2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-25 23:26:03 +08:00
linux-next/fs/btrfs/disk-io.c
Gabriel Niebler 48b36a602a btrfs: turn fs_roots_radix in btrfs_fs_info into an XArray
… rename it to simply fs_roots and adjust all usages of this object to use
the XArray API, because it is notionally easier to use and understand, as
it provides array semantics, and also takes care of locking for us,
further simplifying the code.

Also do some refactoring, esp. where the API change requires largely
rewriting some functions, anyway.

Reviewed-by: Nikolay Borisov <nborisov@suse.com>
Signed-off-by: Gabriel Niebler <gniebler@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
2022-05-16 17:15:57 +02:00

5350 lines
147 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2007 Oracle. All rights reserved.
*/
#include <linux/fs.h>
#include <linux/blkdev.h>
#include <linux/writeback.h>
#include <linux/workqueue.h>
#include <linux/kthread.h>
#include <linux/slab.h>
#include <linux/migrate.h>
#include <linux/ratelimit.h>
#include <linux/uuid.h>
#include <linux/semaphore.h>
#include <linux/error-injection.h>
#include <linux/crc32c.h>
#include <linux/sched/mm.h>
#include <asm/unaligned.h>
#include <crypto/hash.h>
#include "ctree.h"
#include "disk-io.h"
#include "transaction.h"
#include "btrfs_inode.h"
#include "volumes.h"
#include "print-tree.h"
#include "locking.h"
#include "tree-log.h"
#include "free-space-cache.h"
#include "free-space-tree.h"
#include "check-integrity.h"
#include "rcu-string.h"
#include "dev-replace.h"
#include "raid56.h"
#include "sysfs.h"
#include "qgroup.h"
#include "compression.h"
#include "tree-checker.h"
#include "ref-verify.h"
#include "block-group.h"
#include "discard.h"
#include "space-info.h"
#include "zoned.h"
#include "subpage.h"
#define BTRFS_SUPER_FLAG_SUPP (BTRFS_HEADER_FLAG_WRITTEN |\
BTRFS_HEADER_FLAG_RELOC |\
BTRFS_SUPER_FLAG_ERROR |\
BTRFS_SUPER_FLAG_SEEDING |\
BTRFS_SUPER_FLAG_METADUMP |\
BTRFS_SUPER_FLAG_METADUMP_V2)
static void end_workqueue_fn(struct btrfs_work *work);
static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
struct btrfs_fs_info *fs_info);
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
struct extent_io_tree *dirty_pages,
int mark);
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
struct extent_io_tree *pinned_extents);
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
/*
* btrfs_end_io_wq structs are used to do processing in task context when an IO
* is complete. This is used during reads to verify checksums, and it is used
* by writes to insert metadata for new file extents after IO is complete.
*/
struct btrfs_end_io_wq {
struct bio *bio;
bio_end_io_t *end_io;
void *private;
struct btrfs_fs_info *info;
blk_status_t status;
enum btrfs_wq_endio_type metadata;
struct btrfs_work work;
};
static struct kmem_cache *btrfs_end_io_wq_cache;
int __init btrfs_end_io_wq_init(void)
{
btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
sizeof(struct btrfs_end_io_wq),
0,
SLAB_MEM_SPREAD,
NULL);
if (!btrfs_end_io_wq_cache)
return -ENOMEM;
return 0;
}
void __cold btrfs_end_io_wq_exit(void)
{
kmem_cache_destroy(btrfs_end_io_wq_cache);
}
static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
{
if (fs_info->csum_shash)
crypto_free_shash(fs_info->csum_shash);
}
/*
* async submit bios are used to offload expensive checksumming
* onto the worker threads. They checksum file and metadata bios
* just before they are sent down the IO stack.
*/
struct async_submit_bio {
struct inode *inode;
struct bio *bio;
extent_submit_bio_start_t *submit_bio_start;
int mirror_num;
/* Optional parameter for submit_bio_start used by direct io */
u64 dio_file_offset;
struct btrfs_work work;
blk_status_t status;
};
/*
* Lockdep class keys for extent_buffer->lock's in this root. For a given
* eb, the lockdep key is determined by the btrfs_root it belongs to and
* the level the eb occupies in the tree.
*
* Different roots are used for different purposes and may nest inside each
* other and they require separate keysets. As lockdep keys should be
* static, assign keysets according to the purpose of the root as indicated
* by btrfs_root->root_key.objectid. This ensures that all special purpose
* roots have separate keysets.
*
* Lock-nesting across peer nodes is always done with the immediate parent
* node locked thus preventing deadlock. As lockdep doesn't know this, use
* subclass to avoid triggering lockdep warning in such cases.
*
* The key is set by the readpage_end_io_hook after the buffer has passed
* csum validation but before the pages are unlocked. It is also set by
* btrfs_init_new_buffer on freshly allocated blocks.
*
* We also add a check to make sure the highest level of the tree is the
* same as our lockdep setup here. If BTRFS_MAX_LEVEL changes, this code
* needs update as well.
*/
#ifdef CONFIG_DEBUG_LOCK_ALLOC
# if BTRFS_MAX_LEVEL != 8
# error
# endif
#define DEFINE_LEVEL(stem, level) \
.names[level] = "btrfs-" stem "-0" #level,
#define DEFINE_NAME(stem) \
DEFINE_LEVEL(stem, 0) \
DEFINE_LEVEL(stem, 1) \
DEFINE_LEVEL(stem, 2) \
DEFINE_LEVEL(stem, 3) \
DEFINE_LEVEL(stem, 4) \
DEFINE_LEVEL(stem, 5) \
DEFINE_LEVEL(stem, 6) \
DEFINE_LEVEL(stem, 7)
static struct btrfs_lockdep_keyset {
u64 id; /* root objectid */
/* Longest entry: btrfs-free-space-00 */
char names[BTRFS_MAX_LEVEL][20];
struct lock_class_key keys[BTRFS_MAX_LEVEL];
} btrfs_lockdep_keysets[] = {
{ .id = BTRFS_ROOT_TREE_OBJECTID, DEFINE_NAME("root") },
{ .id = BTRFS_EXTENT_TREE_OBJECTID, DEFINE_NAME("extent") },
{ .id = BTRFS_CHUNK_TREE_OBJECTID, DEFINE_NAME("chunk") },
{ .id = BTRFS_DEV_TREE_OBJECTID, DEFINE_NAME("dev") },
{ .id = BTRFS_CSUM_TREE_OBJECTID, DEFINE_NAME("csum") },
{ .id = BTRFS_QUOTA_TREE_OBJECTID, DEFINE_NAME("quota") },
{ .id = BTRFS_TREE_LOG_OBJECTID, DEFINE_NAME("log") },
{ .id = BTRFS_TREE_RELOC_OBJECTID, DEFINE_NAME("treloc") },
{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID, DEFINE_NAME("dreloc") },
{ .id = BTRFS_UUID_TREE_OBJECTID, DEFINE_NAME("uuid") },
{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID, DEFINE_NAME("free-space") },
{ .id = 0, DEFINE_NAME("tree") },
};
#undef DEFINE_LEVEL
#undef DEFINE_NAME
void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
int level)
{
struct btrfs_lockdep_keyset *ks;
BUG_ON(level >= ARRAY_SIZE(ks->keys));
/* find the matching keyset, id 0 is the default entry */
for (ks = btrfs_lockdep_keysets; ks->id; ks++)
if (ks->id == objectid)
break;
lockdep_set_class_and_name(&eb->lock,
&ks->keys[level], ks->names[level]);
}
#endif
/*
* Compute the csum of a btree block and store the result to provided buffer.
*/
static void csum_tree_block(struct extent_buffer *buf, u8 *result)
{
struct btrfs_fs_info *fs_info = buf->fs_info;
const int num_pages = num_extent_pages(buf);
const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
char *kaddr;
int i;
shash->tfm = fs_info->csum_shash;
crypto_shash_init(shash);
kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
first_page_part - BTRFS_CSUM_SIZE);
for (i = 1; i < num_pages; i++) {
kaddr = page_address(buf->pages[i]);
crypto_shash_update(shash, kaddr, PAGE_SIZE);
}
memset(result, 0, BTRFS_CSUM_SIZE);
crypto_shash_final(shash, result);
}
/*
* we can't consider a given block up to date unless the transid of the
* block matches the transid in the parent node's pointer. This is how we
* detect blocks that either didn't get written at all or got written
* in the wrong place.
*/
static int verify_parent_transid(struct extent_io_tree *io_tree,
struct extent_buffer *eb, u64 parent_transid,
int atomic)
{
struct extent_state *cached_state = NULL;
int ret;
if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
return 0;
if (atomic)
return -EAGAIN;
lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
&cached_state);
if (extent_buffer_uptodate(eb) &&
btrfs_header_generation(eb) == parent_transid) {
ret = 0;
goto out;
}
btrfs_err_rl(eb->fs_info,
"parent transid verify failed on %llu wanted %llu found %llu",
eb->start,
parent_transid, btrfs_header_generation(eb));
ret = 1;
clear_extent_buffer_uptodate(eb);
out:
unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
&cached_state);
return ret;
}
static bool btrfs_supported_super_csum(u16 csum_type)
{
switch (csum_type) {
case BTRFS_CSUM_TYPE_CRC32:
case BTRFS_CSUM_TYPE_XXHASH:
case BTRFS_CSUM_TYPE_SHA256:
case BTRFS_CSUM_TYPE_BLAKE2:
return true;
default:
return false;
}
}
/*
* Return 0 if the superblock checksum type matches the checksum value of that
* algorithm. Pass the raw disk superblock data.
*/
static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
char *raw_disk_sb)
{
struct btrfs_super_block *disk_sb =
(struct btrfs_super_block *)raw_disk_sb;
char result[BTRFS_CSUM_SIZE];
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
shash->tfm = fs_info->csum_shash;
/*
* The super_block structure does not span the whole
* BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
* filled with zeros and is included in the checksum.
*/
crypto_shash_digest(shash, raw_disk_sb + BTRFS_CSUM_SIZE,
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
if (memcmp(disk_sb->csum, result, fs_info->csum_size))
return 1;
return 0;
}
int btrfs_verify_level_key(struct extent_buffer *eb, int level,
struct btrfs_key *first_key, u64 parent_transid)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
int found_level;
struct btrfs_key found_key;
int ret;
found_level = btrfs_header_level(eb);
if (found_level != level) {
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
KERN_ERR "BTRFS: tree level check failed\n");
btrfs_err(fs_info,
"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
eb->start, level, found_level);
return -EIO;
}
if (!first_key)
return 0;
/*
* For live tree block (new tree blocks in current transaction),
* we need proper lock context to avoid race, which is impossible here.
* So we only checks tree blocks which is read from disk, whose
* generation <= fs_info->last_trans_committed.
*/
if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
return 0;
/* We have @first_key, so this @eb must have at least one item */
if (btrfs_header_nritems(eb) == 0) {
btrfs_err(fs_info,
"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
eb->start);
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
return -EUCLEAN;
}
if (found_level)
btrfs_node_key_to_cpu(eb, &found_key, 0);
else
btrfs_item_key_to_cpu(eb, &found_key, 0);
ret = btrfs_comp_cpu_keys(first_key, &found_key);
if (ret) {
WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
KERN_ERR "BTRFS: tree first key check failed\n");
btrfs_err(fs_info,
"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
eb->start, parent_transid, first_key->objectid,
first_key->type, first_key->offset,
found_key.objectid, found_key.type,
found_key.offset);
}
return ret;
}
/*
* helper to read a given tree block, doing retries as required when
* the checksums don't match and we have alternate mirrors to try.
