2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-25 05:34:00 +08:00
linux-next/drivers/ide/ide-disk.c
Greg Kroah-Hartman b24413180f License cleanup: add SPDX GPL-2.0 license identifier to files with no license
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.

By default all files without license information are under the default
license of the kernel, which is GPL version 2.

Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier.  The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.

This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.

How this work was done:

Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
 - file had no licensing information it it.
 - file was a */uapi/* one with no licensing information in it,
 - file was a */uapi/* one with existing licensing information,

Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.

The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne.  Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.

The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed.  Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.

Criteria used to select files for SPDX license identifier tagging was:
 - Files considered eligible had to be source code files.
 - Make and config files were included as candidates if they contained >5
   lines of source
 - File already had some variant of a license header in it (even if <5
   lines).

All documentation files were explicitly excluded.

The following heuristics were used to determine which SPDX license
identifiers to apply.

 - when both scanners couldn't find any license traces, file was
   considered to have no license information in it, and the top level
   COPYING file license applied.

   For non */uapi/* files that summary was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0                                              11139

   and resulted in the first patch in this series.

   If that file was a */uapi/* path one, it was "GPL-2.0 WITH
   Linux-syscall-note" otherwise it was "GPL-2.0".  Results of that was:

   SPDX license identifier                            # files
   ---------------------------------------------------|-------
   GPL-2.0 WITH Linux-syscall-note                        930

   and resulted in the second patch in this series.

 - if a file had some form of licensing information in it, and was one
   of the */uapi/* ones, it was denoted with the Linux-syscall-note if
   any GPL family license was found in the file or had no licensing in
   it (per prior point).  Results summary:

   SPDX license identifier                            # files
   ---------------------------------------------------|------
   GPL-2.0 WITH Linux-syscall-note                       270
   GPL-2.0+ WITH Linux-syscall-note                      169
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause)    21
   ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause)    17
   LGPL-2.1+ WITH Linux-syscall-note                      15
   GPL-1.0+ WITH Linux-syscall-note                       14
   ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause)    5
   LGPL-2.0+ WITH Linux-syscall-note                       4
   LGPL-2.1 WITH Linux-syscall-note                        3
   ((GPL-2.0 WITH Linux-syscall-note) OR MIT)              3
   ((GPL-2.0 WITH Linux-syscall-note) AND MIT)             1

   and that resulted in the third patch in this series.

 - when the two scanners agreed on the detected license(s), that became
   the concluded license(s).

 - when there was disagreement between the two scanners (one detected a
   license but the other didn't, or they both detected different
   licenses) a manual inspection of the file occurred.

 - In most cases a manual inspection of the information in the file
   resulted in a clear resolution of the license that should apply (and
   which scanner probably needed to revisit its heuristics).

 - When it was not immediately clear, the license identifier was
   confirmed with lawyers working with the Linux Foundation.

 - If there was any question as to the appropriate license identifier,
   the file was flagged for further research and to be revisited later
   in time.

In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.

Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.  The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.

Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.

In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.

Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
 - a full scancode scan run, collecting the matched texts, detected
   license ids and scores
 - reviewing anything where there was a license detected (about 500+
   files) to ensure that the applied SPDX license was correct
 - reviewing anything where there was no detection but the patch license
   was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
   SPDX license was correct

This produced a worksheet with 20 files needing minor correction.  This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.

These .csv files were then reviewed by Greg.  Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected.  This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.)  Finally Greg ran the script using the .csv files to
generate the patches.

Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02 11:10:55 +01:00

799 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 1994-1998 Linus Torvalds & authors (see below)
* Copyright (C) 1998-2002 Linux ATA Development
* Andre Hedrick <andre@linux-ide.org>
* Copyright (C) 2003 Red Hat
* Copyright (C) 2003-2005, 2007 Bartlomiej Zolnierkiewicz
*/
/*
* Mostly written by Mark Lord <mlord@pobox.com>
* and Gadi Oxman <gadio@netvision.net.il>
* and Andre Hedrick <andre@linux-ide.org>
*
* This is the IDE/ATA disk driver, as evolved from hd.c and ide.c.
*/
#include <linux/types.h>
#include <linux/string.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/major.h>
#include <linux/errno.h>
#include <linux/genhd.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <linux/leds.h>
#include <linux/ide.h>
#include <asm/byteorder.h>
#include <asm/irq.h>
#include <linux/uaccess.h>
#include <asm/io.h>
#include <asm/div64.h>
#include "ide-disk.h"
static const u8 ide_rw_cmds[] = {
ATA_CMD_READ_MULTI,
ATA_CMD_WRITE_MULTI,
ATA_CMD_READ_MULTI_EXT,
ATA_CMD_WRITE_MULTI_EXT,
ATA_CMD_PIO_READ,
ATA_CMD_PIO_WRITE,
ATA_CMD_PIO_READ_EXT,
ATA_CMD_PIO_WRITE_EXT,
ATA_CMD_READ,
ATA_CMD_WRITE,
ATA_CMD_READ_EXT,
ATA_CMD_WRITE_EXT,
};
static void ide_tf_set_cmd(ide_drive_t *drive, struct ide_cmd *cmd, u8 dma)
{
u8 index, lba48, write;
lba48 = (cmd->tf_flags & IDE_TFLAG_LBA48) ? 2 : 0;
write = (cmd->tf_flags & IDE_TFLAG_WRITE) ? 1 : 0;
if (dma) {
cmd->protocol = ATA_PROT_DMA;
index = 8;
} else {
cmd->protocol = ATA_PROT_PIO;
if (drive->mult_count) {
cmd->tf_flags |= IDE_TFLAG_MULTI_PIO;
index = 0;
} else
index = 4;
}
cmd->tf.command = ide_rw_cmds[index + lba48 + write];
}
/*
* __ide_do_rw_disk() issues READ and WRITE commands to a disk,
* using LBA if supported, or CHS otherwise, to address sectors.
*/
static ide_startstop_t __ide_do_rw_disk(ide_drive_t *drive, struct request *rq,
sector_t block)
{
ide_hwif_t *hwif = drive->hwif;
u16 nsectors = (u16)blk_rq_sectors(rq);
u8 lba48 = !!(drive->dev_flags & IDE_DFLAG_LBA48);
u8 dma = !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
struct ide_cmd cmd;
struct ide_taskfile *tf = &cmd.tf;
ide_startstop_t rc;
if ((hwif->host_flags & IDE_HFLAG_NO_LBA48_DMA) && lba48 && dma) {
if (block + blk_rq_sectors(rq) > 1ULL << 28)
dma = 0;
else
lba48 = 0;
}
memset(&cmd, 0, sizeof(cmd));
cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
if (drive->dev_flags & IDE_DFLAG_LBA) {
if (lba48) {
pr_debug("%s: LBA=0x%012llx\n", drive->name,
(unsigned long long)block);
tf->nsect = nsectors & 0xff;
tf->lbal = (u8) block;
tf->lbam = (u8)(block >> 8);
tf->lbah = (u8)(block >> 16);
tf->device = ATA_LBA;
tf = &cmd.hob;
tf->nsect = (nsectors >> 8) & 0xff;
tf->lbal = (u8)(block >> 24);
if (sizeof(block) != 4) {
tf->lbam = (u8)((u64)block >> 32);
tf->lbah = (u8)((u64)block >> 40);
}
cmd.valid.out.hob = IDE_VALID_OUT_HOB;
cmd.valid.in.hob = IDE_VALID_IN_HOB;
cmd.tf_flags |= IDE_TFLAG_LBA48;
} else {
tf->nsect = nsectors & 0xff;
tf->lbal = block;
tf->lbam = block >>= 8;
tf->lbah = block >>= 8;
