2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-15 09:03:59 +08:00
linux-next/drivers/gpu/drm/i915/i915_perf.c
Umesh Nerlige Ramappa aee62e02c4 drm/i915/perf: Use GTT when saving/restoring engine GPR
MI_STORE_REGISTER_MEM and MI_LOAD_REGISTER_MEM need to know which
translation to use when saving restoring the engine general purpose
registers to and from the GT scratch. Since GT scratch is mapped to
ggtt, we need to set an additional bit in the command to use GTT.

Fixes: daed3e4439 ("drm/i915/perf: implement active wait for noa configurations")
Suggested-by: Prathap Kumar Valsan <prathap.kumar.valsan@intel.com>
Signed-off-by: Umesh Nerlige Ramappa <umesh.nerlige.ramappa@intel.com>
Reviewed-by: Lionel Landwerlin <lionel.g.landwerlin@intel.com>
Reviewed-by: Chris Wilson <chris@chris-wilson.co.uk>
Link: https://patchwork.freedesktop.org/patch/msgid/20200709224504.11345-1-chris@chris-wilson.co.uk
Signed-off-by: Chris Wilson <chris@chris-wilson.co.uk>
(cherry picked from commit e43ff99c8d)
Signed-off-by: Jani Nikula <jani.nikula@intel.com>
2020-07-14 20:31:05 +03:00

4442 lines
132 KiB
C

/*
* Copyright © 2015-2016 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Robert Bragg <robert@sixbynine.org>
*/
/**
* DOC: i915 Perf Overview
*
* Gen graphics supports a large number of performance counters that can help
* driver and application developers understand and optimize their use of the
* GPU.
*
* This i915 perf interface enables userspace to configure and open a file
* descriptor representing a stream of GPU metrics which can then be read() as
* a stream of sample records.
*
* The interface is particularly suited to exposing buffered metrics that are
* captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
*
* Streams representing a single context are accessible to applications with a
* corresponding drm file descriptor, such that OpenGL can use the interface
* without special privileges. Access to system-wide metrics requires root
* privileges by default, unless changed via the dev.i915.perf_event_paranoid
* sysctl option.
*
*/
/**
* DOC: i915 Perf History and Comparison with Core Perf
*
* The interface was initially inspired by the core Perf infrastructure but
* some notable differences are:
*
* i915 perf file descriptors represent a "stream" instead of an "event"; where
* a perf event primarily corresponds to a single 64bit value, while a stream
* might sample sets of tightly-coupled counters, depending on the
* configuration. For example the Gen OA unit isn't designed to support
* orthogonal configurations of individual counters; it's configured for a set
* of related counters. Samples for an i915 perf stream capturing OA metrics
* will include a set of counter values packed in a compact HW specific format.
* The OA unit supports a number of different packing formats which can be
* selected by the user opening the stream. Perf has support for grouping
* events, but each event in the group is configured, validated and
* authenticated individually with separate system calls.
*
* i915 perf stream configurations are provided as an array of u64 (key,value)
* pairs, instead of a fixed struct with multiple miscellaneous config members,
* interleaved with event-type specific members.
*
* i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
* The supported metrics are being written to memory by the GPU unsynchronized
* with the CPU, using HW specific packing formats for counter sets. Sometimes
* the constraints on HW configuration require reports to be filtered before it
* would be acceptable to expose them to unprivileged applications - to hide
* the metrics of other processes/contexts. For these use cases a read() based
* interface is a good fit, and provides an opportunity to filter data as it
* gets copied from the GPU mapped buffers to userspace buffers.
*
*
* Issues hit with first prototype based on Core Perf
* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*
* The first prototype of this driver was based on the core perf
* infrastructure, and while we did make that mostly work, with some changes to
* perf, we found we were breaking or working around too many assumptions baked
* into perf's currently cpu centric design.
*
* In the end we didn't see a clear benefit to making perf's implementation and
* interface more complex by changing design assumptions while we knew we still
* wouldn't be able to use any existing perf based userspace tools.
*
* Also considering the Gen specific nature of the Observability hardware and
* how userspace will sometimes need to combine i915 perf OA metrics with
* side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
* expecting the interface to be used by a platform specific userspace such as
* OpenGL or tools. This is to say; we aren't inherently missing out on having
* a standard vendor/architecture agnostic interface by not using perf.
*
*
* For posterity, in case we might re-visit trying to adapt core perf to be
* better suited to exposing i915 metrics these were the main pain points we
* hit:
*
* - The perf based OA PMU driver broke some significant design assumptions:
*
* Existing perf pmus are used for profiling work on a cpu and we were
* introducing the idea of _IS_DEVICE pmus with different security
* implications, the need to fake cpu-related data (such as user/kernel
* registers) to fit with perf's current design, and adding _DEVICE records
* as a way to forward device-specific status records.
*
* The OA unit writes reports of counters into a circular buffer, without
* involvement from the CPU, making our PMU driver the first of a kind.
*
* Given the way we were periodically forward data from the GPU-mapped, OA
* buffer to perf's buffer, those bursts of sample writes looked to perf like
* we were sampling too fast and so we had to subvert its throttling checks.
*
* Perf supports groups of counters and allows those to be read via
* transactions internally but transactions currently seem designed to be
* explicitly initiated from the cpu (say in response to a userspace read())
* and while we could pull a report out of the OA buffer we can't
* trigger a report from the cpu on demand.
*
* Related to being report based; the OA counters are configured in HW as a
* set while perf generally expects counter configurations to be orthogonal.
* Although counters can be associated with a group leader as they are
* opened, there's no clear precedent for being able to provide group-wide
* configuration attributes (for example we want to let userspace choose the
* OA unit report format used to capture all counters in a set, or specify a
* GPU context to filter metrics on). We avoided using perf's grouping
* feature and forwarded OA reports to userspace via perf's 'raw' sample
* field. This suited our userspace well considering how coupled the counters
* are when dealing with normalizing. It would be inconvenient to split
* counters up into separate events, only to require userspace to recombine
* them. For Mesa it's also convenient to be forwarded raw, periodic reports
* for combining with the side-band raw reports it captures using
* MI_REPORT_PERF_COUNT commands.
*
* - As a side note on perf's grouping feature; there was also some concern
* that using PERF_FORMAT_GROUP as a way to pack together counter values
* would quite drastically inflate our sample sizes, which would likely
* lower the effective sampling resolutions we could use when the available
* memory bandwidth is limited.
*
* With the OA unit's report formats, counters are packed together as 32
* or 40bit values, with the largest report size being 256 bytes.
*
* PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
* documented ordering to the values, implying PERF_FORMAT_ID must also be
* used to add a 64bit ID before each value; giving 16 bytes per counter.
*
* Related to counter orthogonality; we can't time share the OA unit, while
* event scheduling is a central design idea within perf for allowing
* userspace to open + enable more events than can be configured in HW at any
* one time. The OA unit is not designed to allow re-configuration while in
* use. We can't reconfigure the OA unit without losing internal OA unit
* state which we can't access explicitly to save and restore. Reconfiguring
* the OA unit is also relatively slow, involving ~100 register writes. From
* userspace Mesa also depends on a stable OA configuration when emitting
* MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
* disabled while there are outstanding MI_RPC commands lest we hang the
* command streamer.
*
* The contents of sample records aren't extensible by device drivers (i.e.
* the sample_type bits). As an example; Sourab Gupta had been looking to
* attach GPU timestamps to our OA samples. We were shoehorning OA reports
* into sample records by using the 'raw' field, but it's tricky to pack more
* than one thing into this field because events/core.c currently only lets a
* pmu give a single raw data pointer plus len which will be copied into the
* ring buffer. To include more than the OA report we'd have to copy the
* report into an intermediate larger buffer. I'd been considering allowing a
* vector of data+len values to be specified for copying the raw data, but
* it felt like a kludge to being using the raw field for this purpose.
*
* - It felt like our perf based PMU was making some technical compromises
* just for the sake of using perf:
*
* perf_event_open() requires events to either relate to a pid or a specific
* cpu core, while our device pmu related to neither. Events opened with a
* pid will be automatically enabled/disabled according to the scheduling of
* that process - so not appropriate for us. When an event is related to a
* cpu id, perf ensures pmu methods will be invoked via an inter process
* interrupt on that core. To avoid invasive changes our userspace opened OA
* perf events for a specific cpu. This was workable but it meant the
* majority of the OA driver ran in atomic context, including all OA report
* forwarding, which wasn't really necessary in our case and seems to make
* our locking requirements somewhat complex as we handled the interaction
* with the rest of the i915 driver.
*/
#include <linux/anon_inodes.h>
#include <linux/sizes.h>
#include <linux/uuid.h>
#include "gem/i915_gem_context.h"
#include "gt/intel_engine_pm.h"
#include "gt/intel_engine_user.h"
#include "gt/intel_gt.h"
#include "gt/intel_lrc_reg.h"
#include "gt/intel_ring.h"
#include "i915_drv.h"
#include "i915_perf.h"
/* HW requires this to be a power of two, between 128k and 16M, though driver
* is currently generally designed assuming the largest 16M size is used such
* that the overflow cases are unlikely in normal operation.
*/
#define OA_BUFFER_SIZE SZ_16M
#define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
/**
* DOC: OA Tail Pointer Race
*
* There's a HW race condition between OA unit tail pointer register updates and
* writes to memory whereby the tail pointer can sometimes get ahead of what's
* been written out to the OA buffer so far (in terms of what's visible to the
* CPU).
*
* Although this can be observed explicitly while copying reports to userspace
* by checking for a zeroed report-id field in tail reports, we want to account
* for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
* redundant read() attempts.
*
* We workaround this issue in oa_buffer_check_unlocked() by reading the reports
* in the OA buffer, starting from the tail reported by the HW until we find a
* report with its first 2 dwords not 0 meaning its previous report is
* completely in memory and ready to be read. Those dwords are also set to 0
* once read and the whole buffer is cleared upon OA buffer initialization. The
* first dword is the reason for this report while the second is the timestamp,
* making the chances of having those 2 fields at 0 fairly unlikely. A more
* detailed explanation is available in oa_buffer_check_unlocked().
*
* Most of the implementation details for this workaround are in
* oa_buffer_check_unlocked() and _append_oa_reports()
*
* Note for posterity: previously the driver used to define an effective tail
* pointer that lagged the real pointer by a 'tail margin' measured in bytes
* derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
* This was flawed considering that the OA unit may also automatically generate
* non-periodic reports (such as on context switch) or the OA unit may be
* enabled without any periodic sampling.
*/
#define OA_TAIL_MARGIN_NSEC 100000ULL
#define INVALID_TAIL_PTR 0xffffffff
/* The default frequency for checking whether the OA unit has written new
* reports to the circular OA buffer...
*/
#define DEFAULT_POLL_FREQUENCY_HZ 200
#define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
/* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
static u32 i915_perf_stream_paranoid = true;
/* The maximum exponent the hardware accepts is 63 (essentially it selects one
* of the 64bit timestamp bits to trigger reports from) but there's currently
* no known use case for sampling as infrequently as once per 47 thousand years.
*
* Since the timestamps included in OA reports are only 32bits it seems
* reasonable to limit the OA exponent where it's still possible to account for
* overflow in OA report timestamps.
*/
#define OA_EXPONENT_MAX 31
#define INVALID_CTX_ID 0xffffffff
/* On Gen8+ automatically triggered OA reports include a 'reason' field... */
#define OAREPORT_REASON_MASK 0x3f
#define OAREPORT_REASON_MASK_EXTENDED 0x7f
#define OAREPORT_REASON_SHIFT 19
#define OAREPORT_REASON_TIMER (1<<0)
#define OAREPORT_REASON_CTX_SWITCH (1<<3)
#define OAREPORT_REASON_CLK_RATIO (1<<5)
/* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
*
* The highest sampling frequency we can theoretically program the OA unit
* with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
*
* Initialized just before we register the sysctl parameter.
*/
static int oa_sample_rate_hard_limit;
/* Theoretically we can program the OA unit to sample every 160ns but don't
* allow that by default unless root...
*
* The default threshold of 100000Hz is based on perf's similar
* kernel.perf_event_max_sample_rate sysctl parameter.
*/
static u32 i915_oa_max_sample_rate = 100000;
/* XXX: beware if future OA HW adds new report formats that the current
* code assumes all reports have a power-of-two size and ~(size - 1) can
* be used as a mask to align the OA tail pointer.
*/
static const struct i915_oa_format hsw_oa_formats[I915_OA_FORMAT_MAX] = {
[I915_OA_FORMAT_A13] = { 0, 64 },
[I915_OA_FORMAT_A29] = { 1, 128 },
[I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
/* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
[I915_OA_FORMAT_B4_C8] = { 4, 64 },
[I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
[I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
[I915_OA_FORMAT_C4_B8] = { 7, 64 },
};
static const struct i915_oa_format gen8_plus_oa_formats[I915_OA_FORMAT_MAX] = {
[I915_OA_FORMAT_A12] = { 0, 64 },
[I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
[I915_OA_FORMAT_C4_B8] = { 7, 64 },
};
static const struct i915_oa_format gen12_oa_formats[I915_OA_FORMAT_MAX] = {
[I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
};
#define SAMPLE_OA_REPORT (1<<0)
/**
* struct perf_open_properties - for validated properties given to open a stream
* @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
* @single_context: Whether a single or all gpu contexts should be monitored
* @hold_preemption: Whether the preemption is disabled for the filtered
* context
* @ctx_handle: A gem ctx handle for use with @single_context
* @metrics_set: An ID for an OA unit metric set advertised via sysfs
* @oa_format: An OA unit HW report format
* @oa_periodic: Whether to enable periodic OA unit sampling
* @oa_period_exponent: The OA unit sampling period is derived from this
* @engine: The engine (typically rcs0) being monitored by the OA unit
* @has_sseu: Whether @sseu was specified by userspace
* @sseu: internal SSEU configuration computed either from the userspace
* specified configuration in the opening parameters or a default value
* (see get_default_sseu_config())
* @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
* data availability
*
* As read_properties_unlocked() enumerates and validates the properties given
* to open a stream of metrics the configuration is built up in the structure
* which starts out zero initialized.
*/
struct perf_open_properties {
u32 sample_flags;
u64 single_context:1;
u64 hold_preemption:1;
u64 ctx_handle;
/* OA sampling state */
int metrics_set;
int oa_format;
bool oa_periodic;
int oa_period_exponent;
struct intel_engine_cs *engine;
bool has_sseu;
struct intel_sseu sseu;
u64 poll_oa_period;
};
struct i915_oa_config_bo {
struct llist_node node;
struct i915_oa_config *oa_config;
struct i915_vma *vma;
};
static struct ctl_table_header *sysctl_header;
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
void i915_oa_config_release(struct kref *ref)
{
struct i915_oa_config *oa_config =
container_of(ref, typeof(*oa_config), ref);
kfree(oa_config->flex_regs);
kfree(oa_config->b_counter_regs);
kfree(oa_config->mux_regs);
kfree_rcu(oa_config, rcu);
}
struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
{
struct i915_oa_config *oa_config;
rcu_read_lock();
oa_config = idr_find(&perf->metrics_idr, metrics_set);
if (oa_config)
oa_config = i915_oa_config_get(oa_config);
rcu_read_unlock();
return oa_config;
}
static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
{
i915_oa_config_put(oa_bo->oa_config);
i915_vma_put(oa_bo->vma);
kfree(oa_bo);
}
static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
GEN12_OAG_OATAILPTR_MASK;
}
static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
}
static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
}
/**
* oa_buffer_check_unlocked - check for data and update tail ptr state
* @stream: i915 stream instance
*
* This is either called via fops (for blocking reads in user ctx) or the poll
* check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
* if there is data available for userspace to read.