*
* @parent_transid: expected transid, skip check if 0
* @level: expected level, mandatory check
* @first_key: expected key of first slot, skip check if NULL
*/
int btrfs_read_extent_buffer(struct extent_buffer *eb,
u64 parent_transid, int level,
struct btrfs_key *first_key)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct extent_io_tree *io_tree;
int failed = 0;
int ret;
int num_copies = 0;
int mirror_num = 0;
int failed_mirror = 0;
io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
while (1) {
clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num);
if (!ret) {
if (verify_parent_transid(io_tree, eb,
parent_transid, 0))
ret = -EIO;
else if (btrfs_verify_level_key(eb, level,
first_key, parent_transid))
ret = -EUCLEAN;
else
break;
}
num_copies = btrfs_num_copies(fs_info,
eb->start, eb->len);
if (num_copies == 1)
break;
if (!failed_mirror) {
failed = 1;
failed_mirror = eb->read_mirror;
}
mirror_num++;
if (mirror_num == failed_mirror)
mirror_num++;
if (mirror_num > num_copies)
break;
}
if (failed && !ret && failed_mirror)
btrfs_repair_eb_io_failure(eb, failed_mirror);
return ret;
}
static int csum_one_extent_buffer(struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
u8 result[BTRFS_CSUM_SIZE];
int ret;
ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE) == 0);
csum_tree_block(eb, result);
if (btrfs_header_level(eb))
ret = btrfs_check_node(eb);
else
ret = btrfs_check_leaf_full(eb);
if (ret < 0)
goto error;
/*
* Also check the generation, the eb reached here must be newer than
* last committed. Or something seriously wrong happened.
*/
if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
ret = -EUCLEAN;
btrfs_err(fs_info,
"block=%llu bad generation, have %llu expect > %llu",
eb->start, btrfs_header_generation(eb),
fs_info->last_trans_committed);
goto error;
}
write_extent_buffer(eb, result, 0, fs_info->csum_size);
return 0;
error:
btrfs_print_tree(eb, 0);
btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
eb->start);
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
return ret;
}
/* Checksum all dirty extent buffers in one bio_vec */
static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
struct bio_vec *bvec)
{
struct page *page = bvec->bv_page;
u64 bvec_start = page_offset(page) + bvec->bv_offset;
u64 cur;
int ret = 0;
for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
cur += fs_info->nodesize) {
struct extent_buffer *eb;
bool uptodate;
eb = find_extent_buffer(fs_info, cur);
uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
fs_info->nodesize);
/* A dirty eb shouldn't disappear from extent_buffers */
if (WARN_ON(!eb))
return -EUCLEAN;
if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
free_extent_buffer(eb);
return -EUCLEAN;
}
if (WARN_ON(!uptodate)) {
free_extent_buffer(eb);
return -EUCLEAN;
}
ret = csum_one_extent_buffer(eb);
free_extent_buffer(eb);
if (ret < 0)
return ret;
}
return ret;
}
/*
* Checksum a dirty tree block before IO. This has extra checks to make sure
* we only fill in the checksum field in the first page of a multi-page block.
* For subpage extent buffers we need bvec to also read the offset in the page.
*/
static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
{
struct page *page = bvec->bv_page;
u64 start = page_offset(page);
u64 found_start;
struct extent_buffer *eb;
if (fs_info->nodesize < PAGE_SIZE)
return csum_dirty_subpage_buffers(fs_info, bvec);
eb = (struct extent_buffer *)page->private;
if (page != eb->pages[0])
return 0;
found_start = btrfs_header_bytenr(eb);
if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
WARN_ON(found_start != 0);
return 0;
}
/*
* Please do not consolidate these warnings into a single if.
* It is useful to know what went wrong.
*/
if (WARN_ON(found_start != start))
return -EUCLEAN;
if (WARN_ON(!PageUptodate(page)))
return -EUCLEAN;
return csum_one_extent_buffer(eb);
}
static int check_tree_block_fsid(struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
u8 fsid[BTRFS_FSID_SIZE];
u8 *metadata_uuid;
read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
BTRFS_FSID_SIZE);
/*
* Checking the incompat flag is only valid for the current fs. For
* seed devices it's forbidden to have their uuid changed so reading
* ->fsid in this case is fine
*/
if (btrfs_fs_incompat(fs_info, METADATA_UUID))
metadata_uuid = fs_devices->metadata_uuid;
else
metadata_uuid = fs_devices->fsid;
if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
return 0;
list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
return 0;
return 1;
}
/* Do basic extent buffer checks at read time */
static int validate_extent_buffer(struct extent_buffer *eb)
{
struct btrfs_fs_info *fs_info = eb->fs_info;
u64 found_start;
const u32 csum_size = fs_info->csum_size;
u8 found_level;
u8 result[BTRFS_CSUM_SIZE];
const u8 *header_csum;
int ret = 0;
found_start = btrfs_header_bytenr(eb);
if (found_start != eb->start) {
btrfs_err_rl(fs_info, "bad tree block start, want %llu have %llu",
eb->start, found_start);
ret = -EIO;
goto out;
}
if (check_tree_block_fsid(eb)) {
btrfs_err_rl(fs_info, "bad fsid on block %llu",
eb->start);
ret = -EIO;
goto out;
}
found_level = btrfs_header_level(eb);
if (found_level >= BTRFS_MAX_LEVEL) {
btrfs_err(fs_info, "bad tree block level %d on %llu",
(int)btrfs_header_level(eb), eb->start);
ret = -EIO;
goto out;
}
csum_tree_block(eb, result);
header_csum = page_address(eb->pages[0]) +
get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
if (memcmp(result, header_csum, csum_size) != 0) {
btrfs_warn_rl(fs_info,
"checksum verify failed on %llu wanted " CSUM_FMT " found " CSUM_FMT " level %d",
eb->start,
CSUM_FMT_VALUE(csum_size, header_csum),
CSUM_FMT_VALUE(csum_size, result),
btrfs_header_level(eb));
ret = -EUCLEAN;
goto out;
}
/*
* If this is a leaf block and it is corrupt, set the corrupt bit so
* that we don't try and read the other copies of this block, just
* return -EIO.
*/
if (found_level == 0 && btrfs_check_leaf_full(eb)) {
set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
ret = -EIO;
}
if (found_level > 0 && btrfs_check_node(eb))
ret = -EIO;
if (!ret)
set_extent_buffer_uptodate(eb);
else
btrfs_err(fs_info,
"block=%llu read time tree block corruption detected",
eb->start);
out:
return ret;
}
static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
int mirror)
{
struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
struct extent_buffer *eb;
bool reads_done;
int ret = 0;
/*
* We don't allow bio merge for subpage metadata read, so we should
* only get one eb for each endio hook.
*/
ASSERT(end == start + fs_info->nodesize - 1);
ASSERT(PagePrivate(page));
eb = find_extent_buffer(fs_info, start);
/*
* When we are reading one tree block, eb must have been inserted into
* the radix tree. If not, something is wrong.
*/
ASSERT(eb);
reads_done = atomic_dec_and_test(&eb->io_pages);
/* Subpage read must finish in page read */
ASSERT(reads_done);
eb->read_mirror = mirror;
if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ret = -EIO;
goto err;
}
ret = validate_extent_buffer(eb);
if (ret < 0)
goto err;
set_extent_buffer_uptodate(eb);
free_extent_buffer(eb);
return ret;
err:
/*
* end_bio_extent_readpage decrements io_pages in case of error,
* make sure it has something to decrement.
*/
atomic_inc(&eb->io_pages);
clear_extent_buffer_uptodate(eb);
free_extent_buffer(eb);
return ret;
}
int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
struct page *page, u64 start, u64 end,
int mirror)
{
struct extent_buffer *eb;
int ret = 0;
int reads_done;
ASSERT(page->private);
if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
return validate_subpage_buffer(page, start, end, mirror);
eb = (struct extent_buffer *)page->private;
/*
* The pending IO might have been the only thing that kept this buffer
* in memory. Make sure we have a ref for all this other checks
*/
atomic_inc(&eb->refs);
reads_done = atomic_dec_and_test(&eb->io_pages);
if (!reads_done)
goto err;
eb->read_mirror = mirror;
if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
ret = -EIO;
goto err;
}
ret = validate_extent_buffer(eb);
err:
if (ret) {
/*
* our io error hook is going to dec the io pages
* again, we have to make sure it has something
* to decrement
*/
atomic_inc(&eb->io_pages);
clear_extent_buffer_uptodate(eb);
}
free_extent_buffer(eb);
return ret;
}
static void end_workqueue_bio(struct bio *bio)
{
struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
struct btrfs_fs_info *fs_info;
struct btrfs_workqueue *wq;
fs_info = end_io_wq->info;
end_io_wq->status = bio->bi_status;
if (btrfs_op(bio) == BTRFS_MAP_WRITE) {
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA)
wq = fs_info->endio_meta_write_workers;
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE)
wq = fs_info->endio_freespace_worker;
else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
wq = fs_info->endio_raid56_workers;
else
wq = fs_info->endio_write_workers;
} else {
if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56)
wq = fs_info->endio_raid56_workers;
else if (end_io_wq->metadata)
wq = fs_info->endio_meta_workers;
else
wq = fs_info->endio_workers;
}
btrfs_init_work(&end_io_wq->work, end_workqueue_fn, NULL, NULL);
btrfs_queue_work(wq, &end_io_wq->work);
}
blk_status_t btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
enum btrfs_wq_endio_type metadata)
{
struct btrfs_end_io_wq *end_io_wq;
end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
if (!end_io_wq)
return BLK_STS_RESOURCE;
end_io_wq->private = bio->bi_private;
end_io_wq->end_io = bio->bi_end_io;
end_io_wq->info = info;
end_io_wq->status = 0;
end_io_wq->bio = bio;
end_io_wq->metadata = metadata;
bio->bi_private = end_io_wq;
bio->bi_end_io = end_workqueue_bio;
return 0;
}
static void run_one_async_start(struct btrfs_work *work)
{
struct async_submit_bio *async;
blk_status_t ret;
async = container_of(work, struct async_submit_bio, work);
ret = async->submit_bio_start(async->inode, async->bio,
async->dio_file_offset);
if (ret)
async->status = ret;
}
/*
* In order to insert checksums into the metadata in large chunks, we wait
* until bio submission time. All the pages in the bio are checksummed and
* sums are attached onto the ordered extent record.
*
* At IO completion time the csums attached on the ordered extent record are
* inserted into the tree.
*/
static void run_one_async_done(struct btrfs_work *work)
{
struct async_submit_bio *async;
struct inode *inode;
blk_status_t ret;
async = container_of(work, struct async_submit_bio, work);
inode = async->inode;
/* If an error occurred we just want to clean up the bio and move on */
if (async->status) {
async->bio->bi_status = async->status;
bio_endio(async->bio);
return;
}
/*
* All of the bios that pass through here are from async helpers.
* Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
* This changes nothing when cgroups aren't in use.
*/
async->bio->bi_opf |= REQ_CGROUP_PUNT;
ret = btrfs_map_bio(btrfs_sb(inode->i_sb), async->bio, async->mirror_num);
if (ret) {
async->bio->bi_status = ret;
bio_endio(async->bio);
}
}
static void run_one_async_free(struct btrfs_work *work)
{
struct async_submit_bio *async;
async = container_of(work, struct async_submit_bio, work);
kfree(async);
}
blk_status_t btrfs_wq_submit_bio(struct inode *inode, struct bio *bio,
int mirror_num, unsigned long bio_flags,
u64 dio_file_offset,
extent_submit_bio_start_t *submit_bio_start)
{
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
struct async_submit_bio *async;
async = kmalloc(sizeof(*async), GFP_NOFS);
if (!async)
return BLK_STS_RESOURCE;
async->inode = inode;
async->bio = bio;
async->mirror_num = mirror_num;
async->submit_bio_start = submit_bio_start;
btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
run_one_async_free);
async->dio_file_offset = dio_file_offset;
async->status = 0;
if (op_is_sync(bio->bi_opf))
btrfs_queue_work(fs_info->hipri_workers, &async->work);
else
btrfs_queue_work(fs_info->workers, &async->work);
return 0;
}
static blk_status_t btree_csum_one_bio(struct bio *bio)
{
struct bio_vec *bvec;
struct btrfs_root *root;
int ret = 0;
struct bvec_iter_all iter_all;
ASSERT(!bio_flagged(bio, BIO_CLONED));
bio_for_each_segment_all(bvec, bio, iter_all) {
root = BTRFS_I(bvec->bv_page->mapping->host)->root;
ret = csum_dirty_buffer(root->fs_info, bvec);
if (ret)
break;
}
return errno_to_blk_status(ret);
}
static blk_status_t btree_submit_bio_start(struct inode *inode, struct bio *bio,
u64 dio_file_offset)
{
/*
* when we're called for a write, we're already in the async
* submission context. Just jump into btrfs_map_bio
*/
return btree_csum_one_bio(bio);
}
static bool should_async_write(struct btrfs_fs_info *fs_info,
struct btrfs_inode *bi)
{
if (btrfs_is_zoned(fs_info))
return false;
if (atomic_read(&bi->sync_writers))
return false;
if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
return false;
return true;
}
void btrfs_submit_metadata_bio(struct inode *inode, struct bio *bio, int mirror_num)
{
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
blk_status_t ret;
if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
/*
* called for a read, do the setup so that checksum validation
* can happen in the async kernel threads
*/
ret = btrfs_bio_wq_end_io(fs_info, bio,
BTRFS_WQ_ENDIO_METADATA);
if (!ret)
ret = btrfs_map_bio(fs_info, bio, mirror_num);
} else if (!should_async_write(fs_info, BTRFS_I(inode))) {
ret = btree_csum_one_bio(bio);
if (!ret)
ret = btrfs_map_bio(fs_info, bio, mirror_num);
} else {
/*
* kthread helpers are used to submit writes so that
* checksumming can happen in parallel across all CPUs
*/
ret = btrfs_wq_submit_bio(inode, bio, mirror_num, 0,
0, btree_submit_bio_start);
}
if (ret) {
bio->bi_status = ret;
bio_endio(bio);
}
}
#ifdef CONFIG_MIGRATION
static int btree_migratepage(struct address_space *mapping,
struct page *newpage, struct page *page,
enum migrate_mode mode)
{
/*
* we can't safely write a btree page from here,
* we haven't done the locking hook
*/
if (PageDirty(page))
return -EAGAIN;
/*
* Buffers may be managed in a filesystem specific way.
