1;
|
|
break;
|
|
}
|
|
/* saved record changed by mca.c since interrupt, discard it */
|
|
shift1_data_saved(data, i);
|
|
goto retry;
|
|
}
|
|
}
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
|
|
if (!data->saved_num)
|
|
call_on_cpu(cpu, salinfo_log_read_cpu, data);
|
|
if (!data->log_size) {
|
|
data->state = STATE_NO_DATA;
|
|
cpu_clear(cpu, data->cpu_event);
|
|
} else {
|
|
data->state = STATE_LOG_RECORD;
|
|
}
|
|
}
|
|
|
|
static ssize_t
|
|
salinfo_log_read(struct file *file, char __user *buffer, size_t count, loff_t *ppos)
|
|
{
|
|
struct inode *inode = file->f_path.dentry->d_inode;
|
|
struct proc_dir_entry *entry = PDE(inode);
|
|
struct salinfo_data *data = entry->data;
|
|
u8 *buf;
|
|
u64 bufsize;
|
|
|
|
if (data->state == STATE_LOG_RECORD) {
|
|
buf = data->log_buffer;
|
|
bufsize = data->log_size;
|
|
} else if (data->state == STATE_OEMDATA) {
|
|
buf = data->oemdata;
|
|
bufsize = data->oemdata_size;
|
|
} else {
|
|
buf = NULL;
|
|
bufsize = 0;
|
|
}
|
|
return simple_read_from_buffer(buffer, count, ppos, buf, bufsize);
|
|
}
|
|
|
|
static void
|
|
salinfo_log_clear_cpu(void *context)
|
|
{
|
|
struct salinfo_data *data = context;
|
|
ia64_sal_clear_state_info(data->type);
|
|
}
|
|
|
|
static int
|
|
salinfo_log_clear(struct salinfo_data *data, int cpu)
|
|
{
|
|
sal_log_record_header_t *rh;
|
|
unsigned long flags;
|
|
spin_lock_irqsave(&data_saved_lock, flags);
|
|
data->state = STATE_NO_DATA;
|
|
if (!cpu_isset(cpu, data->cpu_event)) {
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
return 0;
|
|
}
|
|
cpu_clear(cpu, data->cpu_event);
|
|
if (data->saved_num) {
|
|
shift1_data_saved(data, data->saved_num - 1);
|
|
data->saved_num = 0;
|
|
}
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
rh = (sal_log_record_header_t *)(data->log_buffer);
|
|
/* Corrected errors have already been cleared from SAL */
|
|
if (rh->severity != sal_log_severity_corrected)
|
|
call_on_cpu(cpu, salinfo_log_clear_cpu, data);
|
|
/* clearing a record may make a new record visible */
|
|
salinfo_log_new_read(cpu, data);
|
|
if (data->state == STATE_LOG_RECORD) {
|
|
spin_lock_irqsave(&data_saved_lock, flags);
|
|
cpu_set(cpu, data->cpu_event);
|
|
salinfo_work_to_do(data);
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static ssize_t
|
|
salinfo_log_write(struct file *file, const char __user *buffer, size_t count, loff_t *ppos)
|
|
{
|
|
struct inode *inode = file->f_path.dentry->d_inode;
|
|
struct proc_dir_entry *entry = PDE(inode);
|
|
struct salinfo_data *data = entry->data;
|
|
char cmd[32];
|
|
size_t size;
|
|
u32 offset;
|
|
int cpu;
|
|
|
|
size = sizeof(cmd);
|
|
if (count < size)
|
|
size = count;
|
|
if (copy_from_user(cmd, buffer, size))
|
|
return -EFAULT;
|
|
|
|
if (sscanf(cmd, "read %d", &cpu) == 1) {
|
|
salinfo_log_new_read(cpu, data);
|
|
} else if (sscanf(cmd, "clear %d", &cpu) == 1) {
|
|
int ret;
|
|
if ((ret = salinfo_log_clear(data, cpu)))
|
|
count = ret;
|
|
} else if (sscanf(cmd, "oemdata %d %d", &cpu, &offset) == 2) {
|
|
if (data->state != STATE_LOG_RECORD && data->state != STATE_OEMDATA)
|
|
return -EINVAL;
|
|
if (offset > data->log_size - sizeof(efi_guid_t))
|
|
return -EINVAL;
|
|
data->state = STATE_OEMDATA;
|
|
if (salinfo_platform_oemdata) {
|
|
struct salinfo_platform_oemdata_parms parms = {
|
|
.efi_guid = data->log_buffer + offset,
|
|
.oemdata = &data->oemdata,
|
|
.oemdata_size = &data->oemdata_size
|
|
};
|
|
call_on_cpu(cpu, salinfo_platform_oemdata_cpu, &parms);
|
|
if (parms.ret)
|
|
count = parms.ret;
|
|
} else
|
|
data->oemdata_size = 0;
|
|
} else
|
|
return -EINVAL;
|
|
|
|