*
* This function is central to providing a workaround for the OA unit tail
* pointer having a race with respect to what data is visible to the CPU.
* It is responsible for reading tail pointers from the hardware and giving
* the pointers time to 'age' before they are made available for reading.
* (See description of OA_TAIL_MARGIN_NSEC above for further details.)
*
* Besides returning true when there is data available to read() this function
* also updates the tail, aging_tail and aging_timestamp in the oa_buffer
* object.
*
* Note: It's safe to read OA config state here unlocked, assuming that this is
* only called while the stream is enabled, while the global OA configuration
* can't be modified.
*
* Returns: %true if the OA buffer contains data, else %false
*/
static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
{
u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
int report_size = stream->oa_buffer.format_size;
unsigned long flags;
bool pollin;
u32 hw_tail;
u64 now;
/* We have to consider the (unlikely) possibility that read() errors
* could result in an OA buffer reset which might reset the head and
* tail state.
*/
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
/* The tail pointer increases in 64 byte increments,
* not in report_size steps...
*/
hw_tail &= ~(report_size - 1);
now = ktime_get_mono_fast_ns();
if (hw_tail == stream->oa_buffer.aging_tail &&
(now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
/* If the HW tail hasn't move since the last check and the HW
* tail has been aging for long enough, declare it the new
* tail.
*/
stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
} else {
u32 head, tail, aged_tail;
/* NB: The head we observe here might effectively be a little
* out of date. If a read() is in progress, the head could be
* anywhere between this head and stream->oa_buffer.tail.
*/
head = stream->oa_buffer.head - gtt_offset;
aged_tail = stream->oa_buffer.tail - gtt_offset;
hw_tail -= gtt_offset;
tail = hw_tail;
/* Walk the stream backward until we find a report with dword 0
* & 1 not at 0. Since the circular buffer pointers progress by
* increments of 64 bytes and that reports can be up to 256
* bytes long, we can't tell whether a report has fully landed
* in memory before the first 2 dwords of the following report
* have effectively landed.
*
* This is assuming that the writes of the OA unit land in
* memory in the order they were written to.
* If not : (╯°□°)╯︵ ┻━┻
*/
while (OA_TAKEN(tail, aged_tail) >= report_size) {
u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
if (report32[0] != 0 || report32[1] != 0)
break;
tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
}
if (OA_TAKEN(hw_tail, tail) > report_size &&
__ratelimit(&stream->perf->tail_pointer_race))
DRM_NOTE("unlanded report(s) head=0x%x "
"tail=0x%x hw_tail=0x%x\n",
head, tail, hw_tail);
stream->oa_buffer.tail = gtt_offset + tail;
stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
stream->oa_buffer.aging_timestamp = now;
}
pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
stream->oa_buffer.head - gtt_offset) >= report_size;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
return pollin;
}
/**
* append_oa_status - Appends a status record to a userspace read() buffer.
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
* @type: The kind of status to report to userspace
*
* Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
* into the userspace read() buffer.
*
* The @buf @offset will only be updated on success.
*
* Returns: 0 on success, negative error code on failure.
*/
static int append_oa_status(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset,
enum drm_i915_perf_record_type type)
{
struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
if ((count - *offset) < header.size)
return -ENOSPC;
if (copy_to_user(buf + *offset, &header, sizeof(header)))
return -EFAULT;
(*offset) += header.size;
return 0;
}
/**
* append_oa_sample - Copies single OA report into userspace read() buffer.
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
* @report: A single OA report to (optionally) include as part of the sample
*
* The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
* properties when opening a stream, tracked as `stream->sample_flags`. This
* function copies the requested components of a single sample to the given
* read() @buf.
*
* The @buf @offset will only be updated on success.
*
* Returns: 0 on success, negative error code on failure.
*/
static int append_oa_sample(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset,
const u8 *report)
{
int report_size = stream->oa_buffer.format_size;
struct drm_i915_perf_record_header header;
u32 sample_flags = stream->sample_flags;
header.type = DRM_I915_PERF_RECORD_SAMPLE;
header.pad = 0;
header.size = stream->sample_size;
if ((count - *offset) < header.size)
return -ENOSPC;
buf += *offset;
if (copy_to_user(buf, &header, sizeof(header)))
return -EFAULT;
buf += sizeof(header);
if (sample_flags & SAMPLE_OA_REPORT) {
if (copy_to_user(buf, report, report_size))
return -EFAULT;
}
(*offset) += header.size;
return 0;
}
/**
* Copies all buffered OA reports into userspace read() buffer.
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
*
* Notably any error condition resulting in a short read (-%ENOSPC or
* -%EFAULT) will be returned even though one or more records may
* have been successfully copied. In this case it's up to the caller
* to decide if the error should be squashed before returning to
* userspace.
*
* Note: reports are consumed from the head, and appended to the
* tail, so the tail chases the head?... If you think that's mad
* and back-to-front you're not alone, but this follows the
* Gen PRM naming convention.
*
* Returns: 0 on success, negative error code on failure.
*/
static int gen8_append_oa_reports(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset)
{
struct intel_uncore *uncore = stream->uncore;
int report_size = stream->oa_buffer.format_size;
u8 *oa_buf_base = stream->oa_buffer.vaddr;
u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
u32 mask = (OA_BUFFER_SIZE - 1);
size_t start_offset = *offset;
unsigned long flags;
u32 head, tail;
u32 taken;
int ret = 0;
if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
return -EIO;
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
head = stream->oa_buffer.head;
tail = stream->oa_buffer.tail;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
/*
* NB: oa_buffer.head/tail include the gtt_offset which we don't want
* while indexing relative to oa_buf_base.
*/
head -= gtt_offset;
tail -= gtt_offset;
/*
* An out of bounds or misaligned head or tail pointer implies a driver
* bug since we validate + align the tail pointers we read from the
* hardware and we are in full control of the head pointer which should
* only be incremented by multiples of the report size (notably also
* all a power of two).
*/
if (drm_WARN_ONCE(&uncore->i915->drm,
head > OA_BUFFER_SIZE || head % report_size ||
tail > OA_BUFFER_SIZE || tail % report_size,
"Inconsistent OA buffer pointers: head = %u, tail = %u\n",
head, tail))
return -EIO;
for (/* none */;
(taken = OA_TAKEN(tail, head));
head = (head + report_size) & mask) {
u8 *report = oa_buf_base + head;
u32 *report32 = (void *)report;
u32 ctx_id;
u32 reason;
/*
* All the report sizes factor neatly into the buffer
* size so we never expect to see a report split
* between the beginning and end of the buffer.
*
* Given the initial alignment check a misalignment
* here would imply a driver bug that would result
* in an overrun.
*/
if (drm_WARN_ON(&uncore->i915->drm,
(OA_BUFFER_SIZE - head) < report_size)) {
drm_err(&uncore->i915->drm,
"Spurious OA head ptr: non-integral report offset\n");
break;
}
/*
* The reason field includes flags identifying what
* triggered this specific report (mostly timer
* triggered or e.g. due to a context switch).
*
* This field is never expected to be zero so we can
* check that the report isn't invalid before copying
* it to userspace...
*/
reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
(IS_GEN(stream->perf->i915, 12) ?
OAREPORT_REASON_MASK_EXTENDED :
OAREPORT_REASON_MASK));
if (reason == 0) {
if (__ratelimit(&stream->perf->spurious_report_rs))
DRM_NOTE("Skipping spurious, invalid OA report\n");
continue;
}
ctx_id = report32[2] & stream->specific_ctx_id_mask;
/*
* Squash whatever is in the CTX_ID field if it's marked as
* invalid to be sure we avoid false-positive, single-context
* filtering below...
*
* Note: that we don't clear the valid_ctx_bit so userspace can
* understand that the ID has been squashed by the kernel.
*/
if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
INTEL_GEN(stream->perf->i915) <= 11)
ctx_id = report32[2] = INVALID_CTX_ID;
/*
* NB: For Gen 8 the OA unit no longer supports clock gating
* off for a specific context and the kernel can't securely
* stop the counters from updating as system-wide / global
* values.
*
* Automatic reports now include a context ID so reports can be
* filtered on the cpu but it's not worth trying to
* automatically subtract/hide counter progress for other
* contexts while filtering since we can't stop userspace
* issuing MI_REPORT_PERF_COUNT commands which would still
* provide a side-band view of the real values.
*
* To allow userspace (such as Mesa/GL_INTEL_performance_query)
* to normalize counters for a single filtered context then it
* needs be forwarded bookend context-switch reports so that it
* can track switches in between MI_REPORT_PERF_COUNT commands
* and can itself subtract/ignore the progress of counters
* associated with other contexts. Note that the hardware
* automatically triggers reports when switching to a new
* context which are tagged with the ID of the newly active
* context. To avoid the complexity (and likely fragility) of
* reading ahead while parsing reports to try and minimize
* forwarding redundant context switch reports (i.e. between
* other, unrelated contexts) we simply elect to forward them
* all.
*
* We don't rely solely on the reason field to identify context
* switches since it's not-uncommon for periodic samples to
* identify a switch before any 'context switch' report.
*/
if (!stream->perf->exclusive_stream->ctx ||
stream->specific_ctx_id == ctx_id ||
stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
reason & OAREPORT_REASON_CTX_SWITCH) {
/*
* While filtering for a single context we avoid
* leaking the IDs of other contexts.
*/
if (stream->perf->exclusive_stream->ctx &&
stream->specific_ctx_id != ctx_id) {
report32[2] = INVALID_CTX_ID;
}
ret = append_oa_sample(stream, buf, count, offset,
report);
if (ret)
break;
stream->oa_buffer.last_ctx_id = ctx_id;
}
/*
* Clear out the first 2 dword as a mean to detect unlanded
* reports.
*/
report32[0] = 0;
report32[1] = 0;
}
if (start_offset != *offset) {
i915_reg_t oaheadptr;
oaheadptr = IS_GEN(stream->perf->i915, 12) ?
GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
/*
* We removed the gtt_offset for the copy loop above, indexing
* relative to oa_buf_base so put back here...
*/
head += gtt_offset;
intel_uncore_write(uncore, oaheadptr,
head & GEN12_OAG_OAHEADPTR_MASK);
stream->oa_buffer.head = head;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
}
return ret;
}
/**
* gen8_oa_read - copy status records then buffered OA reports
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
*
* Checks OA unit status registers and if necessary appends corresponding
* status records for userspace (such as for a buffer full condition) and then
* initiate appending any buffered OA reports.
*
* Updates @offset according to the number of bytes successfully copied into
* the userspace buffer.
*
* NB: some data may be successfully copied to the userspace buffer
* even if an error is returned, and this is reflected in the
* updated @offset.
*
* Returns: zero on success or a negative error code
*/
static int gen8_oa_read(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset)
{
struct intel_uncore *uncore = stream->uncore;
u32 oastatus;
i915_reg_t oastatus_reg;
int ret;
if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
return -EIO;
oastatus_reg = IS_GEN(stream->perf->i915, 12) ?
GEN12_OAG_OASTATUS : GEN8_OASTATUS;
oastatus = intel_uncore_read(uncore, oastatus_reg);
/*
* We treat OABUFFER_OVERFLOW as a significant error:
*
* Although theoretically we could handle this more gracefully
* sometimes, some Gens don't correctly suppress certain
* automatically triggered reports in this condition and so we
* have to assume that old reports are now being trampled
* over.
*
* Considering how we don't currently give userspace control
* over the OA buffer size and always configure a large 16MB
* buffer, then a buffer overflow does anyway likely indicate
* that something has gone quite badly wrong.
*/
if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
ret = append_oa_status(stream, buf, count, offset,
DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
if (ret)
return ret;
DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
stream->period_exponent);
stream->perf->ops.oa_disable(stream);
stream->perf->ops.oa_enable(stream);
/*
* Note: .oa_enable() is expected to re-init the oabuffer and
* reset GEN8_OASTATUS for us
*/
oastatus = intel_uncore_read(uncore, oastatus_reg);
}
if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
ret = append_oa_status(stream, buf, count, offset,
DRM_I915_PERF_RECORD_OA_REPORT_LOST);
if (ret)
return ret;
intel_uncore_write(uncore, oastatus_reg,
oastatus & ~GEN8_OASTATUS_REPORT_LOST);
}
return gen8_append_oa_reports(stream, buf, count, offset);
}
/**
* Copies all buffered OA reports into userspace read() buffer.
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
*
* Notably any error condition resulting in a short read (-%ENOSPC or
* -%EFAULT) will be returned even though one or more records may
* have been successfully copied. In this case it's up to the caller
* to decide if the error should be squashed before returning to
* userspace.
*
* Note: reports are consumed from the head, and appended to the
* tail, so the tail chases the head?... If you think that's mad
* and back-to-front you're not alone, but this follows the
* Gen PRM naming convention.
*
* Returns: 0 on success, negative error code on failure.
*/
static int gen7_append_oa_reports(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset)
{
struct intel_uncore *uncore = stream->uncore;
int report_size = stream->oa_buffer.format_size;
u8 *oa_buf_base = stream->oa_buffer.vaddr;
u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
u32 mask = (OA_BUFFER_SIZE - 1);
size_t start_offset = *offset;
unsigned long flags;
u32 head, tail;
u32 taken;
int ret = 0;
if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
return -EIO;
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
head = stream->oa_buffer.head;
tail = stream->oa_buffer.tail;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
/* NB: oa_buffer.head/tail include the gtt_offset which we don't want
* while indexing relative to oa_buf_base.
*/
head -= gtt_offset;
tail -= gtt_offset;
/* An out of bounds or misaligned head or tail pointer implies a driver
* bug since we validate + align the tail pointers we read from the
* hardware and we are in full control of the head pointer which should
* only be incremented by multiples of the report size (notably also
* all a power of two).
*/
if (drm_WARN_ONCE(&uncore->i915->drm,
head > OA_BUFFER_SIZE || head % report_size ||
tail > OA_BUFFER_SIZE || tail % report_size,
"Inconsistent OA buffer pointers: head = %u, tail = %u\n",
head, tail))
return -EIO;
for (/* none */;
(taken = OA_TAKEN(tail, head));
head = (head + report_size) & mask) {
u8 *report = oa_buf_base + head;
u32 *report32 = (void *)report;
/* All the report sizes factor neatly into the buffer
* size so we never expect to see a report split
* between the beginning and end of the buffer.