* We must have no buffers or drop them.
*/
if (page_has_private(page) &&
!try_to_release_page(page, GFP_KERNEL))
return -EAGAIN;
return migrate_page(mapping, newpage, page, mode);
}
#endif
static int btree_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
struct btrfs_fs_info *fs_info;
int ret;
if (wbc->sync_mode == WB_SYNC_NONE) {
if (wbc->for_kupdate)
return 0;
fs_info = BTRFS_I(mapping->host)->root->fs_info;
/* this is a bit racy, but that's ok */
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH,
fs_info->dirty_metadata_batch);
if (ret < 0)
return 0;
}
return btree_write_cache_pages(mapping, wbc);
}
static int btree_releasepage(struct page *page, gfp_t gfp_flags)
{
if (PageWriteback(page) || PageDirty(page))
return 0;
return try_release_extent_buffer(page);
}
static void btree_invalidate_folio(struct folio *folio, size_t offset,
size_t length)
{
struct extent_io_tree *tree;
tree = &BTRFS_I(folio->mapping->host)->io_tree;
extent_invalidate_folio(tree, folio, offset);
btree_releasepage(&folio->page, GFP_NOFS);
if (folio_get_private(folio)) {
btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
"folio private not zero on folio %llu",
(unsigned long long)folio_pos(folio));
folio_detach_private(folio);
}
}
#ifdef DEBUG
static bool btree_dirty_folio(struct address_space *mapping,
struct folio *folio)
{
struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
struct btrfs_subpage *subpage;
struct extent_buffer *eb;
int cur_bit = 0;
u64 page_start = folio_pos(folio);
if (fs_info->sectorsize == PAGE_SIZE) {
eb = folio_get_private(folio);
BUG_ON(!eb);
BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
BUG_ON(!atomic_read(&eb->refs));
btrfs_assert_tree_write_locked(eb);
return filemap_dirty_folio(mapping, folio);
}
subpage = folio_get_private(folio);
ASSERT(subpage->dirty_bitmap);
while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
unsigned long flags;
u64 cur;
u16 tmp = (1 << cur_bit);
spin_lock_irqsave(&subpage->lock, flags);
if (!(tmp & subpage->dirty_bitmap)) {
spin_unlock_irqrestore(&subpage->lock, flags);
cur_bit++;
continue;
}
spin_unlock_irqrestore(&subpage->lock, flags);
cur = page_start + cur_bit * fs_info->sectorsize;
eb = find_extent_buffer(fs_info, cur);
ASSERT(eb);
ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
ASSERT(atomic_read(&eb->refs));
btrfs_assert_tree_write_locked(eb);
free_extent_buffer(eb);
cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
}
return filemap_dirty_folio(mapping, folio);
}
#else
#define btree_dirty_folio filemap_dirty_folio
#endif
static const struct address_space_operations btree_aops = {
.writepages = btree_writepages,
.releasepage = btree_releasepage,
.invalidate_folio = btree_invalidate_folio,
#ifdef CONFIG_MIGRATION
.migratepage = btree_migratepage,
#endif
.dirty_folio = btree_dirty_folio,
};
struct extent_buffer *btrfs_find_create_tree_block(
struct btrfs_fs_info *fs_info,
u64 bytenr, u64 owner_root,
int level)
{
if (btrfs_is_testing(fs_info))
return alloc_test_extent_buffer(fs_info, bytenr);
return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
}
/*
* Read tree block at logical address @bytenr and do variant basic but critical
* verification.
*
* @owner_root: the objectid of the root owner for this block.
* @parent_transid: expected transid of this tree block, skip check if 0
* @level: expected level, mandatory check
* @first_key: expected key in slot 0, skip check if NULL
*/
struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
u64 owner_root, u64 parent_transid,
int level, struct btrfs_key *first_key)
{
struct extent_buffer *buf = NULL;
int ret;
buf = btrfs_find_create_tree_block(fs_info, bytenr, owner_root, level);
if (IS_ERR(buf))
return buf;
ret = btrfs_read_extent_buffer(buf, parent_transid, level, first_key);
if (ret) {
free_extent_buffer_stale(buf);
return ERR_PTR(ret);
}
if (btrfs_check_eb_owner(buf, owner_root)) {
free_extent_buffer_stale(buf);
return ERR_PTR(-EUCLEAN);
}
return buf;
}
void btrfs_clean_tree_block(struct extent_buffer *buf)
{
struct btrfs_fs_info *fs_info = buf->fs_info;
if (btrfs_header_generation(buf) ==
fs_info->running_transaction->transid) {
btrfs_assert_tree_write_locked(buf);
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
-buf->len,
fs_info->dirty_metadata_batch);
clear_extent_buffer_dirty(buf);
}
}
}
static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
u64 objectid)
{
bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
memset(&root->root_key, 0, sizeof(root->root_key));
memset(&root->root_item, 0, sizeof(root->root_item));
memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
root->fs_info = fs_info;
root->root_key.objectid = objectid;
root->node = NULL;
root->commit_root = NULL;
root->state = 0;
RB_CLEAR_NODE(&root->rb_node);
root->last_trans = 0;
root->free_objectid = 0;
root->nr_delalloc_inodes = 0;
root->nr_ordered_extents = 0;
root->inode_tree = RB_ROOT;
xa_init_flags(&root->delayed_nodes, GFP_ATOMIC);
btrfs_init_root_block_rsv(root);
INIT_LIST_HEAD(&root->dirty_list);
INIT_LIST_HEAD(&root->root_list);
INIT_LIST_HEAD(&root->delalloc_inodes);
INIT_LIST_HEAD(&root->delalloc_root);
INIT_LIST_HEAD(&root->ordered_extents);
INIT_LIST_HEAD(&root->ordered_root);
INIT_LIST_HEAD(&root->reloc_dirty_list);
INIT_LIST_HEAD(&root->logged_list[0]);
INIT_LIST_HEAD(&root->logged_list[1]);
spin_lock_init(&root->inode_lock);
spin_lock_init(&root->delalloc_lock);
spin_lock_init(&root->ordered_extent_lock);
spin_lock_init(&root->accounting_lock);
spin_lock_init(&root->log_extents_lock[0]);
spin_lock_init(&root->log_extents_lock[1]);
spin_lock_init(&root->qgroup_meta_rsv_lock);
mutex_init(&root->objectid_mutex);
mutex_init(&root->log_mutex);
mutex_init(&root->ordered_extent_mutex);
mutex_init(&root->delalloc_mutex);
init_waitqueue_head(&root->qgroup_flush_wait);
init_waitqueue_head(&root->log_writer_wait);
init_waitqueue_head(&root->log_commit_wait[0]);
init_waitqueue_head(&root->log_commit_wait[1]);
INIT_LIST_HEAD(&root->log_ctxs[0]);
INIT_LIST_HEAD(&root->log_ctxs[1]);
atomic_set(&root->log_commit[0], 0);
atomic_set(&root->log_commit[1], 0);
atomic_set(&root->log_writers, 0);
atomic_set(&root->log_batch, 0);
refcount_set(&root->refs, 1);
atomic_set(&root->snapshot_force_cow, 0);
atomic_set(&root->nr_swapfiles, 0);
root->log_transid = 0;
root->log_transid_committed = -1;
root->last_log_commit = 0;
root->anon_dev = 0;
if (!dummy) {
extent_io_tree_init(fs_info, &root->dirty_log_pages,
IO_TREE_ROOT_DIRTY_LOG_PAGES, NULL);
extent_io_tree_init(fs_info, &root->log_csum_range,
IO_TREE_LOG_CSUM_RANGE, NULL);
}
spin_lock_init(&root->root_item_lock);
btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
#ifdef CONFIG_BTRFS_DEBUG
INIT_LIST_HEAD(&root->leak_list);
spin_lock(&fs_info->fs_roots_lock);
list_add_tail(&root->leak_list, &fs_info->allocated_roots);
spin_unlock(&fs_info->fs_roots_lock);
#endif
}
static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
u64 objectid, gfp_t flags)
{
struct btrfs_root *root = kzalloc(sizeof(*root), flags);
if (root)
__setup_root(root, fs_info, objectid);
return root;
}
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/* Should only be used by the testing infrastructure */
struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
if (!fs_info)
return ERR_PTR(-EINVAL);
root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
if (!root)
return ERR_PTR(-ENOMEM);
/* We don't use the stripesize in selftest, set it as sectorsize */
root->alloc_bytenr = 0;
return root;
}
#endif
static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
{
const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
}
static int global_root_key_cmp(const void *k, const struct rb_node *node)
{
const struct btrfs_key *key = k;
const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
return btrfs_comp_cpu_keys(key, &root->root_key);
}
int btrfs_global_root_insert(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct rb_node *tmp;
write_lock(&fs_info->global_root_lock);
tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
write_unlock(&fs_info->global_root_lock);
ASSERT(!tmp);
return tmp ? -EEXIST : 0;
}
void btrfs_global_root_delete(struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
write_lock(&fs_info->global_root_lock);
rb_erase(&root->rb_node, &fs_info->global_root_tree);
write_unlock(&fs_info->global_root_lock);
}
struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
struct btrfs_key *key)
{
struct rb_node *node;
struct btrfs_root *root = NULL;
read_lock(&fs_info->global_root_lock);
node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
if (node)
root = container_of(node, struct btrfs_root, rb_node);
read_unlock(&fs_info->global_root_lock);
return root;
}
static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_block_group *block_group;
u64 ret;
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
return 0;
if (bytenr)
block_group = btrfs_lookup_block_group(fs_info, bytenr);
else
block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
ASSERT(block_group);
if (!block_group)
return 0;
ret = block_group->global_root_id;
btrfs_put_block_group(block_group);
return ret;
}
struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_key key = {
.objectid = BTRFS_CSUM_TREE_OBJECTID,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = btrfs_global_root_id(fs_info, bytenr),
};
return btrfs_global_root(fs_info, &key);
}
struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
{
struct btrfs_key key = {
.objectid = BTRFS_EXTENT_TREE_OBJECTID,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = btrfs_global_root_id(fs_info, bytenr),
};
return btrfs_global_root(fs_info, &key);
}
struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
u64 objectid)
{
struct btrfs_fs_info *fs_info = trans->fs_info;
struct extent_buffer *leaf;
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *root;
struct btrfs_key key;
unsigned int nofs_flag;
int ret = 0;
/*
* We're holding a transaction handle, so use a NOFS memory allocation
* context to avoid deadlock if reclaim happens.