tf->device = ((block >> 8) & 0xf) | ATA_LBA;
}
} else {
unsigned int sect, head, cyl, track;
track = (int)block / drive->sect;
sect = (int)block % drive->sect + 1;
head = track % drive->head;
cyl = track / drive->head;
pr_debug("%s: CHS=%u/%u/%u\n", drive->name, cyl, head, sect);
tf->nsect = nsectors & 0xff;
tf->lbal = sect;
tf->lbam = cyl;
tf->lbah = cyl >> 8;
tf->device = head;
}
cmd.tf_flags |= IDE_TFLAG_FS;
if (rq_data_dir(rq))
cmd.tf_flags |= IDE_TFLAG_WRITE;
ide_tf_set_cmd(drive, &cmd, dma);
cmd.rq = rq;
if (dma == 0) {
ide_init_sg_cmd(&cmd, nsectors << 9);
ide_map_sg(drive, &cmd);
}
rc = do_rw_taskfile(drive, &cmd);
if (rc == ide_stopped && dma) {
/* fallback to PIO */
cmd.tf_flags |= IDE_TFLAG_DMA_PIO_FALLBACK;
ide_tf_set_cmd(drive, &cmd, 0);
ide_init_sg_cmd(&cmd, nsectors << 9);
rc = do_rw_taskfile(drive, &cmd);
}
return rc;
}
/*
* 268435455 == 137439 MB or 28bit limit
* 320173056 == 163929 MB or 48bit addressing
* 1073741822 == 549756 MB or 48bit addressing fake drive
*/
static ide_startstop_t ide_do_rw_disk(ide_drive_t *drive, struct request *rq,
sector_t block)
{
ide_hwif_t *hwif = drive->hwif;
BUG_ON(drive->dev_flags & IDE_DFLAG_BLOCKED);
BUG_ON(blk_rq_is_passthrough(rq));
ledtrig_disk_activity();
pr_debug("%s: %sing: block=%llu, sectors=%u\n",
drive->name, rq_data_dir(rq) == READ ? "read" : "writ",
(unsigned long long)block, blk_rq_sectors(rq));
if (hwif->rw_disk)
hwif->rw_disk(drive, rq);
return __ide_do_rw_disk(drive, rq, block);
}
/*
* Queries for true maximum capacity of the drive.
* Returns maximum LBA address (> 0) of the drive, 0 if failed.
*/
static u64 idedisk_read_native_max_address(ide_drive_t *drive, int lba48)
{
struct ide_cmd cmd;
struct ide_taskfile *tf = &cmd.tf;
u64 addr = 0;
memset(&cmd, 0, sizeof(cmd));
if (lba48)
tf->command = ATA_CMD_READ_NATIVE_MAX_EXT;
else
tf->command = ATA_CMD_READ_NATIVE_MAX;
tf->device = ATA_LBA;
cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
if (lba48) {
cmd.valid.out.hob = IDE_VALID_OUT_HOB;
cmd.valid.in.hob = IDE_VALID_IN_HOB;
cmd.tf_flags = IDE_TFLAG_LBA48;
}
ide_no_data_taskfile(drive, &cmd);
/* if OK, compute maximum address value */
if (!(tf->status & ATA_ERR))
addr = ide_get_lba_addr(&cmd, lba48) + 1;
return addr;
}
/*
* Sets maximum virtual LBA address of the drive.
* Returns new maximum virtual LBA address (> 0) or 0 on failure.
*/
static u64 idedisk_set_max_address(ide_drive_t *drive, u64 addr_req, int lba48)
{
struct ide_cmd cmd;
struct ide_taskfile *tf = &cmd.tf;
u64 addr_set = 0;
addr_req--;
memset(&cmd, 0, sizeof(cmd));
tf->lbal = (addr_req >> 0) & 0xff;
tf->lbam = (addr_req >>= 8) & 0xff;
tf->lbah = (addr_req >>= 8) & 0xff;
if (lba48) {
cmd.hob.lbal = (addr_req >>= 8) & 0xff;
cmd.hob.lbam = (addr_req >>= 8) & 0xff;
cmd.hob.lbah = (addr_req >>= 8) & 0xff;
tf->command = ATA_CMD_SET_MAX_EXT;
} else {
tf->device = (addr_req >>= 8) & 0x0f;
tf->command = ATA_CMD_SET_MAX;
}
tf->device |= ATA_LBA;
cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
if (lba48) {
cmd.valid.out.hob = IDE_VALID_OUT_HOB;
cmd.valid.in.hob = IDE_VALID_IN_HOB;