*
* Given the initial alignment check a misalignment
* here would imply a driver bug that would result
* in an overrun.
*/
if (drm_WARN_ON(&uncore->i915->drm,
(OA_BUFFER_SIZE - head) < report_size)) {
drm_err(&uncore->i915->drm,
"Spurious OA head ptr: non-integral report offset\n");
break;
}
/* The report-ID field for periodic samples includes
* some undocumented flags related to what triggered
* the report and is never expected to be zero so we
* can check that the report isn't invalid before
* copying it to userspace...
*/
if (report32[0] == 0) {
if (__ratelimit(&stream->perf->spurious_report_rs))
DRM_NOTE("Skipping spurious, invalid OA report\n");
continue;
}
ret = append_oa_sample(stream, buf, count, offset, report);
if (ret)
break;
/* Clear out the first 2 dwords as a mean to detect unlanded
* reports.
*/
report32[0] = 0;
report32[1] = 0;
}
if (start_offset != *offset) {
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
/* We removed the gtt_offset for the copy loop above, indexing
* relative to oa_buf_base so put back here...
*/
head += gtt_offset;
intel_uncore_write(uncore, GEN7_OASTATUS2,
(head & GEN7_OASTATUS2_HEAD_MASK) |
GEN7_OASTATUS2_MEM_SELECT_GGTT);
stream->oa_buffer.head = head;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
}
return ret;
}
/**
* gen7_oa_read - copy status records then buffered OA reports
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
*
* Checks Gen 7 specific OA unit status registers and if necessary appends
* corresponding status records for userspace (such as for a buffer full
* condition) and then initiate appending any buffered OA reports.
*
* Updates @offset according to the number of bytes successfully copied into
* the userspace buffer.
*
* Returns: zero on success or a negative error code
*/
static int gen7_oa_read(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset)
{
struct intel_uncore *uncore = stream->uncore;
u32 oastatus1;
int ret;
if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
return -EIO;
oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
/* XXX: On Haswell we don't have a safe way to clear oastatus1
* bits while the OA unit is enabled (while the tail pointer
* may be updated asynchronously) so we ignore status bits
* that have already been reported to userspace.
*/
oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
/* We treat OABUFFER_OVERFLOW as a significant error:
*
* - The status can be interpreted to mean that the buffer is
* currently full (with a higher precedence than OA_TAKEN()
* which will start to report a near-empty buffer after an
* overflow) but it's awkward that we can't clear the status
* on Haswell, so without a reset we won't be able to catch
* the state again.
*
* - Since it also implies the HW has started overwriting old
* reports it may also affect our sanity checks for invalid
* reports when copying to userspace that assume new reports
* are being written to cleared memory.
*
* - In the future we may want to introduce a flight recorder
* mode where the driver will automatically maintain a safe
* guard band between head/tail, avoiding this overflow
* condition, but we avoid the added driver complexity for
* now.
*/
if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
ret = append_oa_status(stream, buf, count, offset,
DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
if (ret)
return ret;
DRM_DEBUG("OA buffer overflow (exponent = %d): force restart\n",
stream->period_exponent);
stream->perf->ops.oa_disable(stream);
stream->perf->ops.oa_enable(stream);
oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
}
if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
ret = append_oa_status(stream, buf, count, offset,
DRM_I915_PERF_RECORD_OA_REPORT_LOST);
if (ret)
return ret;
stream->perf->gen7_latched_oastatus1 |=
GEN7_OASTATUS1_REPORT_LOST;
}
return gen7_append_oa_reports(stream, buf, count, offset);
}
/**
* i915_oa_wait_unlocked - handles blocking IO until OA data available
* @stream: An i915-perf stream opened for OA metrics
*
* Called when userspace tries to read() from a blocking stream FD opened
* for OA metrics. It waits until the hrtimer callback finds a non-empty
* OA buffer and wakes us.
*
* Note: it's acceptable to have this return with some false positives
* since any subsequent read handling will return -EAGAIN if there isn't
* really data ready for userspace yet.
*
* Returns: zero on success or a negative error code
*/
static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
{
/* We would wait indefinitely if periodic sampling is not enabled */
if (!stream->periodic)
return -EIO;
return wait_event_interruptible(stream->poll_wq,
oa_buffer_check_unlocked(stream));
}
/**
* i915_oa_poll_wait - call poll_wait() for an OA stream poll()
* @stream: An i915-perf stream opened for OA metrics
* @file: An i915 perf stream file
* @wait: poll() state table
*
* For handling userspace polling on an i915 perf stream opened for OA metrics,
* this starts a poll_wait with the wait queue that our hrtimer callback wakes
* when it sees data ready to read in the circular OA buffer.
*/
static void i915_oa_poll_wait(struct i915_perf_stream *stream,
struct file *file,
poll_table *wait)
{
poll_wait(file, &stream->poll_wq, wait);
}
/**
* i915_oa_read - just calls through to &i915_oa_ops->read
* @stream: An i915-perf stream opened for OA metrics
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @offset: (inout): the current position for writing into @buf
*
* Updates @offset according to the number of bytes successfully copied into
* the userspace buffer.
*
* Returns: zero on success or a negative error code
*/
static int i915_oa_read(struct i915_perf_stream *stream,
char __user *buf,
size_t count,
size_t *offset)
{
return stream->perf->ops.read(stream, buf, count, offset);
}
static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
{
struct i915_gem_engines_iter it;
struct i915_gem_context *ctx = stream->ctx;
struct intel_context *ce;
int err;
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
if (ce->engine != stream->engine) /* first match! */
continue;
/*
* As the ID is the gtt offset of the context's vma we
* pin the vma to ensure the ID remains fixed.
*/
err = intel_context_pin(ce);
if (err == 0) {
stream->pinned_ctx = ce;
break;
}
}
i915_gem_context_unlock_engines(ctx);
return stream->pinned_ctx;
}
/**
* oa_get_render_ctx_id - determine and hold ctx hw id
* @stream: An i915-perf stream opened for OA metrics
*
* Determine the render context hw id, and ensure it remains fixed for the
* lifetime of the stream. This ensures that we don't have to worry about
* updating the context ID in OACONTROL on the fly.
*
* Returns: zero on success or a negative error code
*/
static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
{
struct intel_context *ce;
ce = oa_pin_context(stream);
if (IS_ERR(ce))
return PTR_ERR(ce);
switch (INTEL_GEN(ce->engine->i915)) {
case 7: {
/*
* On Haswell we don't do any post processing of the reports
* and don't need to use the mask.
*/
stream->specific_ctx_id = i915_ggtt_offset(ce->state);
stream->specific_ctx_id_mask = 0;
break;
}
case 8:
case 9:
case 10:
if (intel_engine_in_execlists_submission_mode(ce->engine)) {
stream->specific_ctx_id_mask =
(1U << GEN8_CTX_ID_WIDTH) - 1;
stream->specific_ctx_id = stream->specific_ctx_id_mask;
} else {
/*
* When using GuC, the context descriptor we write in
* i915 is read by GuC and rewritten before it's
* actually written into the hardware. The LRCA is
* what is put into the context id field of the
* context descriptor by GuC. Because it's aligned to
* a page, the lower 12bits are always at 0 and
* dropped by GuC. They won't be part of the context
* ID in the OA reports, so squash those lower bits.
*/
stream->specific_ctx_id = ce->lrc.lrca >> 12;
/*
* GuC uses the top bit to signal proxy submission, so
* ignore that bit.
*/
stream->specific_ctx_id_mask =
(1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
}
break;
case 11:
case 12: {
stream->specific_ctx_id_mask =
((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
/*
* Pick an unused context id
* 0 - BITS_PER_LONG are used by other contexts
* GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
*/
stream->specific_ctx_id = (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
break;
}
default:
MISSING_CASE(INTEL_GEN(ce->engine->i915));
}
ce->tag = stream->specific_ctx_id;
drm_dbg(&stream->perf->i915->drm,
"filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
stream->specific_ctx_id,
stream->specific_ctx_id_mask);
return 0;
}
/**
* oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
* @stream: An i915-perf stream opened for OA metrics
*
* In case anything needed doing to ensure the context HW ID would remain valid
* for the lifetime of the stream, then that can be undone here.
*/
static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
{
struct intel_context *ce;
ce = fetch_and_zero(&stream->pinned_ctx);
if (ce) {
ce->tag = 0; /* recomputed on next submission after parking */
intel_context_unpin(ce);
}
stream->specific_ctx_id = INVALID_CTX_ID;
stream->specific_ctx_id_mask = 0;
}
static void
free_oa_buffer(struct i915_perf_stream *stream)
{
i915_vma_unpin_and_release(&stream->oa_buffer.vma,
I915_VMA_RELEASE_MAP);
stream->oa_buffer.vaddr = NULL;
}
static void
free_oa_configs(struct i915_perf_stream *stream)
{
struct i915_oa_config_bo *oa_bo, *tmp;
i915_oa_config_put(stream->oa_config);
llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
free_oa_config_bo(oa_bo);
}
static void
free_noa_wait(struct i915_perf_stream *stream)
{
i915_vma_unpin_and_release(&stream->noa_wait, 0);
}
static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
{
struct i915_perf *perf = stream->perf;
BUG_ON(stream != perf->exclusive_stream);
/*
* Unset exclusive_stream first, it will be checked while disabling
* the metric set on gen8+.
*
* See i915_oa_init_reg_state() and lrc_configure_all_contexts()
*/
WRITE_ONCE(perf->exclusive_stream, NULL);
perf->ops.disable_metric_set(stream);
free_oa_buffer(stream);
intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
intel_engine_pm_put(stream->engine);
if (stream->ctx)
oa_put_render_ctx_id(stream);
free_oa_configs(stream);
free_noa_wait(stream);
if (perf->spurious_report_rs.missed) {
DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
perf->spurious_report_rs.missed);
}
}
static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
unsigned long flags;
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
/* Pre-DevBDW: OABUFFER must be set with counters off,
* before OASTATUS1, but after OASTATUS2
*/
intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
stream->oa_buffer.head = gtt_offset;
intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
gtt_offset | OABUFFER_SIZE_16M);
/* Mark that we need updated tail pointers to read from... */
stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
stream->oa_buffer.tail = gtt_offset;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
/* On Haswell we have to track which OASTATUS1 flags we've
* already seen since they can't be cleared while periodic
* sampling is enabled.
*/
stream->perf->gen7_latched_oastatus1 = 0;
/* NB: although the OA buffer will initially be allocated
* zeroed via shmfs (and so this memset is redundant when
* first allocating), we may re-init the OA buffer, either
* when re-enabling a stream or in error/reset paths.
*
* The reason we clear the buffer for each re-init is for the
* sanity check in gen7_append_oa_reports() that looks at the
* report-id field to make sure it's non-zero which relies on
* the assumption that new reports are being written to zeroed
* memory...
*/
memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
}
static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
unsigned long flags;
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
intel_uncore_write(uncore, GEN8_OASTATUS, 0);
intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
stream->oa_buffer.head = gtt_offset;
intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
/*
* PRM says:
*
* "This MMIO must be set before the OATAILPTR
* register and after the OAHEADPTR register. This is
* to enable proper functionality of the overflow
* bit."
*/
intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
/* Mark that we need updated tail pointers to read from... */
stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
stream->oa_buffer.tail = gtt_offset;
/*
* Reset state used to recognise context switches, affecting which
* reports we will forward to userspace while filtering for a single
* context.
*/
stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
/*
* NB: although the OA buffer will initially be allocated
* zeroed via shmfs (and so this memset is redundant when
* first allocating), we may re-init the OA buffer, either
* when re-enabling a stream or in error/reset paths.
*
* The reason we clear the buffer for each re-init is for the
* sanity check in gen8_append_oa_reports() that looks at the
* reason field to make sure it's non-zero which relies on
* the assumption that new reports are being written to zeroed
* memory...
*/
memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
}
static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
unsigned long flags;
spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
stream->oa_buffer.head = gtt_offset;
/*
* PRM says:
*
* "This MMIO must be set before the OATAILPTR
* register and after the OAHEADPTR register. This is
* to enable proper functionality of the overflow
* bit."
*/
intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
gtt_offset & GEN12_OAG_OATAILPTR_MASK);
/* Mark that we need updated tail pointers to read from... */
stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
stream->oa_buffer.tail = gtt_offset;
/*
* Reset state used to recognise context switches, affecting which
* reports we will forward to userspace while filtering for a single
* context.
*/
stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
/*
* NB: although the OA buffer will initially be allocated
* zeroed via shmfs (and so this memset is redundant when
* first allocating), we may re-init the OA buffer, either
* when re-enabling a stream or in error/reset paths.
*
* The reason we clear the buffer for each re-init is for the
* sanity check in gen8_append_oa_reports() that looks at the
* reason field to make sure it's non-zero which relies on
* the assumption that new reports are being written to zeroed
* memory...
*/
memset(stream->oa_buffer.vaddr, 0,
stream->oa_buffer.vma->size);
}
static int alloc_oa_buffer(struct i915_perf_stream *stream)
{
struct drm_i915_private *i915 = stream->perf->i915;
struct drm_i915_gem_object *bo;
struct i915_vma *vma;
int ret;
if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
return -ENODEV;
BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
if (IS_ERR(bo)) {
drm_err(&i915->drm, "Failed to allocate OA buffer\n");
return PTR_ERR(bo);
}
i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
/* PreHSW required 512K alignment, HSW requires 16M */
vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
stream->oa_buffer.vma = vma;
stream->oa_buffer.vaddr =
i915_gem_object_pin_map(bo, I915_MAP_WB);
if (IS_ERR(stream->oa_buffer.vaddr)) {
ret = PTR_ERR(stream->oa_buffer.vaddr);
goto err_unpin;
}
return 0;
err_unpin:
__i915_vma_unpin(vma);
err_unref:
i915_gem_object_put(bo);
stream->oa_buffer.vaddr = NULL;
stream->oa_buffer.vma = NULL;
return ret;
}
static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
bool save, i915_reg_t reg, u32 offset,
u32 dword_count)
{
u32 cmd;
u32 d;
cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
cmd |= MI_SRM_LRM_GLOBAL_GTT;
if (INTEL_GEN(stream->perf->i915) >= 8)
cmd++;
for (d = 0; d < dword_count; d++) {
*cs++ = cmd;
*cs++ = i915_mmio_reg_offset(reg) + 4 * d;
*cs++ = intel_gt_scratch_offset(stream->engine->gt,
offset) + 4 * d;
*cs++ = 0;
}
return cs;
}
static int alloc_noa_wait(struct i915_perf_stream *stream)
{
struct drm_i915_private *i915 = stream->perf->i915;
struct drm_i915_gem_object *bo;
struct i915_vma *vma;
const u64 delay_ticks = 0xffffffffffffffff -
i915_cs_timestamp_ns_to_ticks(i915, atomic64_read(&stream->perf->noa_programming_delay));
const u32 base = stream->engine->mmio_base;
#define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
u32 *batch, *ts0, *cs, *jump;
int ret, i;
enum {
START_TS,
NOW_TS,
DELTA_TS,
JUMP_PREDICATE,
DELTA_TARGET,
N_CS_GPR
};
bo = i915_gem_object_create_internal(i915, 4096);
if (IS_ERR(bo)) {
drm_err(&i915->drm,
"Failed to allocate NOA wait batchbuffer\n");
return PTR_ERR(bo);
}
/*
* We pin in GGTT because we jump into this buffer now because
* multiple OA config BOs will have a jump to this address and it
* needs to be fixed during the lifetime of the i915/perf stream.