*/
nofs_flag = memalloc_nofs_save();
root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
memalloc_nofs_restore(nofs_flag);
if (!root)
return ERR_PTR(-ENOMEM);
root->root_key.objectid = objectid;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = 0;
leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
BTRFS_NESTING_NORMAL);
if (IS_ERR(leaf)) {
ret = PTR_ERR(leaf);
leaf = NULL;
goto fail_unlock;
}
root->node = leaf;
btrfs_mark_buffer_dirty(leaf);
root->commit_root = btrfs_root_node(root);
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
btrfs_set_root_flags(&root->root_item, 0);
btrfs_set_root_limit(&root->root_item, 0);
btrfs_set_root_bytenr(&root->root_item, leaf->start);
btrfs_set_root_generation(&root->root_item, trans->transid);
btrfs_set_root_level(&root->root_item, 0);
btrfs_set_root_refs(&root->root_item, 1);
btrfs_set_root_used(&root->root_item, leaf->len);
btrfs_set_root_last_snapshot(&root->root_item, 0);
btrfs_set_root_dirid(&root->root_item, 0);
if (is_fstree(objectid))
generate_random_guid(root->root_item.uuid);
else
export_guid(root->root_item.uuid, &guid_null);
btrfs_set_root_drop_level(&root->root_item, 0);
btrfs_tree_unlock(leaf);
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = 0;
ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
if (ret)
goto fail;
return root;
fail_unlock:
if (leaf)
btrfs_tree_unlock(leaf);
fail:
btrfs_put_root(root);
return ERR_PTR(ret);
}
static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
if (!root)
return ERR_PTR(-ENOMEM);
root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
root->root_key.type = BTRFS_ROOT_ITEM_KEY;
root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
return root;
}
int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct extent_buffer *leaf;
/*
* DON'T set SHAREABLE bit for log trees.
*
* Log trees are not exposed to user space thus can't be snapshotted,
* and they go away before a real commit is actually done.
*
* They do store pointers to file data extents, and those reference
* counts still get updated (along with back refs to the log tree).
*/
leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
if (IS_ERR(leaf))
return PTR_ERR(leaf);
root->node = leaf;
btrfs_mark_buffer_dirty(root->node);
btrfs_tree_unlock(root->node);
return 0;
}
int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_root *log_root;
log_root = alloc_log_tree(trans, fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
if (!btrfs_is_zoned(fs_info)) {
int ret = btrfs_alloc_log_tree_node(trans, log_root);
if (ret) {
btrfs_put_root(log_root);
return ret;
}
}
WARN_ON(fs_info->log_root_tree);
fs_info->log_root_tree = log_root;
return 0;
}
int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root)
{
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_root *log_root;
struct btrfs_inode_item *inode_item;
int ret;
log_root = alloc_log_tree(trans, fs_info);
if (IS_ERR(log_root))
return PTR_ERR(log_root);
ret = btrfs_alloc_log_tree_node(trans, log_root);
if (ret) {
btrfs_put_root(log_root);
return ret;
}
log_root->last_trans = trans->transid;
log_root->root_key.offset = root->root_key.objectid;
inode_item = &log_root->root_item.inode;
btrfs_set_stack_inode_generation(inode_item, 1);
btrfs_set_stack_inode_size(inode_item, 3);
btrfs_set_stack_inode_nlink(inode_item, 1);
btrfs_set_stack_inode_nbytes(inode_item,
fs_info->nodesize);
btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
btrfs_set_root_node(&log_root->root_item, log_root->node);
WARN_ON(root->log_root);
root->log_root = log_root;
root->log_transid = 0;
root->log_transid_committed = -1;
root->last_log_commit = 0;
return 0;
}
static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
struct btrfs_path *path,
struct btrfs_key *key)
{
struct btrfs_root *root;
struct btrfs_fs_info *fs_info = tree_root->fs_info;
u64 generation;
int ret;
int level;
root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
if (!root)
return ERR_PTR(-ENOMEM);
ret = btrfs_find_root(tree_root, key, path,
&root->root_item, &root->root_key);
if (ret) {
if (ret > 0)
ret = -ENOENT;
goto fail;
}
generation = btrfs_root_generation(&root->root_item);
level = btrfs_root_level(&root->root_item);
root->node = read_tree_block(fs_info,
btrfs_root_bytenr(&root->root_item),
key->objectid, generation, level, NULL);
if (IS_ERR(root->node)) {
ret = PTR_ERR(root->node);
root->node = NULL;
goto fail;
}
if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
ret = -EIO;
goto fail;
}
/*
* For real fs, and not log/reloc trees, root owner must
* match its root node owner
*/
if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
root->root_key.objectid != btrfs_header_owner(root->node)) {
btrfs_crit(fs_info,
"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
root->root_key.objectid, root->node->start,
btrfs_header_owner(root->node),
root->root_key.objectid);
ret = -EUCLEAN;
goto fail;
}
root->commit_root = btrfs_root_node(root);
return root;
fail:
btrfs_put_root(root);
return ERR_PTR(ret);
}
struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
struct btrfs_key *key)
{
struct btrfs_root *root;
struct btrfs_path *path;
path = btrfs_alloc_path();
if (!path)
return ERR_PTR(-ENOMEM);
root = read_tree_root_path(tree_root, path, key);
btrfs_free_path(path);
return root;
}
/*
* Initialize subvolume root in-memory structure
*
* @anon_dev: anonymous device to attach to the root, if zero, allocate new
*/
static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
{
int ret;
unsigned int nofs_flag;
/*
* We might be called under a transaction (e.g. indirect backref
* resolution) which could deadlock if it triggers memory reclaim
*/
nofs_flag = memalloc_nofs_save();
ret = btrfs_drew_lock_init(&root->snapshot_lock);
memalloc_nofs_restore(nofs_flag);
if (ret)
goto fail;
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
!btrfs_is_data_reloc_root(root)) {
set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
btrfs_check_and_init_root_item(&root->root_item);
}
/*
* Don't assign anonymous block device to roots that are not exposed to
* userspace, the id pool is limited to 1M
*/
if (is_fstree(root->root_key.objectid) &&
btrfs_root_refs(&root->root_item) > 0) {
if (!anon_dev) {
ret = get_anon_bdev(&root->anon_dev);
if (ret)
goto fail;
} else {
root->anon_dev = anon_dev;
}
}
mutex_lock(&root->objectid_mutex);
ret = btrfs_init_root_free_objectid(root);
if (ret) {
mutex_unlock(&root->objectid_mutex);
goto fail;
}
ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
mutex_unlock(&root->objectid_mutex);
return 0;
fail:
/* The caller is responsible to call btrfs_free_fs_root */
return ret;
}
static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
u64 root_id)
{
struct btrfs_root *root;
spin_lock(&fs_info->fs_roots_lock);
root = xa_load(&fs_info->fs_roots, (unsigned long)root_id);
if (root)
root = btrfs_grab_root(root);
spin_unlock(&fs_info->fs_roots_lock);
return root;
}
static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
u64 objectid)
{
struct btrfs_key key = {
.objectid = objectid,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = 0,
};
if (objectid == BTRFS_ROOT_TREE_OBJECTID)
return btrfs_grab_root(fs_info->tree_root);
if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
return btrfs_grab_root(fs_info->chunk_root);
if (objectid == BTRFS_DEV_TREE_OBJECTID)
return btrfs_grab_root(fs_info->dev_root);
if (objectid == BTRFS_CSUM_TREE_OBJECTID)
return btrfs_grab_root(btrfs_global_root(fs_info, &key));
if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
return btrfs_grab_root(fs_info->quota_root) ?
fs_info->quota_root : ERR_PTR(-ENOENT);
if (objectid == BTRFS_UUID_TREE_OBJECTID)
return btrfs_grab_root(fs_info->uuid_root) ?
fs_info->uuid_root : ERR_PTR(-ENOENT);
if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
struct btrfs_root *root = btrfs_global_root(fs_info, &key);
return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
}
return NULL;
}
int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
int ret;
spin_lock(&fs_info->fs_roots_lock);
ret = xa_insert(&fs_info->fs_roots, (unsigned long)root->root_key.objectid,
root, GFP_NOFS);
if (ret == 0) {
btrfs_grab_root(root);
set_bit(BTRFS_ROOT_REGISTERED, &root->state);
}
spin_unlock(&fs_info->fs_roots_lock);
return ret;
}
void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
{
#ifdef CONFIG_BTRFS_DEBUG
struct btrfs_root *root;
while (!list_empty(&fs_info->allocated_roots)) {
char buf[BTRFS_ROOT_NAME_BUF_LEN];
root = list_first_entry(&fs_info->allocated_roots,
struct btrfs_root, leak_list);
btrfs_err(fs_info, "leaked root %s refcount %d",
btrfs_root_name(&root->root_key, buf),
refcount_read(&root->refs));
while (refcount_read(&root->refs) > 1)
btrfs_put_root(root);
btrfs_put_root(root);
}
#endif
}
static void free_global_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct rb_node *node;
while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
root = rb_entry(node, struct btrfs_root, rb_node);
rb_erase(&root->rb_node, &fs_info->global_root_tree);
btrfs_put_root(root);
}
}
void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
{
percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
percpu_counter_destroy(&fs_info->delalloc_bytes);
percpu_counter_destroy(&fs_info->ordered_bytes);
percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
btrfs_free_csum_hash(fs_info);
btrfs_free_stripe_hash_table(fs_info);
btrfs_free_ref_cache(fs_info);
kfree(fs_info->balance_ctl);
kfree(fs_info->delayed_root);
free_global_roots(fs_info);
btrfs_put_root(fs_info->tree_root);
btrfs_put_root(fs_info->chunk_root);
btrfs_put_root(fs_info->dev_root);
btrfs_put_root(fs_info->quota_root);
btrfs_put_root(fs_info->uuid_root);
btrfs_put_root(fs_info->fs_root);
btrfs_put_root(fs_info->data_reloc_root);
btrfs_put_root(fs_info->block_group_root);
btrfs_check_leaked_roots(fs_info);
btrfs_extent_buffer_leak_debug_check(fs_info);
kfree(fs_info->super_copy);
kfree(fs_info->super_for_commit);
kfree(fs_info->subpage_info);
kvfree(fs_info);
}
/*
* Get an in-memory reference of a root structure.
*
* For essential trees like root/extent tree, we grab it from fs_info directly.
* For subvolume trees, we check the cached filesystem roots first. If not
* found, then read it from disk and add it to cached fs roots.
*
* Caller should release the root by calling btrfs_put_root() after the usage.
*
* NOTE: Reloc and log trees can't be read by this function as they share the
* same root objectid.
*
* @objectid: root id
* @anon_dev: preallocated anonymous block device number for new roots,
* pass 0 for new allocation.
* @check_ref: whether to check root item references, If true, return -ENOENT
* for orphan roots
*/
static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
u64 objectid, dev_t anon_dev,
bool check_ref)
{
struct btrfs_root *root;
struct btrfs_path *path;
struct btrfs_key key;
int ret;
root = btrfs_get_global_root(fs_info, objectid);
if (root)
return root;
again:
root = btrfs_lookup_fs_root(fs_info, objectid);
if (root) {
/* Shouldn't get preallocated anon_dev for cached roots */
ASSERT(!anon_dev);
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
btrfs_put_root(root);
return ERR_PTR(-ENOENT);
}
return root;
}
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
root = btrfs_read_tree_root(fs_info->tree_root, &key);
if (IS_ERR(root))
return root;
if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
ret = -ENOENT;
goto fail;
}
ret = btrfs_init_fs_root(root, anon_dev);
if (ret)
goto fail;
path = btrfs_alloc_path();
if (!path) {
ret = -ENOMEM;
goto fail;
}
key.objectid = BTRFS_ORPHAN_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = objectid;
ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
btrfs_free_path(path);
if (ret < 0)
goto fail;
if (ret == 0)
set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
ret = btrfs_insert_fs_root(fs_info, root);
if (ret) {
if (ret == -EEXIST) {
btrfs_put_root(root);
goto again;
}
goto fail;
}
return root;
fail:
/*
* If our caller provided us an anonymous device, then it's his
* responsability to free it in case we fail. So we have to set our
* root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
* and once again by our caller.