cmd.tf_flags = IDE_TFLAG_LBA48;
}
ide_no_data_taskfile(drive, &cmd);
/* if OK, compute maximum address value */
if (!(tf->status & ATA_ERR))
addr_set = ide_get_lba_addr(&cmd, lba48) + 1;
return addr_set;
}
static unsigned long long sectors_to_MB(unsigned long long n)
{
n <<= 9; /* make it bytes */
do_div(n, 1000000); /* make it MB */
return n;
}
/*
* Some disks report total number of sectors instead of
* maximum sector address. We list them here.
*/
static const struct drive_list_entry hpa_list[] = {
{ "ST340823A", NULL },
{ "ST320413A", NULL },
{ "ST310211A", NULL },
{ NULL, NULL }
};
static u64 ide_disk_hpa_get_native_capacity(ide_drive_t *drive, int lba48)
{
u64 capacity, set_max;
capacity = drive->capacity64;
set_max = idedisk_read_native_max_address(drive, lba48);
if (ide_in_drive_list(drive->id, hpa_list)) {
/*
* Since we are inclusive wrt to firmware revisions do this
* extra check and apply the workaround only when needed.
*/
if (set_max == capacity + 1)
set_max--;
}
return set_max;
}
static u64 ide_disk_hpa_set_capacity(ide_drive_t *drive, u64 set_max, int lba48)
{
set_max = idedisk_set_max_address(drive, set_max, lba48);
if (set_max)
drive->capacity64 = set_max;
return set_max;
}
static void idedisk_check_hpa(ide_drive_t *drive)
{
u64 capacity, set_max;
int lba48 = ata_id_lba48_enabled(drive->id);
capacity = drive->capacity64;
set_max = ide_disk_hpa_get_native_capacity(drive, lba48);
if (set_max <= capacity)
return;
drive->probed_capacity = set_max;
printk(KERN_INFO "%s: Host Protected Area detected.\n"
"\tcurrent capacity is %llu sectors (%llu MB)\n"
"\tnative capacity is %llu sectors (%llu MB)\n",
drive->name,
capacity, sectors_to_MB(capacity),
set_max, sectors_to_MB(set_max));
if ((drive->dev_flags & IDE_DFLAG_NOHPA) == 0)
return;
set_max = ide_disk_hpa_set_capacity(drive, set_max, lba48);
if (set_max)
printk(KERN_INFO "%s: Host Protected Area disabled.\n",
drive->name);
}
static int ide_disk_get_capacity(ide_drive_t *drive)
{
u16 *id = drive->id;
int lba;
if (ata_id_lba48_enabled(id)) {
/* drive speaks 48-bit LBA */
lba = 1;
drive->capacity64 = ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
} else if (ata_id_has_lba(id) && ata_id_is_lba_capacity_ok(id)) {
/* drive speaks 28-bit LBA */
lba = 1;
drive->capacity64 = ata_id_u32(id, ATA_ID_LBA_CAPACITY);
} else {
/* drive speaks boring old 28-bit CHS */
lba = 0;
drive->capacity64 = drive->cyl * drive->head * drive->sect;
}
drive->probed_capacity = drive->capacity64;
if (lba) {
drive->dev_flags |= IDE_DFLAG_LBA;
/*
* If this device supports the Host Protected Area feature set,
* then we may need to change our opinion about its capacity.
*/
if (ata_id_hpa_enabled(id))
idedisk_check_hpa(drive);
}
/* limit drive capacity to 137GB if LBA48 cannot be used */
if ((drive->dev_flags & IDE_DFLAG_LBA48) == 0 &&
drive->capacity64 > 1ULL << 28) {
printk(KERN_WARNING "%s: cannot use LBA48 - full capacity "
"%llu sectors (%llu MB)\n",
drive->name, (unsigned long long)drive->capacity64,
sectors_to_MB(drive->capacity64));
drive->probed_capacity = drive->capacity64 = 1ULL << 28;