*/
vma = i915_gem_object_ggtt_pin(bo, NULL, 0, 0, PIN_HIGH);
if (IS_ERR(vma)) {
ret = PTR_ERR(vma);
goto err_unref;
}
batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
if (IS_ERR(batch)) {
ret = PTR_ERR(batch);
goto err_unpin;
}
/* Save registers. */
for (i = 0; i < N_CS_GPR; i++)
cs = save_restore_register(
stream, cs, true /* save */, CS_GPR(i),
INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
cs = save_restore_register(
stream, cs, true /* save */, MI_PREDICATE_RESULT_1,
INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
/* First timestamp snapshot location. */
ts0 = cs;
/*
* Initial snapshot of the timestamp register to implement the wait.
* We work with 32b values, so clear out the top 32b bits of the
* register because the ALU works 64bits.
*/
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
*cs++ = 0;
*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
*cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
/*
* This is the location we're going to jump back into until the
* required amount of time has passed.
*/
jump = cs;
/*
* Take another snapshot of the timestamp register. Take care to clear
* up the top 32bits of CS_GPR(1) as we're using it for other
* operations below.
*/
*cs++ = MI_LOAD_REGISTER_IMM(1);
*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
*cs++ = 0;
*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
*cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
*cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
/*
* Do a diff between the 2 timestamps and store the result back into
* CS_GPR(1).
*/
*cs++ = MI_MATH(5);
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
*cs++ = MI_MATH_SUB;
*cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
*cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
/*
* Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
* timestamp have rolled over the 32bits) into the predicate register
* to be used for the predicated jump.
*/
*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
/* Restart from the beginning if we had timestamps roll over. */
*cs++ = (INTEL_GEN(i915) < 8 ?
MI_BATCH_BUFFER_START :
MI_BATCH_BUFFER_START_GEN8) |
MI_BATCH_PREDICATE;
*cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
*cs++ = 0;
/*
* Now add the diff between to previous timestamps and add it to :
* (((1 * << 64) - 1) - delay_ns)
*
* When the Carry Flag contains 1 this means the elapsed time is
* longer than the expected delay, and we can exit the wait loop.
*/
*cs++ = MI_LOAD_REGISTER_IMM(2);
*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
*cs++ = lower_32_bits(delay_ticks);
*cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
*cs++ = upper_32_bits(delay_ticks);
*cs++ = MI_MATH(4);
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
*cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
*cs++ = MI_MATH_ADD;
*cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
*cs++ = MI_ARB_CHECK;
/*
* Transfer the result into the predicate register to be used for the
* predicated jump.
*/
*cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
*cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
*cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1);
/* Predicate the jump. */
*cs++ = (INTEL_GEN(i915) < 8 ?
MI_BATCH_BUFFER_START :
MI_BATCH_BUFFER_START_GEN8) |
MI_BATCH_PREDICATE;
*cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
*cs++ = 0;
/* Restore registers. */
for (i = 0; i < N_CS_GPR; i++)
cs = save_restore_register(
stream, cs, false /* restore */, CS_GPR(i),
INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
cs = save_restore_register(
stream, cs, false /* restore */, MI_PREDICATE_RESULT_1,
INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
/* And return to the ring. */
*cs++ = MI_BATCH_BUFFER_END;
GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
i915_gem_object_flush_map(bo);
__i915_gem_object_release_map(bo);
stream->noa_wait = vma;
return 0;
err_unpin:
i915_vma_unpin_and_release(&vma, 0);
err_unref:
i915_gem_object_put(bo);
return ret;
}
static u32 *write_cs_mi_lri(u32 *cs,
const struct i915_oa_reg *reg_data,
u32 n_regs)
{
u32 i;
for (i = 0; i < n_regs; i++) {
if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
u32 n_lri = min_t(u32,
n_regs - i,
MI_LOAD_REGISTER_IMM_MAX_REGS);
*cs++ = MI_LOAD_REGISTER_IMM(n_lri);
}
*cs++ = i915_mmio_reg_offset(reg_data[i].addr);
*cs++ = reg_data[i].value;
}
return cs;
}
static int num_lri_dwords(int num_regs)
{
int count = 0;
if (num_regs > 0) {
count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
count += num_regs * 2;
}
return count;
}
static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream *stream,
struct i915_oa_config *oa_config)
{
struct drm_i915_gem_object *obj;
struct i915_oa_config_bo *oa_bo;
size_t config_length = 0;
u32 *cs;
int err;
oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
if (!oa_bo)
return ERR_PTR(-ENOMEM);
config_length += num_lri_dwords(oa_config->mux_regs_len);
config_length += num_lri_dwords(oa_config->b_counter_regs_len);
config_length += num_lri_dwords(oa_config->flex_regs_len);
config_length += 3; /* MI_BATCH_BUFFER_START */
config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
if (IS_ERR(obj)) {
err = PTR_ERR(obj);
goto err_free;
}
cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
if (IS_ERR(cs)) {
err = PTR_ERR(cs);
goto err_oa_bo;
}
cs = write_cs_mi_lri(cs,
oa_config->mux_regs,
oa_config->mux_regs_len);
cs = write_cs_mi_lri(cs,
oa_config->b_counter_regs,
oa_config->b_counter_regs_len);
cs = write_cs_mi_lri(cs,
oa_config->flex_regs,
oa_config->flex_regs_len);
/* Jump into the active wait. */
*cs++ = (INTEL_GEN(stream->perf->i915) < 8 ?
MI_BATCH_BUFFER_START :
MI_BATCH_BUFFER_START_GEN8);
*cs++ = i915_ggtt_offset(stream->noa_wait);
*cs++ = 0;
i915_gem_object_flush_map(obj);
__i915_gem_object_release_map(obj);
oa_bo->vma = i915_vma_instance(obj,
&stream->engine->gt->ggtt->vm,
NULL);
if (IS_ERR(oa_bo->vma)) {
err = PTR_ERR(oa_bo->vma);
goto err_oa_bo;
}
oa_bo->oa_config = i915_oa_config_get(oa_config);
llist_add(&oa_bo->node, &stream->oa_config_bos);
return oa_bo;
err_oa_bo:
i915_gem_object_put(obj);
err_free:
kfree(oa_bo);
return ERR_PTR(err);
}
static struct i915_vma *
get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
{
struct i915_oa_config_bo *oa_bo;
/*
* Look for the buffer in the already allocated BOs attached
* to the stream.
*/
llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
if (oa_bo->oa_config == oa_config &&
memcmp(oa_bo->oa_config->uuid,
oa_config->uuid,
sizeof(oa_config->uuid)) == 0)
goto out;
}
oa_bo = alloc_oa_config_buffer(stream, oa_config);
if (IS_ERR(oa_bo))
return ERR_CAST(oa_bo);
out:
return i915_vma_get(oa_bo->vma);
}
static int
emit_oa_config(struct i915_perf_stream *stream,
struct i915_oa_config *oa_config,
struct intel_context *ce,
struct i915_active *active)
{
struct i915_request *rq;
struct i915_vma *vma;
int err;
vma = get_oa_vma(stream, oa_config);
if (IS_ERR(vma))
return PTR_ERR(vma);
err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
if (err)
goto err_vma_put;
intel_engine_pm_get(ce->engine);
rq = i915_request_create(ce);
intel_engine_pm_put(ce->engine);
if (IS_ERR(rq)) {
err = PTR_ERR(rq);
goto err_vma_unpin;
}
if (!IS_ERR_OR_NULL(active)) {
/* After all individual context modifications */
err = i915_request_await_active(rq, active,
I915_ACTIVE_AWAIT_ACTIVE);
if (err)
goto err_add_request;
err = i915_active_add_request(active, rq);
if (err)
goto err_add_request;
}
i915_vma_lock(vma);
err = i915_request_await_object(rq, vma->obj, 0);
if (!err)
err = i915_vma_move_to_active(vma, rq, 0);
i915_vma_unlock(vma);
if (err)
goto err_add_request;
err = rq->engine->emit_bb_start(rq,
vma->node.start, 0,
I915_DISPATCH_SECURE);
if (err)
goto err_add_request;
err_add_request:
i915_request_add(rq);
err_vma_unpin:
i915_vma_unpin(vma);
err_vma_put:
i915_vma_put(vma);
return err;
}
static struct intel_context *oa_context(struct i915_perf_stream *stream)
{
return stream->pinned_ctx ?: stream->engine->kernel_context;
}
static int
hsw_enable_metric_set(struct i915_perf_stream *stream,
struct i915_active *active)
{
struct intel_uncore *uncore = stream->uncore;
/*
* PRM:
*
* OA unit is using “crclk” for its functionality. When trunk
* level clock gating takes place, OA clock would be gated,
* unable to count the events from non-render clock domain.
* Render clock gating must be disabled when OA is enabled to
* count the events from non-render domain. Unit level clock
* gating for RCS should also be disabled.
*/
intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
GEN7_DOP_CLOCK_GATE_ENABLE, 0);
intel_uncore_rmw(uncore, GEN6_UCGCTL1,
0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
return emit_oa_config(stream,
stream->oa_config, oa_context(stream),
active);
}
static void hsw_disable_metric_set(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
intel_uncore_rmw(uncore, GEN6_UCGCTL1,
GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
0, GEN7_DOP_CLOCK_GATE_ENABLE);
intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
}
static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
i915_reg_t reg)
{
u32 mmio = i915_mmio_reg_offset(reg);
int i;
/*
* This arbitrary default will select the 'EU FPU0 Pipeline
* Active' event. In the future it's anticipated that there
* will be an explicit 'No Event' we can select, but not yet...
*/
if (!oa_config)
return 0;
for (i = 0; i < oa_config->flex_regs_len; i++) {
if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
return oa_config->flex_regs[i].value;
}
return 0;
}
/*
* NB: It must always remain pointer safe to run this even if the OA unit
* has been disabled.
*
* It's fine to put out-of-date values into these per-context registers
* in the case that the OA unit has been disabled.
*/
static void
gen8_update_reg_state_unlocked(const struct intel_context *ce,
const struct i915_perf_stream *stream)
{
u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
/* The MMIO offsets for Flex EU registers aren't contiguous */
i915_reg_t flex_regs[] = {
EU_PERF_CNTL0,
EU_PERF_CNTL1,
EU_PERF_CNTL2,
EU_PERF_CNTL3,
EU_PERF_CNTL4,
EU_PERF_CNTL5,
EU_PERF_CNTL6,
};
u32 *reg_state = ce->lrc_reg_state;
int i;
reg_state[ctx_oactxctrl + 1] =
(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
GEN8_OA_COUNTER_RESUME;
for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
reg_state[ctx_flexeu0 + i * 2 + 1] =
oa_config_flex_reg(stream->oa_config, flex_regs[i]);
}
struct flex {
i915_reg_t reg;
u32 offset;
u32 value;
};
static int
gen8_store_flex(struct i915_request *rq,
struct intel_context *ce,
const struct flex *flex, unsigned int count)
{
u32 offset;
u32 *cs;
cs = intel_ring_begin(rq, 4 * count);
if (IS_ERR(cs))
return PTR_ERR(cs);
offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
do {
*cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
*cs++ = offset + flex->offset * sizeof(u32);
*cs++ = 0;
*cs++ = flex->value;
} while (flex++, --count);
intel_ring_advance(rq, cs);
return 0;
}
static int
gen8_load_flex(struct i915_request *rq,
struct intel_context *ce,
const struct flex *flex, unsigned int count)
{
u32 *cs;
GEM_BUG_ON(!count || count > 63);
cs = intel_ring_begin(rq, 2 * count + 2);
if (IS_ERR(cs))
return PTR_ERR(cs);
*cs++ = MI_LOAD_REGISTER_IMM(count);
do {
*cs++ = i915_mmio_reg_offset(flex->reg);
*cs++ = flex->value;
} while (flex++, --count);
*cs++ = MI_NOOP;
intel_ring_advance(rq, cs);
return 0;
}
static int gen8_modify_context(struct intel_context *ce,
const struct flex *flex, unsigned int count)
{
struct i915_request *rq;
int err;
rq = intel_engine_create_kernel_request(ce->engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
/* Serialise with the remote context */
err = intel_context_prepare_remote_request(ce, rq);
if (err == 0)
err = gen8_store_flex(rq, ce, flex, count);
i915_request_add(rq);
return err;
}
static int
gen8_modify_self(struct intel_context *ce,
const struct flex *flex, unsigned int count,
struct i915_active *active)
{
struct i915_request *rq;
int err;
intel_engine_pm_get(ce->engine);
rq = i915_request_create(ce);
intel_engine_pm_put(ce->engine);
if (IS_ERR(rq))
return PTR_ERR(rq);
if (!IS_ERR_OR_NULL(active)) {
err = i915_active_add_request(active, rq);
if (err)
goto err_add_request;
}
err = gen8_load_flex(rq, ce, flex, count);
if (err)
goto err_add_request;
err_add_request:
i915_request_add(rq);
return err;
}
static int gen8_configure_context(struct i915_gem_context *ctx,
struct flex *flex, unsigned int count)
{
struct i915_gem_engines_iter it;
struct intel_context *ce;
int err = 0;
for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
GEM_BUG_ON(ce == ce->engine->kernel_context);
if (ce->engine->class != RENDER_CLASS)
continue;
/* Otherwise OA settings will be set upon first use */
if (!intel_context_pin_if_active(ce))
continue;
flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
err = gen8_modify_context(ce, flex, count);
intel_context_unpin(ce);
if (err)
break;
}
i915_gem_context_unlock_engines(ctx);
return err;
}
static int gen12_configure_oar_context(struct i915_perf_stream *stream,
struct i915_active *active)
{
int err;
struct intel_context *ce = stream->pinned_ctx;
u32 format = stream->oa_buffer.format;
struct flex regs_context[] = {
{
GEN8_OACTXCONTROL,
stream->perf->ctx_oactxctrl_offset + 1,
active ? GEN8_OA_COUNTER_RESUME : 0,
},
};
/* Offsets in regs_lri are not used since this configuration is only
* applied using LRI. Initialize the correct offsets for posterity.
*/
#define GEN12_OAR_OACONTROL_OFFSET 0x5B0
struct flex regs_lri[] = {
{
GEN12_OAR_OACONTROL,
GEN12_OAR_OACONTROL_OFFSET + 1,
(format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
(active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
},
{
RING_CONTEXT_CONTROL(ce->engine->mmio_base),
CTX_CONTEXT_CONTROL,
_MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
active ?
GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
0)
},
};
/* Modify the context image of pinned context with regs_context*/
err = intel_context_lock_pinned(ce);
if (err)
return err;
err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
intel_context_unlock_pinned(ce);
if (err)
return err;
/* Apply regs_lri using LRI with pinned context */
return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
}
/*
* Manages updating the per-context aspects of the OA stream
* configuration across all contexts.
*
* The awkward consideration here is that OACTXCONTROL controls the
* exponent for periodic sampling which is primarily used for system
* wide profiling where we'd like a consistent sampling period even in
* the face of context switches.
*
* Our approach of updating the register state context (as opposed to
* say using a workaround batch buffer) ensures that the hardware
* won't automatically reload an out-of-date timer exponent even
* transiently before a WA BB could be parsed.
*
* This function needs to:
* - Ensure the currently running context's per-context OA state is
* updated
* - Ensure that all existing contexts will have the correct per-context
* OA state if they are scheduled for use.
* - Ensure any new contexts will be initialized with the correct
* per-context OA state.
*
* Note: it's only the RCS/Render context that has any OA state.
* Note: the first flex register passed must always be R_PWR_CLK_STATE
*/
static int
oa_configure_all_contexts(struct i915_perf_stream *stream,
struct flex *regs,
size_t num_regs,
struct i915_active *active)
{
struct drm_i915_private *i915 = stream->perf->i915;
struct intel_engine_cs *engine;
struct i915_gem_context *ctx, *cn;
int err;
lockdep_assert_held(&stream->perf->lock);
/*
* The OA register config is setup through the context image. This image
* might be written to by the GPU on context switch (in particular on
* lite-restore). This means we can't safely update a context's image,
* if this context is scheduled/submitted to run on the GPU.
*
* We could emit the OA register config through the batch buffer but
* this might leave small interval of time where the OA unit is
* configured at an invalid sampling period.
*
* Note that since we emit all requests from a single ring, there
* is still an implicit global barrier here that may cause a high
* priority context to wait for an otherwise independent low priority
* context. Contexts idle at the time of reconfiguration are not
* trapped behind the barrier.
*/
spin_lock(&i915->gem.contexts.lock);
list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
if (!kref_get_unless_zero(&ctx->ref))
continue;
spin_unlock(&i915->gem.contexts.lock);
err = gen8_configure_context(ctx, regs, num_regs);
if (err) {
i915_gem_context_put(ctx);
return err;
}
spin_lock(&i915->gem.contexts.lock);
list_safe_reset_next(ctx, cn, link);
i915_gem_context_put(ctx);
}
spin_unlock(&i915->gem.contexts.lock);
/*
* After updating all other contexts, we need to modify ourselves.
* If we don't modify the kernel_context, we do not get events while
* idle.
*/
for_each_uabi_engine(engine, i915) {
struct intel_context *ce = engine->kernel_context;
if (engine->class != RENDER_CLASS)
continue;
regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
err = gen8_modify_self(ce, regs, num_regs, active);
if (err)
return err;
}
return 0;
}
static int
gen12_configure_all_contexts(struct i915_perf_stream *stream,
const struct i915_oa_config *oa_config,
struct i915_active *active)
{
struct flex regs[] = {
{
GEN8_R_PWR_CLK_STATE,
CTX_R_PWR_CLK_STATE,
},
};
return oa_configure_all_contexts(stream,
regs, ARRAY_SIZE(regs),
active);
}
static int
lrc_configure_all_contexts(struct i915_perf_stream *stream,
const struct i915_oa_config *oa_config,
struct i915_active *active)
{
/* The MMIO offsets for Flex EU registers aren't contiguous */
const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
#define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
struct flex regs[] = {
{
GEN8_R_PWR_CLK_STATE,
CTX_R_PWR_CLK_STATE,
},
{
GEN8_OACTXCONTROL,
stream->perf->ctx_oactxctrl_offset + 1,
},
{ EU_PERF_CNTL0, ctx_flexeuN(0) },
{ EU_PERF_CNTL1, ctx_flexeuN(1) },
{ EU_PERF_CNTL2, ctx_flexeuN(2) },
{ EU_PERF_CNTL3, ctx_flexeuN(3) },
{ EU_PERF_CNTL4, ctx_flexeuN(4) },
{ EU_PERF_CNTL5, ctx_flexeuN(5) },
{ EU_PERF_CNTL6, ctx_flexeuN(6) },
};
#undef ctx_flexeuN
int i;
regs[1].value =
(stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
(stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
GEN8_OA_COUNTER_RESUME;
for (i = 2; i < ARRAY_SIZE(regs); i++)
regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
return oa_configure_all_contexts(stream,
regs, ARRAY_SIZE(regs),
active);
}
static int
gen8_enable_metric_set(struct i915_perf_stream *stream,
struct i915_active *active)
{
struct intel_uncore *uncore = stream->uncore;
struct i915_oa_config *oa_config = stream->oa_config;
int ret;
/*
* We disable slice/unslice clock ratio change reports on SKL since
* they are too noisy. The HW generates a lot of redundant reports
* where the ratio hasn't really changed causing a lot of redundant
* work to processes and increasing the chances we'll hit buffer
* overruns.
*
* Although we don't currently use the 'disable overrun' OABUFFER
* feature it's worth noting that clock ratio reports have to be
* disabled before considering to use that feature since the HW doesn't
* correctly block these reports.
*
* Currently none of the high-level metrics we have depend on knowing
* this ratio to normalize.
*
* Note: This register is not power context saved and restored, but
* that's OK considering that we disable RC6 while the OA unit is
* enabled.
*
* The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
* be read back from automatically triggered reports, as part of the
* RPT_ID field.
*/
if (IS_GEN_RANGE(stream->perf->i915, 9, 11)) {
intel_uncore_write(uncore, GEN8_OA_DEBUG,
_MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
}
/*
* Update all contexts prior writing the mux configurations as we need
* to make sure all slices/subslices are ON before writing to NOA
* registers.
*/
ret = lrc_configure_all_contexts(stream, oa_config, active);
if (ret)
return ret;
return emit_oa_config(stream,
stream->oa_config, oa_context(stream),
active);
}
static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
{
return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
(stream->sample_flags & SAMPLE_OA_REPORT) ?
0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
}
static int
gen12_enable_metric_set(struct i915_perf_stream *stream,
struct i915_active *active)
{
struct intel_uncore *uncore = stream->uncore;
struct i915_oa_config *oa_config = stream->oa_config;
bool periodic = stream->periodic;
u32 period_exponent = stream->period_exponent;
int ret;
intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
/* Disable clk ratio reports, like previous Gens. */
_MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
/*
* If the user didn't require OA reports, instruct
* the hardware not to emit ctx switch reports.
*/
oag_report_ctx_switches(stream));
intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
(GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
(period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
: 0);
/*
* Update all contexts prior writing the mux configurations as we need
* to make sure all slices/subslices are ON before writing to NOA
* registers.
*/
ret = gen12_configure_all_contexts(stream, oa_config, active);
if (ret)
return ret;
/*
* For Gen12, performance counters are context
* saved/restored. Only enable it for the context that
* requested this.
*/
if (stream->ctx) {
ret = gen12_configure_oar_context(stream, active);
if (ret)
return ret;
}
return emit_oa_config(stream,
stream->oa_config, oa_context(stream),
active);
}
static void gen8_disable_metric_set(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
/* Reset all contexts' slices/subslices configurations. */
lrc_configure_all_contexts(stream, NULL, NULL);
intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
}
static void gen10_disable_metric_set(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
/* Reset all contexts' slices/subslices configurations. */
lrc_configure_all_contexts(stream, NULL, NULL);
/* Make sure we disable noa to save power. */
intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
}
static void gen12_disable_metric_set(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
/* Reset all contexts' slices/subslices configurations. */
gen12_configure_all_contexts(stream, NULL, NULL);
/* disable the context save/restore or OAR counters */
if (stream->ctx)
gen12_configure_oar_context(stream, NULL);
/* Make sure we disable noa to save power. */
intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
}
static void gen7_oa_enable(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
struct i915_gem_context *ctx = stream->ctx;
u32 ctx_id = stream->specific_ctx_id;
bool periodic = stream->periodic;
u32 period_exponent = stream->period_exponent;
u32 report_format = stream->oa_buffer.format;
/*
* Reset buf pointers so we don't forward reports from before now.
*
* Think carefully if considering trying to avoid this, since it
* also ensures status flags and the buffer itself are cleared
* in error paths, and we have checks for invalid reports based
* on the assumption that certain fields are written to zeroed
* memory which this helps maintains.
*/
gen7_init_oa_buffer(stream);
intel_uncore_write(uncore, GEN7_OACONTROL,
(ctx_id & GEN7_OACONTROL_CTX_MASK) |
(period_exponent <<
GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
(periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
(report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
(ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
GEN7_OACONTROL_ENABLE);
}
static void gen8_oa_enable(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
u32 report_format = stream->oa_buffer.format;
/*
* Reset buf pointers so we don't forward reports from before now.
*
* Think carefully if considering trying to avoid this, since it
* also ensures status flags and the buffer itself are cleared
* in error paths, and we have checks for invalid reports based
* on the assumption that certain fields are written to zeroed
* memory which this helps maintains.
*/
gen8_init_oa_buffer(stream);
/*
* Note: we don't rely on the hardware to perform single context
* filtering and instead filter on the cpu based on the context-id
* field of reports
*/
intel_uncore_write(uncore, GEN8_OACONTROL,
(report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
GEN8_OA_COUNTER_ENABLE);
}
static void gen12_oa_enable(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
u32 report_format = stream->oa_buffer.format;
/*
* If we don't want OA reports from the OA buffer, then we don't even
* need to program the OAG unit.
*/
if (!(stream->sample_flags & SAMPLE_OA_REPORT))
return;
gen12_init_oa_buffer(stream);
intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
(report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
}
/**
* i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
* @stream: An i915 perf stream opened for OA metrics
*
* [Re]enables hardware periodic sampling according to the period configured
* when opening the stream. This also starts a hrtimer that will periodically
* check for data in the circular OA buffer for notifying userspace (e.g.
* during a read() or poll()).
*/
static void i915_oa_stream_enable(struct i915_perf_stream *stream)
{
stream->pollin = false;
stream->perf->ops.oa_enable(stream);
if (stream->periodic)
hrtimer_start(&stream->poll_check_timer,
ns_to_ktime(stream->poll_oa_period),
HRTIMER_MODE_REL_PINNED);
}
static void gen7_oa_disable(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
intel_uncore_write(uncore, GEN7_OACONTROL, 0);
if (intel_wait_for_register(uncore,
GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
50))
drm_err(&stream->perf->i915->drm,
"wait for OA to be disabled timed out\n");
}
static void gen8_oa_disable(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
intel_uncore_write(uncore, GEN8_OACONTROL, 0);
if (intel_wait_for_register(uncore,
GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
50))
drm_err(&stream->perf->i915->drm,
"wait for OA to be disabled timed out\n");
}
static void gen12_oa_disable(struct i915_perf_stream *stream)
{
struct intel_uncore *uncore = stream->uncore;
intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
if (intel_wait_for_register(uncore,
GEN12_OAG_OACONTROL,
GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
50))
drm_err(&stream->perf->i915->drm,
"wait for OA to be disabled timed out\n");
intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
if (intel_wait_for_register(uncore,
GEN12_OA_TLB_INV_CR,
1, 0,
50))
drm_err(&stream->perf->i915->drm,
"wait for OA tlb invalidate timed out\n");
}
/**
* i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
* @stream: An i915 perf stream opened for OA metrics
*
* Stops the OA unit from periodically writing counter reports into the
* circular OA buffer. This also stops the hrtimer that periodically checks for
* data in the circular OA buffer, for notifying userspace.
*/
static void i915_oa_stream_disable(struct i915_perf_stream *stream)
{
stream->perf->ops.oa_disable(stream);
if (stream->periodic)
hrtimer_cancel(&stream->poll_check_timer);
}
static const struct i915_perf_stream_ops i915_oa_stream_ops = {
.destroy = i915_oa_stream_destroy,
.enable = i915_oa_stream_enable,
.disable = i915_oa_stream_disable,
.wait_unlocked = i915_oa_wait_unlocked,
.poll_wait = i915_oa_poll_wait,
.read = i915_oa_read,
};
static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
{
struct i915_active *active;
int err;
active = i915_active_create();
if (!active)
return -ENOMEM;
err = stream->perf->ops.enable_metric_set(stream, active);
if (err == 0)
__i915_active_wait(active, TASK_UNINTERRUPTIBLE);
i915_active_put(active);
return err;
}
static void
get_default_sseu_config(struct intel_sseu *out_sseu,
struct intel_engine_cs *engine)
{
const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
*out_sseu = intel_sseu_from_device_info(devinfo_sseu);
if (IS_GEN(engine->i915, 11)) {
/*
* We only need subslice count so it doesn't matter which ones
* we select - just turn off low bits in the amount of half of
* all available subslices per slice.
*/
out_sseu->subslice_mask =
~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
out_sseu->slice_mask = 0x1;
}
}
static int
get_sseu_config(struct intel_sseu *out_sseu,
struct intel_engine_cs *engine,
const struct drm_i915_gem_context_param_sseu *drm_sseu)
{
if (drm_sseu->engine.engine_class != engine->uabi_class ||
drm_sseu->engine.engine_instance != engine->uabi_instance)
return -EINVAL;
return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
}
/**
* i915_oa_stream_init - validate combined props for OA stream and init
* @stream: An i915 perf stream
* @param: The open parameters passed to `DRM_I915_PERF_OPEN`
* @props: The property state that configures stream (individually validated)
*
* While read_properties_unlocked() validates properties in isolation it
* doesn't ensure that the combination necessarily makes sense.
*
* At this point it has been determined that userspace wants a stream of
* OA metrics, but still we need to further validate the combined
* properties are OK.
*
* If the configuration makes sense then we can allocate memory for
* a circular OA buffer and apply the requested metric set configuration.
*
* Returns: zero on success or a negative error code.