*/
if (anon_dev)
root->anon_dev = 0;
btrfs_put_root(root);
return ERR_PTR(ret);
}
/*
* Get in-memory reference of a root structure
*
* @objectid: tree objectid
* @check_ref: if set, verify that the tree exists and the item has at least
* one reference
*/
struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
u64 objectid, bool check_ref)
{
return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
}
/*
* Get in-memory reference of a root structure, created as new, optionally pass
* the anonymous block device id
*
* @objectid: tree objectid
* @anon_dev: if zero, allocate a new anonymous block device or use the
* parameter value
*/
struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
u64 objectid, dev_t anon_dev)
{
return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
}
/*
* btrfs_get_fs_root_commit_root - return a root for the given objectid
* @fs_info: the fs_info
* @objectid: the objectid we need to lookup
*
* This is exclusively used for backref walking, and exists specifically because
* of how qgroups does lookups. Qgroups will do a backref lookup at delayed ref
* creation time, which means we may have to read the tree_root in order to look
* up a fs root that is not in memory. If the root is not in memory we will
* read the tree root commit root and look up the fs root from there. This is a
* temporary root, it will not be inserted into the radix tree as it doesn't
* have the most uptodate information, it'll simply be discarded once the
* backref code is finished using the root.
*/
struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
struct btrfs_path *path,
u64 objectid)
{
struct btrfs_root *root;
struct btrfs_key key;
ASSERT(path->search_commit_root && path->skip_locking);
/*
* This can return -ENOENT if we ask for a root that doesn't exist, but
* since this is called via the backref walking code we won't be looking
* up a root that doesn't exist, unless there's corruption. So if root
* != NULL just return it.
*/
root = btrfs_get_global_root(fs_info, objectid);
if (root)
return root;
root = btrfs_lookup_fs_root(fs_info, objectid);
if (root)
return root;
key.objectid = objectid;
key.type = BTRFS_ROOT_ITEM_KEY;
key.offset = (u64)-1;
root = read_tree_root_path(fs_info->tree_root, path, &key);
btrfs_release_path(path);
return root;
}
/*
* called by the kthread helper functions to finally call the bio end_io
* functions. This is where read checksum verification actually happens
*/
static void end_workqueue_fn(struct btrfs_work *work)
{
struct bio *bio;
struct btrfs_end_io_wq *end_io_wq;
end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
bio = end_io_wq->bio;
bio->bi_status = end_io_wq->status;
bio->bi_private = end_io_wq->private;
bio->bi_end_io = end_io_wq->end_io;
bio_endio(bio);
kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
}
static int cleaner_kthread(void *arg)
{
struct btrfs_fs_info *fs_info = arg;
int again;
while (1) {
again = 0;
set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
/* Make the cleaner go to sleep early. */
if (btrfs_need_cleaner_sleep(fs_info))
goto sleep;
/*
* Do not do anything if we might cause open_ctree() to block
* before we have finished mounting the filesystem.
*/
if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
goto sleep;
if (!mutex_trylock(&fs_info->cleaner_mutex))
goto sleep;
/*
* Avoid the problem that we change the status of the fs
* during the above check and trylock.
*/
if (btrfs_need_cleaner_sleep(fs_info)) {
mutex_unlock(&fs_info->cleaner_mutex);
goto sleep;
}
btrfs_run_delayed_iputs(fs_info);
again = btrfs_clean_one_deleted_snapshot(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
/*
* The defragger has dealt with the R/O remount and umount,
* needn't do anything special here.
*/
btrfs_run_defrag_inodes(fs_info);
/*
* Acquires fs_info->reclaim_bgs_lock to avoid racing
* with relocation (btrfs_relocate_chunk) and relocation
* acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
* after acquiring fs_info->reclaim_bgs_lock. So we
* can't hold, nor need to, fs_info->cleaner_mutex when deleting
* unused block groups.
*/
btrfs_delete_unused_bgs(fs_info);
/*
* Reclaim block groups in the reclaim_bgs list after we deleted
* all unused block_groups. This possibly gives us some more free
* space.
*/
btrfs_reclaim_bgs(fs_info);
sleep:
clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
if (kthread_should_park())
kthread_parkme();
if (kthread_should_stop())
return 0;
if (!again) {
set_current_state(TASK_INTERRUPTIBLE);
schedule();
__set_current_state(TASK_RUNNING);
}
}
}
static int transaction_kthread(void *arg)
{
struct btrfs_root *root = arg;
struct btrfs_fs_info *fs_info = root->fs_info;
struct btrfs_trans_handle *trans;
struct btrfs_transaction *cur;
u64 transid;
time64_t delta;
unsigned long delay;
bool cannot_commit;
do {
cannot_commit = false;
delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
mutex_lock(&fs_info->transaction_kthread_mutex);
spin_lock(&fs_info->trans_lock);
cur = fs_info->running_transaction;
if (!cur) {
spin_unlock(&fs_info->trans_lock);
goto sleep;
}
delta = ktime_get_seconds() - cur->start_time;
if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
cur->state < TRANS_STATE_COMMIT_START &&
delta < fs_info->commit_interval) {
spin_unlock(&fs_info->trans_lock);
delay -= msecs_to_jiffies((delta - 1) * 1000);
delay = min(delay,
msecs_to_jiffies(fs_info->commit_interval * 1000));
goto sleep;
}
transid = cur->transid;
spin_unlock(&fs_info->trans_lock);
/* If the file system is aborted, this will always fail. */
trans = btrfs_attach_transaction(root);
if (IS_ERR(trans)) {
if (PTR_ERR(trans) != -ENOENT)
cannot_commit = true;
goto sleep;
}
if (transid == trans->transid) {
btrfs_commit_transaction(trans);
} else {
btrfs_end_transaction(trans);
}
sleep:
wake_up_process(fs_info->cleaner_kthread);
mutex_unlock(&fs_info->transaction_kthread_mutex);
if (BTRFS_FS_ERROR(fs_info))
btrfs_cleanup_transaction(fs_info);
if (!kthread_should_stop() &&
(!btrfs_transaction_blocked(fs_info) ||
cannot_commit))
schedule_timeout_interruptible(delay);
} while (!kthread_should_stop());
return 0;
}
/*
* This will find the highest generation in the array of root backups. The
* index of the highest array is returned, or -EINVAL if we can't find
* anything.
*
* We check to make sure the array is valid by comparing the
* generation of the latest root in the array with the generation
* in the super block. If they don't match we pitch it.
*/
static int find_newest_super_backup(struct btrfs_fs_info *info)
{
const u64 newest_gen = btrfs_super_generation(info->super_copy);
u64 cur;
struct btrfs_root_backup *root_backup;
int i;
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
root_backup = info->super_copy->super_roots + i;
cur = btrfs_backup_tree_root_gen(root_backup);
if (cur == newest_gen)
return i;
}
return -EINVAL;
}
/*
* copy all the root pointers into the super backup array.
* this will bump the backup pointer by one when it is
* done
*/
static void backup_super_roots(struct btrfs_fs_info *info)
{
const int next_backup = info->backup_root_index;
struct btrfs_root_backup *root_backup;
root_backup = info->super_for_commit->super_roots + next_backup;
/*
* make sure all of our padding and empty slots get zero filled
* regardless of which ones we use today
*/
memset(root_backup, 0, sizeof(*root_backup));
info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
btrfs_set_backup_tree_root_gen(root_backup,
btrfs_header_generation(info->tree_root->node));
btrfs_set_backup_tree_root_level(root_backup,
btrfs_header_level(info->tree_root->node));
btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
btrfs_set_backup_chunk_root_gen(root_backup,
btrfs_header_generation(info->chunk_root->node));
btrfs_set_backup_chunk_root_level(root_backup,
btrfs_header_level(info->chunk_root->node));
if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) {
btrfs_set_backup_block_group_root(root_backup,
info->block_group_root->node->start);
btrfs_set_backup_block_group_root_gen(root_backup,
btrfs_header_generation(info->block_group_root->node));
btrfs_set_backup_block_group_root_level(root_backup,
btrfs_header_level(info->block_group_root->node));
} else {
struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
btrfs_set_backup_extent_root(root_backup,
extent_root->node->start);
btrfs_set_backup_extent_root_gen(root_backup,
btrfs_header_generation(extent_root->node));
btrfs_set_backup_extent_root_level(root_backup,
btrfs_header_level(extent_root->node));
btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
btrfs_set_backup_csum_root_gen(root_backup,
btrfs_header_generation(csum_root->node));
btrfs_set_backup_csum_root_level(root_backup,
btrfs_header_level(csum_root->node));
}
/*
* we might commit during log recovery, which happens before we set
* the fs_root. Make sure it is valid before we fill it in.
*/
if (info->fs_root && info->fs_root->node) {
btrfs_set_backup_fs_root(root_backup,
info->fs_root->node->start);
btrfs_set_backup_fs_root_gen(root_backup,
btrfs_header_generation(info->fs_root->node));
btrfs_set_backup_fs_root_level(root_backup,
btrfs_header_level(info->fs_root->node));
}
btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
btrfs_set_backup_dev_root_gen(root_backup,
btrfs_header_generation(info->dev_root->node));
btrfs_set_backup_dev_root_level(root_backup,
btrfs_header_level(info->dev_root->node));
btrfs_set_backup_total_bytes(root_backup,
btrfs_super_total_bytes(info->super_copy));
btrfs_set_backup_bytes_used(root_backup,
btrfs_super_bytes_used(info->super_copy));
btrfs_set_backup_num_devices(root_backup,
btrfs_super_num_devices(info->super_copy));
/*
* if we don't copy this out to the super_copy, it won't get remembered
* for the next commit
*/
memcpy(&info->super_copy->super_roots,
&info->super_for_commit->super_roots,
sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
}
/*
* read_backup_root - Reads a backup root based on the passed priority. Prio 0
* is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
*
* fs_info - filesystem whose backup roots need to be read
* priority - priority of backup root required
*
* Returns backup root index on success and -EINVAL otherwise.
*/
static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
{
int backup_index = find_newest_super_backup(fs_info);
struct btrfs_super_block *super = fs_info->super_copy;
struct btrfs_root_backup *root_backup;
if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
if (priority == 0)
return backup_index;
backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
backup_index %= BTRFS_NUM_BACKUP_ROOTS;
} else {
return -EINVAL;
}
root_backup = super->super_roots + backup_index;
btrfs_set_super_generation(super,
btrfs_backup_tree_root_gen(root_backup));
btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
btrfs_set_super_root_level(super,
btrfs_backup_tree_root_level(root_backup));
btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
/*
* Fixme: the total bytes and num_devices need to match or we should
* need a fsck
*/
btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
return backup_index;
}
/* helper to cleanup workers */
static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
{
btrfs_destroy_workqueue(fs_info->fixup_workers);
btrfs_destroy_workqueue(fs_info->delalloc_workers);
btrfs_destroy_workqueue(fs_info->hipri_workers);
btrfs_destroy_workqueue(fs_info->workers);
btrfs_destroy_workqueue(fs_info->endio_workers);
btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
if (fs_info->rmw_workers)
destroy_workqueue(fs_info->rmw_workers);
btrfs_destroy_workqueue(fs_info->endio_write_workers);
btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
btrfs_destroy_workqueue(fs_info->delayed_workers);
btrfs_destroy_workqueue(fs_info->caching_workers);
btrfs_destroy_workqueue(fs_info->flush_workers);
btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
if (fs_info->discard_ctl.discard_workers)
destroy_workqueue(fs_info->discard_ctl.discard_workers);
/*
* Now that all other work queues are destroyed, we can safely destroy
* the queues used for metadata I/O, since tasks from those other work
* queues can do metadata I/O operations.