}
if ((drive->hwif->host_flags & IDE_HFLAG_NO_LBA48_DMA) &&
(drive->dev_flags & IDE_DFLAG_LBA48)) {
if (drive->capacity64 > 1ULL << 28) {
printk(KERN_INFO "%s: cannot use LBA48 DMA - PIO mode"
" will be used for accessing sectors "
"> %u\n", drive->name, 1 << 28);
} else
drive->dev_flags &= ~IDE_DFLAG_LBA48;
}
return 0;
}
static void ide_disk_unlock_native_capacity(ide_drive_t *drive)
{
u16 *id = drive->id;
int lba48 = ata_id_lba48_enabled(id);
if ((drive->dev_flags & IDE_DFLAG_LBA) == 0 ||
ata_id_hpa_enabled(id) == 0)
return;
/*
* according to the spec the SET MAX ADDRESS command shall be
* immediately preceded by a READ NATIVE MAX ADDRESS command
*/
if (!ide_disk_hpa_get_native_capacity(drive, lba48))
return;
if (ide_disk_hpa_set_capacity(drive, drive->probed_capacity, lba48))
drive->dev_flags |= IDE_DFLAG_NOHPA; /* disable HPA on resume */
}
static int idedisk_prep_fn(struct request_queue *q, struct request *rq)
{
ide_drive_t *drive = q->queuedata;
struct ide_cmd *cmd;
if (req_op(rq) != REQ_OP_FLUSH)
return BLKPREP_OK;
if (rq->special) {
cmd = rq->special;
memset(cmd, 0, sizeof(*cmd));
} else {
cmd = kzalloc(sizeof(*cmd), GFP_ATOMIC);
}
/* FIXME: map struct ide_taskfile on rq->cmd[] */
BUG_ON(cmd == NULL);
if (ata_id_flush_ext_enabled(drive->id) &&
(drive->capacity64 >= (1UL << 28)))
cmd->tf.command = ATA_CMD_FLUSH_EXT;
else
cmd->tf.command = ATA_CMD_FLUSH;
cmd->valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
cmd->tf_flags = IDE_TFLAG_DYN;
cmd->protocol = ATA_PROT_NODATA;
rq->cmd_flags &= ~REQ_OP_MASK;
rq->cmd_flags |= REQ_OP_DRV_OUT;
ide_req(rq)->type = ATA_PRIV_TASKFILE;
rq->special = cmd;
cmd->rq = rq;
return BLKPREP_OK;
}
ide_devset_get(multcount, mult_count);
/*
* This is tightly woven into the driver->do_special can not touch.
* DON'T do it again until a total personality rewrite is committed.
*/
static int set_multcount(ide_drive_t *drive, int arg)
{
struct request *rq;
if (arg < 0 || arg > (drive->id[ATA_ID_MAX_MULTSECT] & 0xff))
return -EINVAL;
if (drive->special_flags & IDE_SFLAG_SET_MULTMODE)
return -EBUSY;
rq = blk_get_request(drive->queue, REQ_OP_DRV_IN, __GFP_RECLAIM);
ide_req(rq)->type = ATA_PRIV_TASKFILE;
drive->mult_req = arg;
drive->special_flags |= IDE_SFLAG_SET_MULTMODE;
blk_execute_rq(drive->queue, NULL, rq, 0);
blk_put_request(rq);
return (drive->mult_count == arg) ? 0 : -EIO;
}
ide_devset_get_flag(nowerr, IDE_DFLAG_NOWERR);
static int set_nowerr(ide_drive_t *drive, int arg)
{
if (arg < 0 || arg > 1)
return -EINVAL;
if (arg)
drive->dev_flags |= IDE_DFLAG_NOWERR;
else
drive->dev_flags &= ~IDE_DFLAG_NOWERR;
drive->bad_wstat = arg ? BAD_R_STAT : BAD_W_STAT;
return 0;
}
static int ide_do_setfeature(ide_drive_t *drive, u8 feature, u8 nsect)
{
struct ide_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.tf.feature = feature;
cmd.tf.nsect = nsect;
cmd.tf.command = ATA_CMD_SET_FEATURES;
cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
return ide_no_data_taskfile(drive, &cmd);
}
static void update_flush(ide_drive_t *drive)
{
u16 *id = drive->id;
bool wc = false;