*/
static int i915_oa_stream_init(struct i915_perf_stream *stream,
struct drm_i915_perf_open_param *param,
struct perf_open_properties *props)
{
struct drm_i915_private *i915 = stream->perf->i915;
struct i915_perf *perf = stream->perf;
int format_size;
int ret;
if (!props->engine) {
DRM_DEBUG("OA engine not specified\n");
return -EINVAL;
}
/*
* If the sysfs metrics/ directory wasn't registered for some
* reason then don't let userspace try their luck with config
* IDs
*/
if (!perf->metrics_kobj) {
DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
return -EINVAL;
}
if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
(INTEL_GEN(perf->i915) < 12 || !stream->ctx)) {
DRM_DEBUG("Only OA report sampling supported\n");
return -EINVAL;
}
if (!perf->ops.enable_metric_set) {
DRM_DEBUG("OA unit not supported\n");
return -ENODEV;
}
/*
* To avoid the complexity of having to accurately filter
* counter reports and marshal to the appropriate client
* we currently only allow exclusive access
*/
if (perf->exclusive_stream) {
DRM_DEBUG("OA unit already in use\n");
return -EBUSY;
}
if (!props->oa_format) {
DRM_DEBUG("OA report format not specified\n");
return -EINVAL;
}
stream->engine = props->engine;
stream->uncore = stream->engine->gt->uncore;
stream->sample_size = sizeof(struct drm_i915_perf_record_header);
format_size = perf->oa_formats[props->oa_format].size;
stream->sample_flags = props->sample_flags;
stream->sample_size += format_size;
stream->oa_buffer.format_size = format_size;
if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
return -EINVAL;
stream->hold_preemption = props->hold_preemption;
stream->oa_buffer.format =
perf->oa_formats[props->oa_format].format;
stream->periodic = props->oa_periodic;
if (stream->periodic)
stream->period_exponent = props->oa_period_exponent;
if (stream->ctx) {
ret = oa_get_render_ctx_id(stream);
if (ret) {
DRM_DEBUG("Invalid context id to filter with\n");
return ret;
}
}
ret = alloc_noa_wait(stream);
if (ret) {
DRM_DEBUG("Unable to allocate NOA wait batch buffer\n");
goto err_noa_wait_alloc;
}
stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
if (!stream->oa_config) {
DRM_DEBUG("Invalid OA config id=%i\n", props->metrics_set);
ret = -EINVAL;
goto err_config;
}
/* PRM - observability performance counters:
*
* OACONTROL, performance counter enable, note:
*
* "When this bit is set, in order to have coherent counts,
* RC6 power state and trunk clock gating must be disabled.
* This can be achieved by programming MMIO registers as
* 0xA094=0 and 0xA090[31]=1"
*
* In our case we are expecting that taking pm + FORCEWAKE
* references will effectively disable RC6.
*/
intel_engine_pm_get(stream->engine);
intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
ret = alloc_oa_buffer(stream);
if (ret)
goto err_oa_buf_alloc;
stream->ops = &i915_oa_stream_ops;
perf->sseu = props->sseu;
WRITE_ONCE(perf->exclusive_stream, stream);
ret = i915_perf_stream_enable_sync(stream);
if (ret) {
DRM_DEBUG("Unable to enable metric set\n");
goto err_enable;
}
DRM_DEBUG("opening stream oa config uuid=%s\n",
stream->oa_config->uuid);
hrtimer_init(&stream->poll_check_timer,
CLOCK_MONOTONIC, HRTIMER_MODE_REL);
stream->poll_check_timer.function = oa_poll_check_timer_cb;
init_waitqueue_head(&stream->poll_wq);
spin_lock_init(&stream->oa_buffer.ptr_lock);
return 0;
err_enable:
WRITE_ONCE(perf->exclusive_stream, NULL);
perf->ops.disable_metric_set(stream);
free_oa_buffer(stream);
err_oa_buf_alloc:
free_oa_configs(stream);
intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
intel_engine_pm_put(stream->engine);
err_config:
free_noa_wait(stream);
err_noa_wait_alloc:
if (stream->ctx)
oa_put_render_ctx_id(stream);
return ret;
}
void i915_oa_init_reg_state(const struct intel_context *ce,
const struct intel_engine_cs *engine)
{
struct i915_perf_stream *stream;
if (engine->class != RENDER_CLASS)
return;
/* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
stream = READ_ONCE(engine->i915->perf.exclusive_stream);
if (stream && INTEL_GEN(stream->perf->i915) < 12)
gen8_update_reg_state_unlocked(ce, stream);
}
/**
* i915_perf_read - handles read() FOP for i915 perf stream FDs
* @file: An i915 perf stream file
* @buf: destination buffer given by userspace
* @count: the number of bytes userspace wants to read
* @ppos: (inout) file seek position (unused)
*
* The entry point for handling a read() on a stream file descriptor from
* userspace. Most of the work is left to the i915_perf_read_locked() and
* &i915_perf_stream_ops->read but to save having stream implementations (of
* which we might have multiple later) we handle blocking read here.
*
* We can also consistently treat trying to read from a disabled stream
* as an IO error so implementations can assume the stream is enabled
* while reading.
*
* Returns: The number of bytes copied or a negative error code on failure.
*/
static ssize_t i915_perf_read(struct file *file,
char __user *buf,
size_t count,
loff_t *ppos)
{
struct i915_perf_stream *stream = file->private_data;
struct i915_perf *perf = stream->perf;
size_t offset = 0;
int ret;
/* To ensure it's handled consistently we simply treat all reads of a
* disabled stream as an error. In particular it might otherwise lead
* to a deadlock for blocking file descriptors...
*/
if (!stream->enabled)
return -EIO;
if (!(file->f_flags & O_NONBLOCK)) {
/* There's the small chance of false positives from
* stream->ops->wait_unlocked.
*
* E.g. with single context filtering since we only wait until
* oabuffer has >= 1 report we don't immediately know whether
* any reports really belong to the current context
*/
do {
ret = stream->ops->wait_unlocked(stream);
if (ret)
return ret;
mutex_lock(&perf->lock);
ret = stream->ops->read(stream, buf, count, &offset);
mutex_unlock(&perf->lock);
} while (!offset && !ret);
} else {
mutex_lock(&perf->lock);
ret = stream->ops->read(stream, buf, count, &offset);
mutex_unlock(&perf->lock);
}
/* We allow the poll checking to sometimes report false positive EPOLLIN
* events where we might actually report EAGAIN on read() if there's
* not really any data available. In this situation though we don't
* want to enter a busy loop between poll() reporting a EPOLLIN event
* and read() returning -EAGAIN. Clearing the oa.pollin state here
* effectively ensures we back off until the next hrtimer callback
* before reporting another EPOLLIN event.
* The exception to this is if ops->read() returned -ENOSPC which means
* that more OA data is available than could fit in the user provided
* buffer. In this case we want the next poll() call to not block.
*/
if (ret != -ENOSPC)
stream->pollin = false;
/* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
return offset ?: (ret ?: -EAGAIN);
}
static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
{
struct i915_perf_stream *stream =
container_of(hrtimer, typeof(*stream), poll_check_timer);
if (oa_buffer_check_unlocked(stream)) {
stream->pollin = true;
wake_up(&stream->poll_wq);
}
hrtimer_forward_now(hrtimer,
ns_to_ktime(stream->poll_oa_period));
return HRTIMER_RESTART;
}
/**
* i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
* @stream: An i915 perf stream
* @file: An i915 perf stream file
* @wait: poll() state table
*
* For handling userspace polling on an i915 perf stream, this calls through to
* &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
* will be woken for new stream data.
*
* Note: The &perf->lock mutex has been taken to serialize
* with any non-file-operation driver hooks.
*
* Returns: any poll events that are ready without sleeping
*/
static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
struct file *file,
poll_table *wait)
{
__poll_t events = 0;
stream->ops->poll_wait(stream, file, wait);
/* Note: we don't explicitly check whether there's something to read
* here since this path may be very hot depending on what else
* userspace is polling, or on the timeout in use. We rely solely on
* the hrtimer/oa_poll_check_timer_cb to notify us when there are
* samples to read.
*/
if (stream->pollin)
events |= EPOLLIN;
return events;
}
/**
* i915_perf_poll - call poll_wait() with a suitable wait queue for stream
* @file: An i915 perf stream file
* @wait: poll() state table
*
* For handling userspace polling on an i915 perf stream, this ensures
* poll_wait() gets called with a wait queue that will be woken for new stream
* data.
*
* Note: Implementation deferred to i915_perf_poll_locked()
*
* Returns: any poll events that are ready without sleeping
*/
static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
{
struct i915_perf_stream *stream = file->private_data;
struct i915_perf *perf = stream->perf;
__poll_t ret;
mutex_lock(&perf->lock);
ret = i915_perf_poll_locked(stream, file, wait);
mutex_unlock(&perf->lock);
return ret;
}
/**
* i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
* @stream: A disabled i915 perf stream
*
* [Re]enables the associated capture of data for this stream.
*
* If a stream was previously enabled then there's currently no intention
* to provide userspace any guarantee about the preservation of previously
* buffered data.
*/
static void i915_perf_enable_locked(struct i915_perf_stream *stream)
{
if (stream->enabled)
return;
/* Allow stream->ops->enable() to refer to this */
stream->enabled = true;
if (stream->ops->enable)
stream->ops->enable(stream);
if (stream->hold_preemption)
intel_context_set_nopreempt(stream->pinned_ctx);
}
/**
* i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
* @stream: An enabled i915 perf stream
*
* Disables the associated capture of data for this stream.
*
* The intention is that disabling an re-enabling a stream will ideally be
* cheaper than destroying and re-opening a stream with the same configuration,
* though there are no formal guarantees about what state or buffered data
* must be retained between disabling and re-enabling a stream.
*
* Note: while a stream is disabled it's considered an error for userspace
* to attempt to read from the stream (-EIO).
*/
static void i915_perf_disable_locked(struct i915_perf_stream *stream)
{
if (!stream->enabled)
return;
/* Allow stream->ops->disable() to refer to this */
stream->enabled = false;
if (stream->hold_preemption)
intel_context_clear_nopreempt(stream->pinned_ctx);
if (stream->ops->disable)
stream->ops->disable(stream);
}
static long i915_perf_config_locked(struct i915_perf_stream *stream,
unsigned long metrics_set)
{
struct i915_oa_config *config;
long ret = stream->oa_config->id;
config = i915_perf_get_oa_config(stream->perf, metrics_set);
if (!config)
return -EINVAL;
if (config != stream->oa_config) {
int err;
/*
* If OA is bound to a specific context, emit the
* reconfiguration inline from that context. The update
* will then be ordered with respect to submission on that
* context.
*
* When set globally, we use a low priority kernel context,
* so it will effectively take effect when idle.
*/
err = emit_oa_config(stream, config, oa_context(stream), NULL);
if (!err)
config = xchg(&stream->oa_config, config);
else
ret = err;
}
i915_oa_config_put(config);
return ret;
}
/**
* i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
* @stream: An i915 perf stream
* @cmd: the ioctl request
* @arg: the ioctl data
*
* Note: The &perf->lock mutex has been taken to serialize
* with any non-file-operation driver hooks.
*
* Returns: zero on success or a negative error code. Returns -EINVAL for
* an unknown ioctl request.
*/
static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
unsigned int cmd,
unsigned long arg)
{
switch (cmd) {
case I915_PERF_IOCTL_ENABLE:
i915_perf_enable_locked(stream);
return 0;
case I915_PERF_IOCTL_DISABLE:
i915_perf_disable_locked(stream);
return 0;
case I915_PERF_IOCTL_CONFIG:
return i915_perf_config_locked(stream, arg);
}
return -EINVAL;
}
/**
* i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
* @file: An i915 perf stream file
* @cmd: the ioctl request
* @arg: the ioctl data
*
* Implementation deferred to i915_perf_ioctl_locked().
*
* Returns: zero on success or a negative error code. Returns -EINVAL for
* an unknown ioctl request.
*/
static long i915_perf_ioctl(struct file *file,
unsigned int cmd,
unsigned long arg)
{
struct i915_perf_stream *stream = file->private_data;
struct i915_perf *perf = stream->perf;
long ret;
mutex_lock(&perf->lock);
ret = i915_perf_ioctl_locked(stream, cmd, arg);
mutex_unlock(&perf->lock);
return ret;
}
/**
* i915_perf_destroy_locked - destroy an i915 perf stream
* @stream: An i915 perf stream
*
* Frees all resources associated with the given i915 perf @stream, disabling
* any associated data capture in the process.
*
* Note: The &perf->lock mutex has been taken to serialize
* with any non-file-operation driver hooks.
*/
static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
{
if (stream->enabled)
i915_perf_disable_locked(stream);
if (stream->ops->destroy)
stream->ops->destroy(stream);
if (stream->ctx)
i915_gem_context_put(stream->ctx);
kfree(stream);
}
/**
* i915_perf_release - handles userspace close() of a stream file
* @inode: anonymous inode associated with file
* @file: An i915 perf stream file
*
* Cleans up any resources associated with an open i915 perf stream file.
*
* NB: close() can't really fail from the userspace point of view.
*
* Returns: zero on success or a negative error code.
*/
static int i915_perf_release(struct inode *inode, struct file *file)
{
struct i915_perf_stream *stream = file->private_data;
struct i915_perf *perf = stream->perf;
mutex_lock(&perf->lock);
i915_perf_destroy_locked(stream);
mutex_unlock(&perf->lock);
/* Release the reference the perf stream kept on the driver. */
drm_dev_put(&perf->i915->drm);
return 0;
}
static const struct file_operations fops = {
.owner = THIS_MODULE,
.llseek = no_llseek,
.release = i915_perf_release,
.poll = i915_perf_poll,
.read = i915_perf_read,
.unlocked_ioctl = i915_perf_ioctl,
/* Our ioctl have no arguments, so it's safe to use the same function
* to handle 32bits compatibility.
*/
.compat_ioctl = i915_perf_ioctl,
};
/**
* i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
* @perf: i915 perf instance
* @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
* @props: individually validated u64 property value pairs
* @file: drm file
*
* See i915_perf_ioctl_open() for interface details.
*
* Implements further stream config validation and stream initialization on
* behalf of i915_perf_open_ioctl() with the &perf->lock mutex
* taken to serialize with any non-file-operation driver hooks.
*
* Note: at this point the @props have only been validated in isolation and
* it's still necessary to validate that the combination of properties makes
* sense.
*
* In the case where userspace is interested in OA unit metrics then further
* config validation and stream initialization details will be handled by
* i915_oa_stream_init(). The code here should only validate config state that
* will be relevant to all stream types / backends.
*
* Returns: zero on success or a negative error code.
*/
static int
i915_perf_open_ioctl_locked(struct i915_perf *perf,
struct drm_i915_perf_open_param *param,
struct perf_open_properties *props,
struct drm_file *file)
{
struct i915_gem_context *specific_ctx = NULL;
struct i915_perf_stream *stream = NULL;
unsigned long f_flags = 0;
bool privileged_op = true;
int stream_fd;
int ret;
if (props->single_context) {
u32 ctx_handle = props->ctx_handle;
struct drm_i915_file_private *file_priv = file->driver_priv;
specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
if (!specific_ctx) {
DRM_DEBUG("Failed to look up context with ID %u for opening perf stream\n",
ctx_handle);
ret = -ENOENT;
goto err;
}
}
/*
* On Haswell the OA unit supports clock gating off for a specific
* context and in this mode there's no visibility of metrics for the
* rest of the system, which we consider acceptable for a
* non-privileged client.
*
* For Gen8->11 the OA unit no longer supports clock gating off for a
* specific context and the kernel can't securely stop the counters
* from updating as system-wide / global values. Even though we can
* filter reports based on the included context ID we can't block
* clients from seeing the raw / global counter values via
* MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
* enable the OA unit by default.