return count;
|
|
}
|
|
|
|
static const struct file_operations salinfo_data_fops = {
|
|
.open = salinfo_log_open,
|
|
.release = salinfo_log_release,
|
|
.read = salinfo_log_read,
|
|
.write = salinfo_log_write,
|
|
};
|
|
|
|
static int __cpuinit
|
|
salinfo_cpu_callback(struct notifier_block *nb, unsigned long action, void *hcpu)
|
|
{
|
|
unsigned int i, cpu = (unsigned long)hcpu;
|
|
unsigned long flags;
|
|
struct salinfo_data *data;
|
|
switch (action) {
|
|
case CPU_ONLINE:
|
|
case CPU_ONLINE_FROZEN:
|
|
spin_lock_irqsave(&data_saved_lock, flags);
|
|
for (i = 0, data = salinfo_data;
|
|
i < ARRAY_SIZE(salinfo_data);
|
|
++i, ++data) {
|
|
cpu_set(cpu, data->cpu_event);
|
|
salinfo_work_to_do(data);
|
|
}
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
break;
|
|
case CPU_DEAD:
|
|
case CPU_DEAD_FROZEN:
|
|
spin_lock_irqsave(&data_saved_lock, flags);
|
|
for (i = 0, data = salinfo_data;
|
|
i < ARRAY_SIZE(salinfo_data);
|
|
++i, ++data) {
|
|
struct salinfo_data_saved *data_saved;
|
|
int j;
|
|
for (j = ARRAY_SIZE(data->data_saved) - 1, data_saved = data->data_saved + j;
|
|
j >= 0;
|
|
--j, --data_saved) {
|
|
if (data_saved->buffer && data_saved->cpu == cpu) {
|
|
shift1_data_saved(data, j);
|
|
}
|
|
}
|
|
cpu_clear(cpu, data->cpu_event);
|
|
}
|
|
spin_unlock_irqrestore(&data_saved_lock, flags);
|
|
break;
|
|
}
|
|
return NOTIFY_OK;
|
|
}
|
|
|
|
static struct notifier_block salinfo_cpu_notifier __cpuinitdata =
|
|
{
|
|
.notifier_call = salinfo_cpu_callback,
|
|
.priority = 0,
|
|
};
|
|
|
|
static int __init
|
|
salinfo_init(void)
|
|
{
|
|
struct proc_dir_entry *salinfo_dir; /* /proc/sal dir entry */
|
|
struct proc_dir_entry **sdir = salinfo_proc_entries; /* keeps track of every entry */
|
|
struct proc_dir_entry *dir, *entry;
|
|
struct salinfo_data *data;
|
|
int i, j;
|
|
|
|
salinfo_dir = proc_mkdir("sal", NULL);
|
|
if (!salinfo_dir)
|
|
return 0;
|
|
|
|
for (i=0; i < NR_SALINFO_ENTRIES; i++) {
|
|
/* pass the feature bit in question as misc data */
|
|
*sdir++ = create_proc_read_entry (salinfo_entries[i].name, 0, salinfo_dir,
|
|
salinfo_read, (void *)salinfo_entries[i].feature);
|
|
}
|
|
|
|
for (i = 0; i < ARRAY_SIZE(salinfo_log_name); i++) {
|
|
data = salinfo_data + i;
|
|
data->type = i;
|
|
init_MUTEX(&data->mutex);
|
|
dir = proc_mkdir(salinfo_log_name[i], salinfo_dir);
|
|
if (!dir)
|
|
continue;
|
|
|
|
entry = proc_create_data("event", S_IRUSR, dir,
|
|
&salinfo_event_fops, data);
|
|
if (!entry)
|
|
continue;
|
|
*sdir++ = entry;
|
|
|
|
entry = proc_create_data("data", S_IRUSR | S_IWUSR, dir,
|
|
&salinfo_data_fops, data);
|
|
if (!entry)
|
|
continue;
|
|
*sdir++ = entry;
|
|
|
|
/* we missed any events before now */
|
|
for_each_online_cpu(j)
|
|
cpu_set(j, data->cpu_event);
|
|
|
|
*sdir++ = dir;
|
|
}
|
|
|
|
*sdir++ = salinfo_dir;
|
|
|
|
init_timer(&salinfo_timer);
|
|
salinfo_timer.expires = jiffies + SALINFO_TIMER_DELAY;
|
|
salinfo_timer.function = &salinfo_timeout;
|
|
add_timer(&salinfo_timer);
|
|
|
|
register_hotcpu_notifier(&salinfo_cpu_notifier);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* 'data' contains an integer that corresponds to the feature we're
|
|
* testing
|
|
*/
|
|
static int
|
|
salinfo_read(char *page, char **start, off_t off, int count, int *eof, void *data)
|
|
{
|
|
int len = 0;
|
|
|
|
len = sprintf(page, (sal_platform_features & (unsigned long)data) ? "1\n" : "0\n");
|
|
|
|
if (len <= off+count) *eof = 1;
|
|
|
|
*start = page + off;
|
|
len -= off;
|
|
|
|
if (len>count) len = count;
|
|
if (len<0) len = 0;
|
|
|
|
return len;
|
|
}
|
|
|
|
module_init(salinfo_init);
|