if (drive->dev_flags & IDE_DFLAG_WCACHE) {
unsigned long long capacity;
int barrier;
/*
* We must avoid issuing commands a drive does not
* understand or we may crash it. We check flush cache
* is supported. We also check we have the LBA48 flush
* cache if the drive capacity is too large. By this
* time we have trimmed the drive capacity if LBA48 is
* not available so we don't need to recheck that.
*/
capacity = ide_gd_capacity(drive);
barrier = ata_id_flush_enabled(id) &&
(drive->dev_flags & IDE_DFLAG_NOFLUSH) == 0 &&
((drive->dev_flags & IDE_DFLAG_LBA48) == 0 ||
capacity <= (1ULL << 28) ||
ata_id_flush_ext_enabled(id));
printk(KERN_INFO "%s: cache flushes %ssupported\n",
drive->name, barrier ? "" : "not ");
if (barrier) {
wc = true;
blk_queue_prep_rq(drive->queue, idedisk_prep_fn);
}
}
blk_queue_write_cache(drive->queue, wc, false);
}
ide_devset_get_flag(wcache, IDE_DFLAG_WCACHE);
static int set_wcache(ide_drive_t *drive, int arg)
{
int err = 1;
if (arg < 0 || arg > 1)
return -EINVAL;
if (ata_id_flush_enabled(drive->id)) {
err = ide_do_setfeature(drive,
arg ? SETFEATURES_WC_ON : SETFEATURES_WC_OFF, 0);
if (err == 0) {
if (arg)
drive->dev_flags |= IDE_DFLAG_WCACHE;
else
drive->dev_flags &= ~IDE_DFLAG_WCACHE;
}
}
update_flush(drive);
return err;
}
static int do_idedisk_flushcache(ide_drive_t *drive)
{
struct ide_cmd cmd;
memset(&cmd, 0, sizeof(cmd));
if (ata_id_flush_ext_enabled(drive->id))
cmd.tf.command = ATA_CMD_FLUSH_EXT;
else
cmd.tf.command = ATA_CMD_FLUSH;
cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
return ide_no_data_taskfile(drive, &cmd);
}
ide_devset_get(acoustic, acoustic);
static int set_acoustic(ide_drive_t *drive, int arg)
{
if (arg < 0 || arg > 254)
return -EINVAL;
ide_do_setfeature(drive,
arg ? SETFEATURES_AAM_ON : SETFEATURES_AAM_OFF, arg);
drive->acoustic = arg;
return 0;
}
ide_devset_get_flag(addressing, IDE_DFLAG_LBA48);
/*
* drive->addressing:
* 0: 28-bit
* 1: 48-bit
* 2: 48-bit capable doing 28-bit
*/
static int set_addressing(ide_drive_t *drive, int arg)
{
if (arg < 0 || arg > 2)
return -EINVAL;
if (arg && ((drive->hwif->host_flags & IDE_HFLAG_NO_LBA48) ||
ata_id_lba48_enabled(drive->id) == 0))
return -EIO;
if (arg == 2)
arg = 0;
if (arg)
drive->dev_flags |= IDE_DFLAG_LBA48;
else
drive->dev_flags &= ~IDE_DFLAG_LBA48;
return 0;
}
ide_ext_devset_rw(acoustic, acoustic);
ide_ext_devset_rw(address, addressing);
ide_ext_devset_rw(multcount, multcount);
ide_ext_devset_rw(wcache, wcache);
ide_ext_devset_rw_sync(nowerr, nowerr);
static int ide_disk_check(ide_drive_t *drive, const char *s)
{
return 1;
}
static void ide_disk_setup(ide_drive_t *drive)
{
struct ide_disk_obj *idkp = drive->driver_data;
struct request_queue *q = drive->queue;
ide_hwif_t *hwif = drive->hwif;
u16 *id = drive->id;
char *m = (char *)&id[ATA_ID_PROD];
unsigned long long capacity;
ide_proc_register_driver(drive, idkp->driver);
if ((drive->dev_flags & IDE_DFLAG_ID_READ) == 0)
return;
if (drive->dev_flags & IDE_DFLAG_REMOVABLE) {
/*
* Removable disks (eg. SYQUEST); ignore 'WD' drives
*/
if (m[0] != 'W' || m[1] != 'D')