*
* For Gen12+ we gain a new OAR unit that only monitors the RCS on a
* per context basis. So we can relax requirements there if the user
* doesn't request global stream access (i.e. query based sampling
* using MI_RECORD_PERF_COUNT.
*/
if (IS_HASWELL(perf->i915) && specific_ctx)
privileged_op = false;
else if (IS_GEN(perf->i915, 12) && specific_ctx &&
(props->sample_flags & SAMPLE_OA_REPORT) == 0)
privileged_op = false;
if (props->hold_preemption) {
if (!props->single_context) {
DRM_DEBUG("preemption disable with no context\n");
ret = -EINVAL;
goto err;
}
privileged_op = true;
}
/*
* Asking for SSEU configuration is a priviliged operation.
*/
if (props->has_sseu)
privileged_op = true;
else
get_default_sseu_config(&props->sseu, props->engine);
/* Similar to perf's kernel.perf_paranoid_cpu sysctl option
* we check a dev.i915.perf_stream_paranoid sysctl option
* to determine if it's ok to access system wide OA counters
* without CAP_PERFMON or CAP_SYS_ADMIN privileges.
*/
if (privileged_op &&
i915_perf_stream_paranoid && !perfmon_capable()) {
DRM_DEBUG("Insufficient privileges to open i915 perf stream\n");
ret = -EACCES;
goto err_ctx;
}
stream = kzalloc(sizeof(*stream), GFP_KERNEL);
if (!stream) {
ret = -ENOMEM;
goto err_ctx;
}
stream->perf = perf;
stream->ctx = specific_ctx;
stream->poll_oa_period = props->poll_oa_period;
ret = i915_oa_stream_init(stream, param, props);
if (ret)
goto err_alloc;
/* we avoid simply assigning stream->sample_flags = props->sample_flags
* to have _stream_init check the combination of sample flags more
* thoroughly, but still this is the expected result at this point.
*/
if (WARN_ON(stream->sample_flags != props->sample_flags)) {
ret = -ENODEV;
goto err_flags;
}
if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
f_flags |= O_CLOEXEC;
if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
f_flags |= O_NONBLOCK;
stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
if (stream_fd < 0) {
ret = stream_fd;
goto err_flags;
}
if (!(param->flags & I915_PERF_FLAG_DISABLED))
i915_perf_enable_locked(stream);
/* Take a reference on the driver that will be kept with stream_fd
* until its release.
*/
drm_dev_get(&perf->i915->drm);
return stream_fd;
err_flags:
if (stream->ops->destroy)
stream->ops->destroy(stream);
err_alloc:
kfree(stream);
err_ctx:
if (specific_ctx)
i915_gem_context_put(specific_ctx);
err:
return ret;
}
static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
{
return i915_cs_timestamp_ticks_to_ns(perf->i915, 2ULL << exponent);
}
/**
* read_properties_unlocked - validate + copy userspace stream open properties
* @perf: i915 perf instance
* @uprops: The array of u64 key value pairs given by userspace
* @n_props: The number of key value pairs expected in @uprops
* @props: The stream configuration built up while validating properties
*
* Note this function only validates properties in isolation it doesn't
* validate that the combination of properties makes sense or that all
* properties necessary for a particular kind of stream have been set.
*
* Note that there currently aren't any ordering requirements for properties so
* we shouldn't validate or assume anything about ordering here. This doesn't
* rule out defining new properties with ordering requirements in the future.
*/
static int read_properties_unlocked(struct i915_perf *perf,
u64 __user *uprops,
u32 n_props,
struct perf_open_properties *props)
{
u64 __user *uprop = uprops;
u32 i;
int ret;
memset(props, 0, sizeof(struct perf_open_properties));
props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
if (!n_props) {
DRM_DEBUG("No i915 perf properties given\n");
return -EINVAL;
}
/* At the moment we only support using i915-perf on the RCS. */
props->engine = intel_engine_lookup_user(perf->i915,
I915_ENGINE_CLASS_RENDER,
0);
if (!props->engine) {
DRM_DEBUG("No RENDER-capable engines\n");
return -EINVAL;
}
/* Considering that ID = 0 is reserved and assuming that we don't
* (currently) expect any configurations to ever specify duplicate
* values for a particular property ID then the last _PROP_MAX value is
* one greater than the maximum number of properties we expect to get
* from userspace.
*/
if (n_props >= DRM_I915_PERF_PROP_MAX) {
DRM_DEBUG("More i915 perf properties specified than exist\n");
return -EINVAL;
}
for (i = 0; i < n_props; i++) {
u64 oa_period, oa_freq_hz;
u64 id, value;
ret = get_user(id, uprop);
if (ret)
return ret;
ret = get_user(value, uprop + 1);
if (ret)
return ret;
if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
DRM_DEBUG("Unknown i915 perf property ID\n");
return -EINVAL;
}
switch ((enum drm_i915_perf_property_id)id) {
case DRM_I915_PERF_PROP_CTX_HANDLE:
props->single_context = 1;
props->ctx_handle = value;
break;
case DRM_I915_PERF_PROP_SAMPLE_OA:
if (value)
props->sample_flags |= SAMPLE_OA_REPORT;
break;
case DRM_I915_PERF_PROP_OA_METRICS_SET:
if (value == 0) {
DRM_DEBUG("Unknown OA metric set ID\n");
return -EINVAL;
}
props->metrics_set = value;
break;
case DRM_I915_PERF_PROP_OA_FORMAT:
if (value == 0 || value >= I915_OA_FORMAT_MAX) {
DRM_DEBUG("Out-of-range OA report format %llu\n",
value);
return -EINVAL;
}
if (!perf->oa_formats[value].size) {
DRM_DEBUG("Unsupported OA report format %llu\n",
value);
return -EINVAL;
}
props->oa_format = value;
break;
case DRM_I915_PERF_PROP_OA_EXPONENT:
if (value > OA_EXPONENT_MAX) {
DRM_DEBUG("OA timer exponent too high (> %u)\n",
OA_EXPONENT_MAX);
return -EINVAL;
}
/* Theoretically we can program the OA unit to sample
* e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
* for BXT. We don't allow such high sampling
* frequencies by default unless root.
*/
BUILD_BUG_ON(sizeof(oa_period) != 8);
oa_period = oa_exponent_to_ns(perf, value);
/* This check is primarily to ensure that oa_period <=
* UINT32_MAX (before passing to do_div which only
* accepts a u32 denominator), but we can also skip
* checking anything < 1Hz which implicitly can't be
* limited via an integer oa_max_sample_rate.
*/
if (oa_period <= NSEC_PER_SEC) {
u64 tmp = NSEC_PER_SEC;
do_div(tmp, oa_period);
oa_freq_hz = tmp;
} else
oa_freq_hz = 0;
if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
DRM_DEBUG("OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
i915_oa_max_sample_rate);
return -EACCES;
}
props->oa_periodic = true;
props->oa_period_exponent = value;
break;
case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
props->hold_preemption = !!value;
break;
case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
struct drm_i915_gem_context_param_sseu user_sseu;
if (copy_from_user(&user_sseu,
u64_to_user_ptr(value),
sizeof(user_sseu))) {
DRM_DEBUG("Unable to copy global sseu parameter\n");
return -EFAULT;
}
ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
if (ret) {
DRM_DEBUG("Invalid SSEU configuration\n");
return ret;
}
props->has_sseu = true;
break;
}
case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
if (value < 100000 /* 100us */) {
DRM_DEBUG("OA availability timer too small (%lluns < 100us)\n",
value);
return -EINVAL;
}
props->poll_oa_period = value;
break;
case DRM_I915_PERF_PROP_MAX:
MISSING_CASE(id);
return -EINVAL;
}
uprop += 2;
}
return 0;
}
/**
* i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
* @dev: drm device
* @data: ioctl data copied from userspace (unvalidated)
* @file: drm file
*
* Validates the stream open parameters given by userspace including flags
* and an array of u64 key, value pair properties.
*
* Very little is assumed up front about the nature of the stream being
* opened (for instance we don't assume it's for periodic OA unit metrics). An
* i915-perf stream is expected to be a suitable interface for other forms of
* buffered data written by the GPU besides periodic OA metrics.
*
* Note we copy the properties from userspace outside of the i915 perf
* mutex to avoid an awkward lockdep with mmap_lock.
*
* Most of the implementation details are handled by
* i915_perf_open_ioctl_locked() after taking the &perf->lock
* mutex for serializing with any non-file-operation driver hooks.
*
* Return: A newly opened i915 Perf stream file descriptor or negative
* error code on failure.
*/
int i915_perf_open_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct i915_perf *perf = &to_i915(dev)->perf;
struct drm_i915_perf_open_param *param = data;
struct perf_open_properties props;
u32 known_open_flags;
int ret;
if (!perf->i915) {
DRM_DEBUG("i915 perf interface not available for this system\n");
return -ENOTSUPP;
}
known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
I915_PERF_FLAG_FD_NONBLOCK |
I915_PERF_FLAG_DISABLED;
if (param->flags & ~known_open_flags) {
DRM_DEBUG("Unknown drm_i915_perf_open_param flag\n");
return -EINVAL;
}
ret = read_properties_unlocked(perf,
u64_to_user_ptr(param->properties_ptr),
param->num_properties,
&props);
if (ret)
return ret;
mutex_lock(&perf->lock);
ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
mutex_unlock(&perf->lock);
return ret;
}
/**
* i915_perf_register - exposes i915-perf to userspace
* @i915: i915 device instance
*
* In particular OA metric sets are advertised under a sysfs metrics/
* directory allowing userspace to enumerate valid IDs that can be
* used to open an i915-perf stream.
*/
void i915_perf_register(struct drm_i915_private *i915)
{
struct i915_perf *perf = &i915->perf;
if (!perf->i915)
return;
/* To be sure we're synchronized with an attempted
* i915_perf_open_ioctl(); considering that we register after
* being exposed to userspace.
*/
mutex_lock(&perf->lock);
perf->metrics_kobj =
kobject_create_and_add("metrics",
&i915->drm.primary->kdev->kobj);
mutex_unlock(&perf->lock);
}
/**
* i915_perf_unregister - hide i915-perf from userspace
* @i915: i915 device instance
*
* i915-perf state cleanup is split up into an 'unregister' and
* 'deinit' phase where the interface is first hidden from
* userspace by i915_perf_unregister() before cleaning up
* remaining state in i915_perf_fini().
*/
void i915_perf_unregister(struct drm_i915_private *i915)
{
struct i915_perf *perf = &i915->perf;
if (!perf->metrics_kobj)
return;
kobject_put(perf->metrics_kobj);
perf->metrics_kobj = NULL;
}
static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
{
static const i915_reg_t flex_eu_regs[] = {
EU_PERF_CNTL0,
EU_PERF_CNTL1,
EU_PERF_CNTL2,
EU_PERF_CNTL3,
EU_PERF_CNTL4,
EU_PERF_CNTL5,
EU_PERF_CNTL6,
};
int i;
for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
return true;
}
return false;
}
#define ADDR_IN_RANGE(addr, start, end) \
((addr) >= (start) && \
(addr) <= (end))
#define REG_IN_RANGE(addr, start, end) \
((addr) >= i915_mmio_reg_offset(start) && \
(addr) <= i915_mmio_reg_offset(end))
#define REG_EQUAL(addr, mmio) \
((addr) == i915_mmio_reg_offset(mmio))
static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
{
return REG_IN_RANGE(addr, OASTARTTRIG1, OASTARTTRIG8) ||
REG_IN_RANGE(addr, OAREPORTTRIG1, OAREPORTTRIG8) ||
REG_IN_RANGE(addr, OACEC0_0, OACEC7_1);
}
static bool gen7_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
return REG_EQUAL(addr, HALF_SLICE_CHICKEN2) ||
REG_IN_RANGE(addr, MICRO_BP0_0, NOA_WRITE) ||
REG_IN_RANGE(addr, OA_PERFCNT1_LO, OA_PERFCNT2_HI) ||
REG_IN_RANGE(addr, OA_PERFMATRIX_LO, OA_PERFMATRIX_HI);
}
static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
return gen7_is_valid_mux_addr(perf, addr) ||
REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
REG_IN_RANGE(addr, RPM_CONFIG0, NOA_CONFIG(8));
}
static bool gen10_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
return gen8_is_valid_mux_addr(perf, addr) ||
REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
REG_IN_RANGE(addr, OA_PERFCNT3_LO, OA_PERFCNT4_HI);
}
static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
return gen7_is_valid_mux_addr(perf, addr) ||
ADDR_IN_RANGE(addr, 0x25100, 0x2FF90) ||
REG_IN_RANGE(addr, HSW_MBVID2_NOA0, HSW_MBVID2_NOA9) ||
REG_EQUAL(addr, HSW_MBVID2_MISR0);
}
static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
return gen7_is_valid_mux_addr(perf, addr) ||
ADDR_IN_RANGE(addr, 0x182300, 0x1823A4);
}
static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
{
return REG_IN_RANGE(addr, GEN12_OAG_OASTARTTRIG1, GEN12_OAG_OASTARTTRIG8) ||
REG_IN_RANGE(addr, GEN12_OAG_OAREPORTTRIG1, GEN12_OAG_OAREPORTTRIG8) ||
REG_IN_RANGE(addr, GEN12_OAG_CEC0_0, GEN12_OAG_CEC7_1) ||
REG_IN_RANGE(addr, GEN12_OAG_SCEC0_0, GEN12_OAG_SCEC7_1) ||
REG_EQUAL(addr, GEN12_OAA_DBG_REG) ||
REG_EQUAL(addr, GEN12_OAG_OA_PESS) ||
REG_EQUAL(addr, GEN12_OAG_SPCTR_CNF);
}
static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
{
return REG_EQUAL(addr, NOA_WRITE) ||
REG_EQUAL(addr, GEN10_NOA_WRITE_HIGH) ||
REG_EQUAL(addr, GDT_CHICKEN_BITS) ||
REG_EQUAL(addr, WAIT_FOR_RC6_EXIT) ||
REG_EQUAL(addr, RPM_CONFIG0) ||
REG_EQUAL(addr, RPM_CONFIG1) ||
REG_IN_RANGE(addr, NOA_CONFIG(0), NOA_CONFIG(8));
}
static u32 mask_reg_value(u32 reg, u32 val)
{
/* HALF_SLICE_CHICKEN2 is programmed with a the
* WaDisableSTUnitPowerOptimization workaround. Make sure the value
* programmed by userspace doesn't change this.
*/
if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
/* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
* indicated by its name and a bunch of selection fields used by OA
* configs.