*/
btrfs_destroy_workqueue(fs_info->endio_meta_workers);
btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
}
static void free_root_extent_buffers(struct btrfs_root *root)
{
if (root) {
free_extent_buffer(root->node);
free_extent_buffer(root->commit_root);
root->node = NULL;
root->commit_root = NULL;
}
}
static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root, *tmp;
rbtree_postorder_for_each_entry_safe(root, tmp,
&fs_info->global_root_tree,
rb_node)
free_root_extent_buffers(root);
}
/* helper to cleanup tree roots */
static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
{
free_root_extent_buffers(info->tree_root);
free_global_root_pointers(info);
free_root_extent_buffers(info->dev_root);
free_root_extent_buffers(info->quota_root);
free_root_extent_buffers(info->uuid_root);
free_root_extent_buffers(info->fs_root);
free_root_extent_buffers(info->data_reloc_root);
free_root_extent_buffers(info->block_group_root);
if (free_chunk_root)
free_root_extent_buffers(info->chunk_root);
}
void btrfs_put_root(struct btrfs_root *root)
{
if (!root)
return;
if (refcount_dec_and_test(&root->refs)) {
WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
if (root->anon_dev)
free_anon_bdev(root->anon_dev);
btrfs_drew_lock_destroy(&root->snapshot_lock);
free_root_extent_buffers(root);
#ifdef CONFIG_BTRFS_DEBUG
spin_lock(&root->fs_info->fs_roots_lock);
list_del_init(&root->leak_list);
spin_unlock(&root->fs_info->fs_roots_lock);
#endif
kfree(root);
}
}
void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
unsigned long index = 0;
while (!list_empty(&fs_info->dead_roots)) {
root = list_entry(fs_info->dead_roots.next,
struct btrfs_root, root_list);
list_del(&root->root_list);
if (test_bit(BTRFS_ROOT_REGISTERED, &root->state))
btrfs_drop_and_free_fs_root(fs_info, root);
btrfs_put_root(root);
}
xa_for_each(&fs_info->fs_roots, index, root) {
btrfs_drop_and_free_fs_root(fs_info, root);
}
}
static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
{
mutex_init(&fs_info->scrub_lock);
atomic_set(&fs_info->scrubs_running, 0);
atomic_set(&fs_info->scrub_pause_req, 0);
atomic_set(&fs_info->scrubs_paused, 0);
atomic_set(&fs_info->scrub_cancel_req, 0);
init_waitqueue_head(&fs_info->scrub_pause_wait);
refcount_set(&fs_info->scrub_workers_refcnt, 0);
}
static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
{
spin_lock_init(&fs_info->balance_lock);
mutex_init(&fs_info->balance_mutex);
atomic_set(&fs_info->balance_pause_req, 0);
atomic_set(&fs_info->balance_cancel_req, 0);
fs_info->balance_ctl = NULL;
init_waitqueue_head(&fs_info->balance_wait_q);
atomic_set(&fs_info->reloc_cancel_req, 0);
}
static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
{
struct inode *inode = fs_info->btree_inode;
inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
set_nlink(inode, 1);
/*
* we set the i_size on the btree inode to the max possible int.
* the real end of the address space is determined by all of
* the devices in the system
*/
inode->i_size = OFFSET_MAX;
inode->i_mapping->a_ops = &btree_aops;
RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
IO_TREE_BTREE_INODE_IO, inode);
BTRFS_I(inode)->io_tree.track_uptodate = false;
extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
btrfs_insert_inode_hash(inode);
}
static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
{
mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
init_rwsem(&fs_info->dev_replace.rwsem);
init_waitqueue_head(&fs_info->dev_replace.replace_wait);
}
static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
{
spin_lock_init(&fs_info->qgroup_lock);
mutex_init(&fs_info->qgroup_ioctl_lock);
fs_info->qgroup_tree = RB_ROOT;
INIT_LIST_HEAD(&fs_info->dirty_qgroups);
fs_info->qgroup_seq = 1;
fs_info->qgroup_ulist = NULL;
fs_info->qgroup_rescan_running = false;
mutex_init(&fs_info->qgroup_rescan_lock);
}
static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
{
u32 max_active = fs_info->thread_pool_size;
unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
fs_info->workers =
btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
fs_info->hipri_workers =
btrfs_alloc_workqueue(fs_info, "worker-high",
flags | WQ_HIGHPRI, max_active, 16);
fs_info->delalloc_workers =
btrfs_alloc_workqueue(fs_info, "delalloc",
flags, max_active, 2);
fs_info->flush_workers =
btrfs_alloc_workqueue(fs_info, "flush_delalloc",
flags, max_active, 0);
fs_info->caching_workers =
btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
fs_info->fixup_workers =
btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
/*
* endios are largely parallel and should have a very
* low idle thresh
*/
fs_info->endio_workers =
btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
fs_info->endio_meta_workers =
btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
max_active, 4);
fs_info->endio_meta_write_workers =
btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
max_active, 2);
fs_info->endio_raid56_workers =
btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
max_active, 4);
fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
fs_info->endio_write_workers =
btrfs_alloc_workqueue(fs_info, "endio-write", flags,
max_active, 2);
fs_info->endio_freespace_worker =
btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
max_active, 0);
fs_info->delayed_workers =
btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
max_active, 0);
fs_info->qgroup_rescan_workers =
btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
fs_info->discard_ctl.discard_workers =
alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
if (!(fs_info->workers && fs_info->hipri_workers &&
fs_info->delalloc_workers && fs_info->flush_workers &&
fs_info->endio_workers && fs_info->endio_meta_workers &&
fs_info->endio_meta_write_workers &&
fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
fs_info->endio_freespace_worker && fs_info->rmw_workers &&
fs_info->caching_workers && fs_info->fixup_workers &&
fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
fs_info->discard_ctl.discard_workers)) {
return -ENOMEM;
}
return 0;
}
static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
{
struct crypto_shash *csum_shash;
const char *csum_driver = btrfs_super_csum_driver(csum_type);
csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
if (IS_ERR(csum_shash)) {
btrfs_err(fs_info, "error allocating %s hash for checksum",
csum_driver);
return PTR_ERR(csum_shash);
}
fs_info->csum_shash = csum_shash;
return 0;
}
static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
struct btrfs_fs_devices *fs_devices)
{
int ret;
struct btrfs_root *log_tree_root;
struct btrfs_super_block *disk_super = fs_info->super_copy;
u64 bytenr = btrfs_super_log_root(disk_super);
int level = btrfs_super_log_root_level(disk_super);
if (fs_devices->rw_devices == 0) {
btrfs_warn(fs_info, "log replay required on RO media");
return -EIO;
}
log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
GFP_KERNEL);
if (!log_tree_root)
return -ENOMEM;
log_tree_root->node = read_tree_block(fs_info, bytenr,
BTRFS_TREE_LOG_OBJECTID,
fs_info->generation + 1, level,
NULL);
if (IS_ERR(log_tree_root->node)) {
btrfs_warn(fs_info, "failed to read log tree");
ret = PTR_ERR(log_tree_root->node);
log_tree_root->node = NULL;
btrfs_put_root(log_tree_root);
return ret;
}
if (!extent_buffer_uptodate(log_tree_root->node)) {
btrfs_err(fs_info, "failed to read log tree");
btrfs_put_root(log_tree_root);
return -EIO;
}
/* returns with log_tree_root freed on success */
ret = btrfs_recover_log_trees(log_tree_root);
if (ret) {
btrfs_handle_fs_error(fs_info, ret,
"Failed to recover log tree");
btrfs_put_root(log_tree_root);
return ret;
}
if (sb_rdonly(fs_info->sb)) {
ret = btrfs_commit_super(fs_info);
if (ret)
return ret;
}
return 0;
}
static int load_global_roots_objectid(struct btrfs_root *tree_root,
struct btrfs_path *path, u64 objectid,
const char *name)
{
struct btrfs_fs_info *fs_info = tree_root->fs_info;
struct btrfs_root *root;
u64 max_global_id = 0;
int ret;
struct btrfs_key key = {
.objectid = objectid,
.type = BTRFS_ROOT_ITEM_KEY,
.offset = 0,
};
bool found = false;
/* If we have IGNOREDATACSUMS skip loading these roots. */
if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
return 0;
}
while (1) {
ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
if (ret < 0)
break;
if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
ret = btrfs_next_leaf(tree_root, path);
if (ret) {
if (ret > 0)
ret = 0;
break;
}
}
ret = 0;
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid != objectid)
break;
btrfs_release_path(path);
/*
* Just worry about this for extent tree, it'll be the same for
* everybody.
*/
if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
max_global_id = max(max_global_id, key.offset);
found = true;
root = read_tree_root_path(tree_root, path, &key);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
ret = PTR_ERR(root);
break;
}
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
ret = btrfs_global_root_insert(root);
if (ret) {
btrfs_put_root(root);
break;
}
key.offset++;
}
btrfs_release_path(path);
if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
fs_info->nr_global_roots = max_global_id + 1;
if (!found || ret) {
if (objectid == BTRFS_CSUM_TREE_OBJECTID)
set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
ret = ret ? ret : -ENOENT;
else
ret = 0;
btrfs_err(fs_info, "failed to load root %s", name);
}
return ret;
}
static int load_global_roots(struct btrfs_root *tree_root)
{
struct btrfs_path *path;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = load_global_roots_objectid(tree_root, path,
BTRFS_EXTENT_TREE_OBJECTID, "extent");
if (ret)
goto out;
ret = load_global_roots_objectid(tree_root, path,
BTRFS_CSUM_TREE_OBJECTID, "csum");
if (ret)
goto out;
if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
goto out;
ret = load_global_roots_objectid(tree_root, path,
BTRFS_FREE_SPACE_TREE_OBJECTID,
"free space");
out:
btrfs_free_path(path);
return ret;
}
static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *tree_root = fs_info->tree_root;
struct btrfs_root *root;
struct btrfs_key location;
int ret;
BUG_ON(!fs_info->tree_root);
ret = load_global_roots(tree_root);
if (ret)
return ret;
location.objectid = BTRFS_DEV_TREE_OBJECTID;
location.type = BTRFS_ROOT_ITEM_KEY;
location.offset = 0;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->dev_root = root;
}
/* Initialize fs_info for all devices in any case */
btrfs_init_devices_late(fs_info);
/*
* This tree can share blocks with some other fs tree during relocation
* and we need a proper setup by btrfs_get_fs_root
*/
root = btrfs_get_fs_root(tree_root->fs_info,
BTRFS_DATA_RELOC_TREE_OBJECTID, true);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->data_reloc_root = root;
}
location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (!IS_ERR(root)) {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
fs_info->quota_root = root;
}
location.objectid = BTRFS_UUID_TREE_OBJECTID;
root = btrfs_read_tree_root(tree_root, &location);
if (IS_ERR(root)) {
if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
ret = PTR_ERR(root);
if (ret != -ENOENT)
goto out;
}
} else {
set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
fs_info->uuid_root = root;
}
return 0;
out:
btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
location.objectid, ret);
return ret;
}
/*
* Real super block validation
* NOTE: super csum type and incompat features will not be checked here.
*
* @sb: super block to check
* @mirror_num: the super block number to check its bytenr:
* 0 the primary (1st) sb
* 1, 2 2nd and 3rd backup copy
* -1 skip bytenr check
*/
static int validate_super(struct btrfs_fs_info *fs_info,
struct btrfs_super_block *sb, int mirror_num)
{
u64 nodesize = btrfs_super_nodesize(sb);
u64 sectorsize = btrfs_super_sectorsize(sb);
int ret = 0;
if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
btrfs_err(fs_info, "no valid FS found");
ret = -EINVAL;
}
if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
ret = -EINVAL;
}
if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
btrfs_err(fs_info, "tree_root level too big: %d >= %d",
btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
btrfs_err(fs_info, "log_root level too big: %d >= %d",
btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
ret = -EINVAL;
}
/*
* Check sectorsize and nodesize first, other check will need it.
* Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
*/
if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
ret = -EINVAL;
}
/*
* We only support at most two sectorsizes: 4K and PAGE_SIZE.
*
* We can support 16K sectorsize with 64K page size without problem,
* but such sectorsize/pagesize combination doesn't make much sense.
* 4K will be our future standard, PAGE_SIZE is supported from the very
* beginning.