drive->dev_flags |= IDE_DFLAG_DOORLOCKING;
}
(void)set_addressing(drive, 1);
if (drive->dev_flags & IDE_DFLAG_LBA48) {
int max_s = 2048;
if (max_s > hwif->rqsize)
max_s = hwif->rqsize;
blk_queue_max_hw_sectors(q, max_s);
}
printk(KERN_INFO "%s: max request size: %dKiB\n", drive->name,
queue_max_sectors(q) / 2);
if (ata_id_is_ssd(id)) {
queue_flag_set_unlocked(QUEUE_FLAG_NONROT, q);
queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, q);
}
/* calculate drive capacity, and select LBA if possible */
ide_disk_get_capacity(drive);
/*
* if possible, give fdisk access to more of the drive,
* by correcting bios_cyls:
*/
capacity = ide_gd_capacity(drive);
if ((drive->dev_flags & IDE_DFLAG_FORCED_GEOM) == 0) {
if (ata_id_lba48_enabled(drive->id)) {
/* compatibility */
drive->bios_sect = 63;
drive->bios_head = 255;
}
if (drive->bios_sect && drive->bios_head) {
unsigned int cap0 = capacity; /* truncate to 32 bits */
unsigned int cylsz, cyl;
if (cap0 != capacity)
drive->bios_cyl = 65535;
else {
cylsz = drive->bios_sect * drive->bios_head;
cyl = cap0 / cylsz;
if (cyl > 65535)
cyl = 65535;
if (cyl > drive->bios_cyl)
drive->bios_cyl = cyl;
}
}
}
printk(KERN_INFO "%s: %llu sectors (%llu MB)",
drive->name, capacity, sectors_to_MB(capacity));
/* Only print cache size when it was specified */
if (id[ATA_ID_BUF_SIZE])
printk(KERN_CONT " w/%dKiB Cache", id[ATA_ID_BUF_SIZE] / 2);
printk(KERN_CONT ", CHS=%d/%d/%d\n",
drive->bios_cyl, drive->bios_head, drive->bios_sect);
/* write cache enabled? */
if ((id[ATA_ID_CSFO] & 1) || ata_id_wcache_enabled(id))
drive->dev_flags |= IDE_DFLAG_WCACHE;
set_wcache(drive, 1);
if ((drive->dev_flags & IDE_DFLAG_LBA) == 0 &&
(drive->head == 0 || drive->head > 16)) {
printk(KERN_ERR "%s: invalid geometry: %d physical heads?\n",
drive->name, drive->head);
drive->dev_flags &= ~IDE_DFLAG_ATTACH;
} else
drive->dev_flags |= IDE_DFLAG_ATTACH;
}
static void ide_disk_flush(ide_drive_t *drive)
{
if (ata_id_flush_enabled(drive->id) == 0 ||
(drive->dev_flags & IDE_DFLAG_WCACHE) == 0)
return;
if (do_idedisk_flushcache(drive))
printk(KERN_INFO "%s: wcache flush failed!\n", drive->name);
}
static int ide_disk_init_media(ide_drive_t *drive, struct gendisk *disk)
{
return 0;
}
static int ide_disk_set_doorlock(ide_drive_t *drive, struct gendisk *disk,
int on)
{
struct ide_cmd cmd;
int ret;
if ((drive->dev_flags & IDE_DFLAG_DOORLOCKING) == 0)
return 0;
memset(&cmd, 0, sizeof(cmd));
cmd.tf.command = on ? ATA_CMD_MEDIA_LOCK : ATA_CMD_MEDIA_UNLOCK;
cmd.valid.out.tf = IDE_VALID_OUT_TF | IDE_VALID_DEVICE;
cmd.valid.in.tf = IDE_VALID_IN_TF | IDE_VALID_DEVICE;
ret = ide_no_data_taskfile(drive, &cmd);
if (ret)
drive->dev_flags &= ~IDE_DFLAG_DOORLOCKING;
return ret;
}
const struct ide_disk_ops ide_ata_disk_ops = {
.check = ide_disk_check,
.unlock_native_capacity = ide_disk_unlock_native_capacity,
.get_capacity = ide_disk_get_capacity,
.setup = ide_disk_setup,
.flush = ide_disk_flush,
.init_media = ide_disk_init_media,
.set_doorlock = ide_disk_set_doorlock,
.do_request = ide_do_rw_disk,
.ioctl = ide_disk_ioctl,
};