*/
if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
return val;
}
static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
bool (*is_valid)(struct i915_perf *perf, u32 addr),
u32 __user *regs,
u32 n_regs)
{
struct i915_oa_reg *oa_regs;
int err;
u32 i;
if (!n_regs)
return NULL;
/* No is_valid function means we're not allowing any register to be programmed. */
GEM_BUG_ON(!is_valid);
if (!is_valid)
return ERR_PTR(-EINVAL);
oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
if (!oa_regs)
return ERR_PTR(-ENOMEM);
for (i = 0; i < n_regs; i++) {
u32 addr, value;
err = get_user(addr, regs);
if (err)
goto addr_err;
if (!is_valid(perf, addr)) {
DRM_DEBUG("Invalid oa_reg address: %X\n", addr);
err = -EINVAL;
goto addr_err;
}
err = get_user(value, regs + 1);
if (err)
goto addr_err;
oa_regs[i].addr = _MMIO(addr);
oa_regs[i].value = mask_reg_value(addr, value);
regs += 2;
}
return oa_regs;
addr_err:
kfree(oa_regs);
return ERR_PTR(err);
}
static ssize_t show_dynamic_id(struct device *dev,
struct device_attribute *attr,
char *buf)
{
struct i915_oa_config *oa_config =
container_of(attr, typeof(*oa_config), sysfs_metric_id);
return sprintf(buf, "%d\n", oa_config->id);
}
static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
struct i915_oa_config *oa_config)
{
sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
oa_config->sysfs_metric_id.attr.name = "id";
oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
oa_config->sysfs_metric_id.show = show_dynamic_id;
oa_config->sysfs_metric_id.store = NULL;
oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
oa_config->attrs[1] = NULL;
oa_config->sysfs_metric.name = oa_config->uuid;
oa_config->sysfs_metric.attrs = oa_config->attrs;
return sysfs_create_group(perf->metrics_kobj,
&oa_config->sysfs_metric);
}
/**
* i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
* @dev: drm device
* @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
* userspace (unvalidated)
* @file: drm file
*
* Validates the submitted OA register to be saved into a new OA config that
* can then be used for programming the OA unit and its NOA network.
*
* Returns: A new allocated config number to be used with the perf open ioctl
* or a negative error code on failure.
*/
int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct i915_perf *perf = &to_i915(dev)->perf;
struct drm_i915_perf_oa_config *args = data;
struct i915_oa_config *oa_config, *tmp;
struct i915_oa_reg *regs;
int err, id;
if (!perf->i915) {
DRM_DEBUG("i915 perf interface not available for this system\n");
return -ENOTSUPP;
}
if (!perf->metrics_kobj) {
DRM_DEBUG("OA metrics weren't advertised via sysfs\n");
return -EINVAL;
}
if (i915_perf_stream_paranoid && !perfmon_capable()) {
DRM_DEBUG("Insufficient privileges to add i915 OA config\n");
return -EACCES;
}
if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
(!args->boolean_regs_ptr || !args->n_boolean_regs) &&
(!args->flex_regs_ptr || !args->n_flex_regs)) {
DRM_DEBUG("No OA registers given\n");
return -EINVAL;
}
oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
if (!oa_config) {
DRM_DEBUG("Failed to allocate memory for the OA config\n");
return -ENOMEM;
}
oa_config->perf = perf;
kref_init(&oa_config->ref);
if (!uuid_is_valid(args->uuid)) {
DRM_DEBUG("Invalid uuid format for OA config\n");
err = -EINVAL;
goto reg_err;
}
/* Last character in oa_config->uuid will be 0 because oa_config is
* kzalloc.
*/
memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
oa_config->mux_regs_len = args->n_mux_regs;
regs = alloc_oa_regs(perf,
perf->ops.is_valid_mux_reg,
u64_to_user_ptr(args->mux_regs_ptr),
args->n_mux_regs);
if (IS_ERR(regs)) {
DRM_DEBUG("Failed to create OA config for mux_regs\n");
err = PTR_ERR(regs);
goto reg_err;
}
oa_config->mux_regs = regs;
oa_config->b_counter_regs_len = args->n_boolean_regs;
regs = alloc_oa_regs(perf,
perf->ops.is_valid_b_counter_reg,
u64_to_user_ptr(args->boolean_regs_ptr),
args->n_boolean_regs);
if (IS_ERR(regs)) {
DRM_DEBUG("Failed to create OA config for b_counter_regs\n");
err = PTR_ERR(regs);
goto reg_err;
}
oa_config->b_counter_regs = regs;
if (INTEL_GEN(perf->i915) < 8) {
if (args->n_flex_regs != 0) {
err = -EINVAL;
goto reg_err;
}
} else {
oa_config->flex_regs_len = args->n_flex_regs;
regs = alloc_oa_regs(perf,
perf->ops.is_valid_flex_reg,
u64_to_user_ptr(args->flex_regs_ptr),
args->n_flex_regs);
if (IS_ERR(regs)) {
DRM_DEBUG("Failed to create OA config for flex_regs\n");
err = PTR_ERR(regs);
goto reg_err;
}
oa_config->flex_regs = regs;
}
err = mutex_lock_interruptible(&perf->metrics_lock);
if (err)
goto reg_err;
/* We shouldn't have too many configs, so this iteration shouldn't be
* too costly.
*/
idr_for_each_entry(&perf->metrics_idr, tmp, id) {
if (!strcmp(tmp->uuid, oa_config->uuid)) {
DRM_DEBUG("OA config already exists with this uuid\n");
err = -EADDRINUSE;
goto sysfs_err;
}
}
err = create_dynamic_oa_sysfs_entry(perf, oa_config);
if (err) {
DRM_DEBUG("Failed to create sysfs entry for OA config\n");
goto sysfs_err;
}
/* Config id 0 is invalid, id 1 for kernel stored test config. */
oa_config->id = idr_alloc(&perf->metrics_idr,
oa_config, 2,
0, GFP_KERNEL);
if (oa_config->id < 0) {
DRM_DEBUG("Failed to create sysfs entry for OA config\n");
err = oa_config->id;
goto sysfs_err;
}
mutex_unlock(&perf->metrics_lock);
DRM_DEBUG("Added config %s id=%i\n", oa_config->uuid, oa_config->id);
return oa_config->id;
sysfs_err:
mutex_unlock(&perf->metrics_lock);
reg_err:
i915_oa_config_put(oa_config);
DRM_DEBUG("Failed to add new OA config\n");
return err;
}
/**
* i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
* @dev: drm device
* @data: ioctl data (pointer to u64 integer) copied from userspace
* @file: drm file
*
* Configs can be removed while being used, the will stop appearing in sysfs
* and their content will be freed when the stream using the config is closed.
*
* Returns: 0 on success or a negative error code on failure.
*/
int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
struct drm_file *file)
{
struct i915_perf *perf = &to_i915(dev)->perf;
u64 *arg = data;
struct i915_oa_config *oa_config;
int ret;
if (!perf->i915) {
DRM_DEBUG("i915 perf interface not available for this system\n");
return -ENOTSUPP;
}
if (i915_perf_stream_paranoid && !perfmon_capable()) {
DRM_DEBUG("Insufficient privileges to remove i915 OA config\n");
return -EACCES;
}
ret = mutex_lock_interruptible(&perf->metrics_lock);
if (ret)
return ret;
oa_config = idr_find(&perf->metrics_idr, *arg);
if (!oa_config) {
DRM_DEBUG("Failed to remove unknown OA config\n");
ret = -ENOENT;
goto err_unlock;
}
GEM_BUG_ON(*arg != oa_config->id);
sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
idr_remove(&perf->metrics_idr, *arg);
mutex_unlock(&perf->metrics_lock);
DRM_DEBUG("Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
i915_oa_config_put(oa_config);
return 0;
err_unlock:
mutex_unlock(&perf->metrics_lock);
return ret;
}
static struct ctl_table oa_table[] = {
{
.procname = "perf_stream_paranoid",
.data = &i915_perf_stream_paranoid,
.maxlen = sizeof(i915_perf_stream_paranoid),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = SYSCTL_ONE,
},
{
.procname = "oa_max_sample_rate",
.data = &i915_oa_max_sample_rate,
.maxlen = sizeof(i915_oa_max_sample_rate),
.mode = 0644,
.proc_handler = proc_dointvec_minmax,
.extra1 = SYSCTL_ZERO,
.extra2 = &oa_sample_rate_hard_limit,
},
{}
};
static struct ctl_table i915_root[] = {
{
.procname = "i915",
.maxlen = 0,
.mode = 0555,
.child = oa_table,
},
{}
};
static struct ctl_table dev_root[] = {
{
.procname = "dev",
.maxlen = 0,
.mode = 0555,
.child = i915_root,
},
{}
};
/**
* i915_perf_init - initialize i915-perf state on module bind
* @i915: i915 device instance
*
* Initializes i915-perf state without exposing anything to userspace.
*
* Note: i915-perf initialization is split into an 'init' and 'register'
* phase with the i915_perf_register() exposing state to userspace.
*/
void i915_perf_init(struct drm_i915_private *i915)
{
struct i915_perf *perf = &i915->perf;
/* XXX const struct i915_perf_ops! */
if (IS_HASWELL(i915)) {
perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
perf->ops.is_valid_flex_reg = NULL;
perf->ops.enable_metric_set = hsw_enable_metric_set;
perf->ops.disable_metric_set = hsw_disable_metric_set;
perf->ops.oa_enable = gen7_oa_enable;
perf->ops.oa_disable = gen7_oa_disable;
perf->ops.read = gen7_oa_read;
perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
perf->oa_formats = hsw_oa_formats;
} else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
/* Note: that although we could theoretically also support the
* legacy ringbuffer mode on BDW (and earlier iterations of
* this driver, before upstreaming did this) it didn't seem
* worth the complexity to maintain now that BDW+ enable
* execlist mode by default.
*/
perf->ops.read = gen8_oa_read;
if (IS_GEN_RANGE(i915, 8, 9)) {
perf->oa_formats = gen8_plus_oa_formats;
perf->ops.is_valid_b_counter_reg =
gen7_is_valid_b_counter_addr;
perf->ops.is_valid_mux_reg =
gen8_is_valid_mux_addr;
perf->ops.is_valid_flex_reg =
gen8_is_valid_flex_addr;
if (IS_CHERRYVIEW(i915)) {
perf->ops.is_valid_mux_reg =
chv_is_valid_mux_addr;
}
perf->ops.oa_enable = gen8_oa_enable;
perf->ops.oa_disable = gen8_oa_disable;
perf->ops.enable_metric_set = gen8_enable_metric_set;
perf->ops.disable_metric_set = gen8_disable_metric_set;
perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
if (IS_GEN(i915, 8)) {
perf->ctx_oactxctrl_offset = 0x120;
perf->ctx_flexeu0_offset = 0x2ce;
perf->gen8_valid_ctx_bit = BIT(25);
} else {
perf->ctx_oactxctrl_offset = 0x128;
perf->ctx_flexeu0_offset = 0x3de;
perf->gen8_valid_ctx_bit = BIT(16);
}
} else if (IS_GEN_RANGE(i915, 10, 11)) {
perf->oa_formats = gen8_plus_oa_formats;
perf->ops.is_valid_b_counter_reg =
gen7_is_valid_b_counter_addr;
perf->ops.is_valid_mux_reg =
gen10_is_valid_mux_addr;
perf->ops.is_valid_flex_reg =
gen8_is_valid_flex_addr;
perf->ops.oa_enable = gen8_oa_enable;
perf->ops.oa_disable = gen8_oa_disable;
perf->ops.enable_metric_set = gen8_enable_metric_set;
perf->ops.disable_metric_set = gen10_disable_metric_set;
perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
if (IS_GEN(i915, 10)) {
perf->ctx_oactxctrl_offset = 0x128;
perf->ctx_flexeu0_offset = 0x3de;
} else {
perf->ctx_oactxctrl_offset = 0x124;
perf->ctx_flexeu0_offset = 0x78e;
}
perf->gen8_valid_ctx_bit = BIT(16);
} else if (IS_GEN(i915, 12)) {
perf->oa_formats = gen12_oa_formats;
perf->ops.is_valid_b_counter_reg =
gen12_is_valid_b_counter_addr;
perf->ops.is_valid_mux_reg =
gen12_is_valid_mux_addr;
perf->ops.is_valid_flex_reg =
gen8_is_valid_flex_addr;
perf->ops.oa_enable = gen12_oa_enable;
perf->ops.oa_disable = gen12_oa_disable;
perf->ops.enable_metric_set = gen12_enable_metric_set;
perf->ops.disable_metric_set = gen12_disable_metric_set;
perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
perf->ctx_flexeu0_offset = 0;
perf->ctx_oactxctrl_offset = 0x144;
}
}
if (perf->ops.enable_metric_set) {
mutex_init(&perf->lock);
oa_sample_rate_hard_limit =
RUNTIME_INFO(i915)->cs_timestamp_frequency_hz / 2;
mutex_init(&perf->metrics_lock);
idr_init(&perf->metrics_idr);
/* We set up some ratelimit state to potentially throttle any
* _NOTES about spurious, invalid OA reports which we don't
* forward to userspace.
*
* We print a _NOTE about any throttling when closing the
* stream instead of waiting until driver _fini which no one
* would ever see.
*
* Using the same limiting factors as printk_ratelimit()
*/
ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
/* Since we use a DRM_NOTE for spurious reports it would be
* inconsistent to let __ratelimit() automatically print a
* warning for throttling.
*/
ratelimit_set_flags(&perf->spurious_report_rs,
RATELIMIT_MSG_ON_RELEASE);
ratelimit_state_init(&perf->tail_pointer_race,
5 * HZ, 10);
ratelimit_set_flags(&perf->tail_pointer_race,
RATELIMIT_MSG_ON_RELEASE);
atomic64_set(&perf->noa_programming_delay,
500 * 1000 /* 500us */);
perf->i915 = i915;
}
}
static int destroy_config(int id, void *p, void *data)
{
i915_oa_config_put(p);
return 0;
}
void i915_perf_sysctl_register(void)
{
sysctl_header = register_sysctl_table(dev_root);
}
void i915_perf_sysctl_unregister(void)
{
unregister_sysctl_table(sysctl_header);
}
/**
* i915_perf_fini - Counter part to i915_perf_init()
* @i915: i915 device instance
*/
void i915_perf_fini(struct drm_i915_private *i915)
{
struct i915_perf *perf = &i915->perf;
if (!perf->i915)
return;
idr_for_each(&perf->metrics_idr, destroy_config, perf);
idr_destroy(&perf->metrics_idr);
memset(&perf->ops, 0, sizeof(perf->ops));
perf->i915 = NULL;
}
/**
* i915_perf_ioctl_version - Version of the i915-perf subsystem
*
* This version number is used by userspace to detect available features.
*/
int i915_perf_ioctl_version(void)
{
/*
* 1: Initial version
* I915_PERF_IOCTL_ENABLE
* I915_PERF_IOCTL_DISABLE
*
* 2: Added runtime modification of OA config.
* I915_PERF_IOCTL_CONFIG
*
* 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
* preemption on a particular context so that performance data is
* accessible from a delta of MI_RPC reports without looking at the
* OA buffer.
*
* 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
* be run for the duration of the performance recording based on
* their SSEU configuration.
*
* 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
* interval for the hrtimer used to check for OA data.
*/
return 5;
}
#if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
#include "selftests/i915_perf.c"
#endif