*/
if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
btrfs_err(fs_info,
"sectorsize %llu not yet supported for page size %lu",
sectorsize, PAGE_SIZE);
ret = -EINVAL;
}
if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
ret = -EINVAL;
}
if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
le32_to_cpu(sb->__unused_leafsize), nodesize);
ret = -EINVAL;
}
/* Root alignment check */
if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
btrfs_warn(fs_info, "tree_root block unaligned: %llu",
btrfs_super_root(sb));
ret = -EINVAL;
}
if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
btrfs_super_chunk_root(sb));
ret = -EINVAL;
}
if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
btrfs_warn(fs_info, "log_root block unaligned: %llu",
btrfs_super_log_root(sb));
ret = -EINVAL;
}
if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
BTRFS_FSID_SIZE)) {
btrfs_err(fs_info,
"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
ret = -EINVAL;
}
if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
memcmp(fs_info->fs_devices->metadata_uuid,
fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
btrfs_err(fs_info,
"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
fs_info->super_copy->metadata_uuid,
fs_info->fs_devices->metadata_uuid);
ret = -EINVAL;
}
if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
BTRFS_FSID_SIZE) != 0) {
btrfs_err(fs_info,
"dev_item UUID does not match metadata fsid: %pU != %pU",
fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
ret = -EINVAL;
}
/*
* Hint to catch really bogus numbers, bitflips or so, more exact checks are
* done later
*/
if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
btrfs_err(fs_info, "bytes_used is too small %llu",
btrfs_super_bytes_used(sb));
ret = -EINVAL;
}
if (!is_power_of_2(btrfs_super_stripesize(sb))) {
btrfs_err(fs_info, "invalid stripesize %u",
btrfs_super_stripesize(sb));
ret = -EINVAL;
}
if (btrfs_super_num_devices(sb) > (1UL << 31))
btrfs_warn(fs_info, "suspicious number of devices: %llu",
btrfs_super_num_devices(sb));
if (btrfs_super_num_devices(sb) == 0) {
btrfs_err(fs_info, "number of devices is 0");
ret = -EINVAL;
}
if (mirror_num >= 0 &&
btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
btrfs_err(fs_info, "super offset mismatch %llu != %u",
btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
ret = -EINVAL;
}
/*
* Obvious sys_chunk_array corruptions, it must hold at least one key
* and one chunk
*/
if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
btrfs_err(fs_info, "system chunk array too big %u > %u",
btrfs_super_sys_array_size(sb),
BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
ret = -EINVAL;
}
if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
+ sizeof(struct btrfs_chunk)) {
btrfs_err(fs_info, "system chunk array too small %u < %zu",
btrfs_super_sys_array_size(sb),
sizeof(struct btrfs_disk_key)
+ sizeof(struct btrfs_chunk));
ret = -EINVAL;
}
/*
* The generation is a global counter, we'll trust it more than the others
* but it's still possible that it's the one that's wrong.
*/
if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
btrfs_warn(fs_info,
"suspicious: generation < chunk_root_generation: %llu < %llu",
btrfs_super_generation(sb),
btrfs_super_chunk_root_generation(sb));
if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
&& btrfs_super_cache_generation(sb) != (u64)-1)
btrfs_warn(fs_info,
"suspicious: generation < cache_generation: %llu < %llu",
btrfs_super_generation(sb),
btrfs_super_cache_generation(sb));
return ret;
}
/*
* Validation of super block at mount time.
* Some checks already done early at mount time, like csum type and incompat
* flags will be skipped.
*/
static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
{
return validate_super(fs_info, fs_info->super_copy, 0);
}
/*
* Validation of super block at write time.
* Some checks like bytenr check will be skipped as their values will be
* overwritten soon.
* Extra checks like csum type and incompat flags will be done here.
*/
static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
struct btrfs_super_block *sb)
{
int ret;
ret = validate_super(fs_info, sb, -1);
if (ret < 0)
goto out;
if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
ret = -EUCLEAN;
btrfs_err(fs_info, "invalid csum type, has %u want %u",
btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
goto out;
}
if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
ret = -EUCLEAN;
btrfs_err(fs_info,
"invalid incompat flags, has 0x%llx valid mask 0x%llx",
btrfs_super_incompat_flags(sb),
(unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
goto out;
}
out:
if (ret < 0)
btrfs_err(fs_info,
"super block corruption detected before writing it to disk");
return ret;
}
static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
{
int ret = 0;
root->node = read_tree_block(root->fs_info, bytenr,
root->root_key.objectid, gen, level, NULL);
if (IS_ERR(root->node)) {
ret = PTR_ERR(root->node);
root->node = NULL;
return ret;
}
if (!extent_buffer_uptodate(root->node)) {
free_extent_buffer(root->node);
root->node = NULL;
return -EIO;
}
btrfs_set_root_node(&root->root_item, root->node);
root->commit_root = btrfs_root_node(root);
btrfs_set_root_refs(&root->root_item, 1);
return ret;
}
static int load_important_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_super_block *sb = fs_info->super_copy;
u64 gen, bytenr;
int level, ret;
bytenr = btrfs_super_root(sb);
gen = btrfs_super_generation(sb);
level = btrfs_super_root_level(sb);
ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
if (ret) {
btrfs_warn(fs_info, "couldn't read tree root");
return ret;
}
if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
return 0;
bytenr = btrfs_super_block_group_root(sb);
gen = btrfs_super_block_group_root_generation(sb);
level = btrfs_super_block_group_root_level(sb);
ret = load_super_root(fs_info->block_group_root, bytenr, gen, level);
if (ret)
btrfs_warn(fs_info, "couldn't read block group root");
return ret;
}
static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
{
int backup_index = find_newest_super_backup(fs_info);
struct btrfs_super_block *sb = fs_info->super_copy;
struct btrfs_root *tree_root = fs_info->tree_root;
bool handle_error = false;
int ret = 0;
int i;
if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
struct btrfs_root *root;
root = btrfs_alloc_root(fs_info, BTRFS_BLOCK_GROUP_TREE_OBJECTID,
GFP_KERNEL);
if (!root)
return -ENOMEM;
fs_info->block_group_root = root;
}
for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
if (handle_error) {
if (!IS_ERR(tree_root->node))
free_extent_buffer(tree_root->node);
tree_root->node = NULL;
if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
break;
free_root_pointers(fs_info, 0);
/*
* Don't use the log in recovery mode, it won't be
* valid
*/
btrfs_set_super_log_root(sb, 0);
/* We can't trust the free space cache either */
btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
ret = read_backup_root(fs_info, i);
backup_index = ret;
if (ret < 0)
return ret;
}
ret = load_important_roots(fs_info);
if (ret) {
handle_error = true;
continue;
}
/*
* No need to hold btrfs_root::objectid_mutex since the fs
* hasn't been fully initialised and we are the only user
*/
ret = btrfs_init_root_free_objectid(tree_root);
if (ret < 0) {
handle_error = true;
continue;
}
ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
ret = btrfs_read_roots(fs_info);
if (ret < 0) {
handle_error = true;
continue;
}
/* All successful */
fs_info->generation = btrfs_header_generation(tree_root->node);
fs_info->last_trans_committed = fs_info->generation;
fs_info->last_reloc_trans = 0;
/* Always begin writing backup roots after the one being used */
if (backup_index < 0) {
fs_info->backup_root_index = 0;
} else {
fs_info->backup_root_index = backup_index + 1;
fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
}
break;
}
return ret;
}
void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
{
xa_init_flags(&fs_info->fs_roots, GFP_ATOMIC);
xa_init_flags(&fs_info->extent_buffers, GFP_ATOMIC);
INIT_LIST_HEAD(&fs_info->trans_list);
INIT_LIST_HEAD(&fs_info->dead_roots);
INIT_LIST_HEAD(&fs_info->delayed_iputs);
INIT_LIST_HEAD(&fs_info->delalloc_roots);
INIT_LIST_HEAD(&fs_info->caching_block_groups);
spin_lock_init(&fs_info->delalloc_root_lock);
spin_lock_init(&fs_info->trans_lock);
spin_lock_init(&fs_info->fs_roots_lock);
spin_lock_init(&fs_info->delayed_iput_lock);
spin_lock_init(&fs_info->defrag_inodes_lock);
spin_lock_init(&fs_info->super_lock);
spin_lock_init(&fs_info->buffer_lock);
spin_lock_init(&fs_info->unused_bgs_lock);
spin_lock_init(&fs_info->treelog_bg_lock);
spin_lock_init(&fs_info->zone_active_bgs_lock);
spin_lock_init(&fs_info->relocation_bg_lock);
rwlock_init(&fs_info->tree_mod_log_lock);
rwlock_init(&fs_info->global_root_lock);
mutex_init(&fs_info->unused_bg_unpin_mutex);
mutex_init(&fs_info->reclaim_bgs_lock);
mutex_init(&fs_info->reloc_mutex);
mutex_init(&fs_info->delalloc_root_mutex);
mutex_init(&fs_info->zoned_meta_io_lock);
mutex_init(&fs_info->zoned_data_reloc_io_lock);
seqlock_init(&fs_info->profiles_lock);
INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
INIT_LIST_HEAD(&fs_info->space_info);
INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
INIT_LIST_HEAD(&fs_info->unused_bgs);
INIT_LIST_HEAD(&fs_info->reclaim_bgs);
INIT_LIST_HEAD(&fs_info->zone_active_bgs);
#ifdef CONFIG_BTRFS_DEBUG
INIT_LIST_HEAD(&fs_info->allocated_roots);
INIT_LIST_HEAD(&fs_info->allocated_ebs);
spin_lock_init(&fs_info->eb_leak_lock);
#endif
extent_map_tree_init(&fs_info->mapping_tree);
btrfs_init_block_rsv(&fs_info->global_block_rsv,
BTRFS_BLOCK_RSV_GLOBAL);
btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
BTRFS_BLOCK_RSV_DELOPS);
btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
BTRFS_BLOCK_RSV_DELREFS);
atomic_set(&fs_info->async_delalloc_pages, 0);
atomic_set(&fs_info->defrag_running, 0);
atomic_set(&fs_info->nr_delayed_iputs, 0);
atomic64_set(&fs_info->tree_mod_seq, 0);
fs_info->global_root_tree = RB_ROOT;
fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
fs_info->metadata_ratio = 0;
fs_info->defrag_inodes = RB_ROOT;
atomic64_set(&fs_info->free_chunk_space, 0);
fs_info->tree_mod_log = RB_ROOT;
fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
btrfs_init_ref_verify(fs_info);
fs_info->thread_pool_size = min_t(unsigned long,
num_online_cpus() + 2, 8);
INIT_LIST_HEAD(&fs_info->ordered_roots);
spin_lock_init(&fs_info->ordered_root_lock);
btrfs_init_scrub(fs_info);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
fs_info->check_integrity_print_mask = 0;
#endif
btrfs_init_balance(fs_info);
btrfs_init_async_reclaim_work(fs_info);
rwlock_init(&fs_info->block_group_cache_lock);
fs_info->block_group_cache_tree = RB_ROOT_CACHED;
extent_io_tree_init(fs_info, &fs_info->excluded_extents,
IO_TREE_FS_EXCLUDED_EXTENTS, NULL);
mutex_init(&fs_info->ordered_operations_mutex);
mutex_init(&fs_info->tree_log_mutex);
mutex_init(&fs_info->chunk_mutex);
mutex_init(&fs_info->transaction_kthread_mutex);
mutex_init(&fs_info->cleaner_mutex);
mutex_init(&fs_info->ro_block_group_mutex);
init_rwsem(&fs_info->commit_root_sem);
init_rwsem(&fs_info->cleanup_work_sem);
init_rwsem(&fs_info->subvol_sem);
sema_init(&fs_info->uuid_tree_rescan_sem, 1);
btrfs_init_dev_replace_locks(fs_info);
btrfs_init_qgroup(fs_info);
btrfs_discard_init(fs_info);
btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
init_waitqueue_head(&fs_info->transaction_throttle);
init_waitqueue_head(&fs_info->transaction_wait);
init_waitqueue_head(&fs_info->transaction_blocked_wait);
init_waitqueue_head(&fs_info->async_submit_wait);
init_waitqueue_head(&fs_info->delayed_iputs_wait);
/* Usable values until the real ones are cached from the superblock */
fs_info->nodesize = 4096;
fs_info->sectorsize = 4096;
fs_info->sectorsize_bits = ilog2(4096);
fs_info->stripesize = 4096;
spin_lock_init(&fs_info->swapfile_pins_lock);
fs_info->swapfile_pins = RB_ROOT;
fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
}
static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
{
int ret;
fs_info->sb = sb;
sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
if (ret)
return ret;
ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
if (ret)
return ret;
fs_info->dirty_metadata_batch = PAGE_SIZE *
(1 + ilog2(nr_cpu_ids));
ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
if (ret)
return ret;
ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
GFP_KERNEL);
if (ret)
return ret;
fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
GFP_KERNEL);
if (!fs_info->delayed_root)
return -ENOMEM;
btrfs_init_delayed_root(fs_info->delayed_root);
if (sb_rdonly(sb))
set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
return btrfs_alloc_stripe_hash_table(fs_info);
}
static int btrfs_uuid_rescan_kthread(void *data)
{
struct btrfs_fs_info *fs_info = data;
int ret;
/*
* 1st step is to iterate through the existing UUID tree and
* to delete all entries that contain outdated data.
* 2nd step is to add all missing entries to the UUID tree.
*/
ret = btrfs_uuid_tree_iterate(fs_info);
if (ret < 0) {
if (ret != -EINTR)
btrfs_warn(fs_info, "iterating uuid_tree failed %d",
ret);
up(&fs_info->uuid_tree_rescan_sem);
return ret;
}
return btrfs_uuid_scan_kthread(data);
}
static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
{
struct task_struct *task;
down(&fs_info->uuid_tree_rescan_sem);
task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
if (IS_ERR(task)) {
/* fs_info->update_uuid_tree_gen remains 0 in all error case */
btrfs_warn(fs_info, "failed to start uuid_rescan task");
up(&fs_info->uuid_tree_rescan_sem);
return PTR_ERR(task);
}
return 0;
}
/*
* Some options only have meaning at mount time and shouldn't persist across
* remounts, or be displayed. Clear these at the end of mount and remount
* code paths.
*/
void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
{
btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
}
/*
* Mounting logic specific to read-write file systems. Shared by open_ctree
* and btrfs_remount when remounting from read-only to read-write.
*/
int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
{
int ret;
const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
bool clear_free_space_tree = false;
if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
clear_free_space_tree = true;
} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
btrfs_warn(fs_info, "free space tree is invalid");
clear_free_space_tree = true;
}
if (clear_free_space_tree) {
btrfs_info(fs_info, "clearing free space tree");
ret = btrfs_clear_free_space_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to clear free space tree: %d", ret);
goto out;
}
}
/*
* btrfs_find_orphan_roots() is responsible for finding all the dead
* roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
* them into the fs_info->fs_roots. This must be done before
* calling btrfs_orphan_cleanup() on the tree root. If we don't do it
* first, then btrfs_orphan_cleanup() will delete a dead root's orphan
* item before the root's tree is deleted - this means that if we unmount
* or crash before the deletion completes, on the next mount we will not
* delete what remains of the tree because the orphan item does not
* exists anymore, which is what tells us we have a pending deletion.
*/
ret = btrfs_find_orphan_roots(fs_info);
if (ret)
goto out;
ret = btrfs_cleanup_fs_roots(fs_info);
if (ret)
goto out;
down_read(&fs_info->cleanup_work_sem);
if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
(ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
up_read(&fs_info->cleanup_work_sem);
goto out;
}
up_read(&fs_info->cleanup_work_sem);
mutex_lock(&fs_info->cleaner_mutex);
ret = btrfs_recover_relocation(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
if (ret < 0) {
btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
goto out;
}
if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
btrfs_info(fs_info, "creating free space tree");
ret = btrfs_create_free_space_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to create free space tree: %d", ret);
goto out;
}
}
if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
if (ret)
goto out;
}
ret = btrfs_resume_balance_async(fs_info);
if (ret)
goto out;
ret = btrfs_resume_dev_replace_async(fs_info);
if (ret) {
btrfs_warn(fs_info, "failed to resume dev_replace");
goto out;
}
btrfs_qgroup_rescan_resume(fs_info);
if (!fs_info->uuid_root) {
btrfs_info(fs_info, "creating UUID tree");
ret = btrfs_create_uuid_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to create the UUID tree %d", ret);
goto out;
}
}
out:
return ret;
}
int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
char *options)
{
u32 sectorsize;
u32 nodesize;
u32 stripesize;
u64 generation;
u64 features;
u16 csum_type;
struct btrfs_super_block *disk_super;
struct btrfs_fs_info *fs_info = btrfs_sb(sb);
struct btrfs_root *tree_root;
struct btrfs_root *chunk_root;
int ret;
int err = -EINVAL;
int level;
ret = init_mount_fs_info(fs_info, sb);
if (ret) {
err = ret;
goto fail;
}
/* These need to be init'ed before we start creating inodes and such. */
tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
GFP_KERNEL);
fs_info->tree_root = tree_root;
chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
GFP_KERNEL);
fs_info->chunk_root = chunk_root;
if (!tree_root || !chunk_root) {
err = -ENOMEM;
goto fail;
}
fs_info->btree_inode = new_inode(sb);
if (!fs_info->btree_inode) {
err = -ENOMEM;
goto fail;
}
mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
btrfs_init_btree_inode(fs_info);
invalidate_bdev(fs_devices->latest_dev->bdev);
/*
* Read super block and check the signature bytes only
*/
disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
if (IS_ERR(disk_super)) {
err = PTR_ERR(disk_super);
goto fail_alloc;
}
/*
* Verify the type first, if that or the checksum value are
* corrupted, we'll find out
*/
csum_type = btrfs_super_csum_type(disk_super);
if (!btrfs_supported_super_csum(csum_type)) {
btrfs_err(fs_info, "unsupported checksum algorithm: %u",
csum_type);
err = -EINVAL;
btrfs_release_disk_super(disk_super);
goto fail_alloc;
}
fs_info->csum_size = btrfs_super_csum_size(disk_super);
ret = btrfs_init_csum_hash(fs_info, csum_type);
if (ret) {
err = ret;
btrfs_release_disk_super(disk_super);
goto fail_alloc;
}
/*
* We want to check superblock checksum, the type is stored inside.
* Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
*/
if (btrfs_check_super_csum(fs_info, (u8 *)disk_super)) {
btrfs_err(fs_info, "superblock checksum mismatch");
err = -EINVAL;
btrfs_release_disk_super(disk_super);
goto fail_alloc;
}
/*
* super_copy is zeroed at allocation time and we never touch the
* following bytes up to INFO_SIZE, the checksum is calculated from
* the whole block of INFO_SIZE
*/
memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
btrfs_release_disk_super(disk_super);
disk_super = fs_info->super_copy;
features = btrfs_super_flags(disk_super);
if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
btrfs_set_super_flags(disk_super, features);
btrfs_info(fs_info,
"found metadata UUID change in progress flag, clearing");
}
memcpy(fs_info->super_for_commit, fs_info->super_copy,
sizeof(*fs_info->super_for_commit));
ret = btrfs_validate_mount_super(fs_info);
if (ret) {
btrfs_err(fs_info, "superblock contains fatal errors");
err = -EINVAL;
goto fail_alloc;
}
if (!btrfs_super_root(disk_super))
goto fail_alloc;
/* check FS state, whether FS is broken. */
if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
/*
* In the long term, we'll store the compression type in the super
* block, and it'll be used for per file compression control.
*/
fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
/*
* Flag our filesystem as having big metadata blocks if they are bigger
* than the page size.
*/
if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
btrfs_info(fs_info,
"flagging fs with big metadata feature");
features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
}
/* Set up fs_info before parsing mount options */
nodesize = btrfs_super_nodesize(disk_super);
sectorsize = btrfs_super_sectorsize(disk_super);
stripesize = sectorsize;
fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
fs_info->nodesize = nodesize;
fs_info->sectorsize = sectorsize;
fs_info->sectorsize_bits = ilog2(sectorsize);
fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
fs_info->stripesize = stripesize;
ret = btrfs_parse_options(fs_info, options, sb->s_flags);
if (ret) {
err = ret;
goto fail_alloc;
}
features = btrfs_super_incompat_flags(disk_super) &
~BTRFS_FEATURE_INCOMPAT_SUPP;
if (features) {
btrfs_err(fs_info,
"cannot mount because of unsupported optional features (%llx)",
features);
err = -EINVAL;
goto fail_alloc;
}
features = btrfs_super_incompat_flags(disk_super);
features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
btrfs_info(fs_info, "has skinny extents");
/*
* mixed block groups end up with duplicate but slightly offset
* extent buffers for the same range. It leads to corruptions
*/
if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
(sectorsize != nodesize)) {
btrfs_err(fs_info,
"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
nodesize, sectorsize);
goto fail_alloc;
}
/*
* Needn't use the lock because there is no other task which will
* update the flag.
*/
btrfs_set_super_incompat_flags(disk_super, features);
features = btrfs_super_compat_ro_flags(disk_super) &
~BTRFS_FEATURE_COMPAT_RO_SUPP;
if (!sb_rdonly(sb) && features) {
btrfs_err(fs_info,
"cannot mount read-write because of unsupported optional features (%llx)",
features);
err = -EINVAL;
goto fail_alloc;
}
if (sectorsize < PAGE_SIZE) {
struct btrfs_subpage_info *subpage_info;
/*
* V1 space cache has some hardcoded PAGE_SIZE usage, and is
* going to be deprecated.
*
* Force to use v2 cache for subpage case.
*/
btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
"forcing free space tree for sector size %u with page size %lu",
sectorsize, PAGE_SIZE);
btrfs_warn(fs_info,
"read-write for sector size %u with page size %lu is experimental",
sectorsize, PAGE_SIZE);
subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
if (!subpage_info)
goto fail_alloc;
btrfs_init_subpage_info(subpage_info, sectorsize);
fs_info->subpage_info = subpage_info;
}
ret = btrfs_init_workqueues(fs_info);
if (ret) {
err = ret;
goto fail_sb_buffer;
}
sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
sb->s_blocksize = sectorsize;
sb->s_blocksize_bits = blksize_bits(sectorsize);
memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
mutex_lock(&fs_info->chunk_mutex);
ret = btrfs_read_sys_array(fs_info);
mutex_unlock(&fs_info->chunk_mutex);
if (ret) {
btrfs_err(fs_info, "failed to read the system array: %d", ret);
goto fail_sb_buffer;
}
generation = btrfs_super_chunk_root_generation(disk_super);
level = btrfs_super_chunk_root_level(disk_super);
ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
generation, level);
if (ret) {
btrfs_err(fs_info, "failed to read chunk root");
goto fail_tree_roots;
}
read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
offsetof(struct btrfs_header, chunk_tree_uuid),
BTRFS_UUID_SIZE);
ret = btrfs_read_chunk_tree(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
goto fail_tree_roots;
}
/*
* At this point we know all the devices that make this filesystem,
* including the seed devices but we don't know yet if the replace
* target is required. So free devices that are not part of this
* filesystem but skip the replace target device which is checked
* below in btrfs_init_dev_replace().
*/
btrfs_free_extra_devids(fs_devices);
if (!fs_devices->latest_dev->bdev) {
btrfs_err(fs_info, "failed to read devices");
goto fail_tree_roots;
}
ret = init_tree_roots(fs_info);
if (ret)
goto fail_tree_roots;
/*
* Get zone type information of zoned block devices. This will also
* handle emulation of a zoned filesystem if a regular device has the
* zoned incompat feature flag set.
*/
ret = btrfs_get_dev_zone_info_all_devices(fs_info);
if (ret) {
btrfs_err(fs_info,
"zoned: failed to read device zone info: %d",
ret);
goto fail_block_groups;
}
/*
* If we have a uuid root and we're not being told to rescan we need to
* check the generation here so we can set the
* BTRFS_FS_UPDATE_UUID_TREE_GEN bit. Otherwise we could commit the
* transaction during a balance or the log replay without updating the
* uuid generation, and then if we crash we would rescan the uuid tree,
* even though it was perfectly fine.
*/
if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
ret = btrfs_verify_dev_extents(fs_info);
if (ret) {
btrfs_err(fs_info,
"failed to verify dev extents against chunks: %d",
ret);
goto fail_block_groups;
}
ret = btrfs_recover_balance(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to recover balance: %d", ret);
goto fail_block_groups;
}
ret = btrfs_init_dev_stats(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
goto fail_block_groups;
}
ret = btrfs_init_dev_replace(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
goto fail_block_groups;
}
ret = btrfs_check_zoned_mode(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to initialize zoned mode: %d",
ret);
goto fail_block_groups;
}
ret = btrfs_sysfs_add_fsid(fs_devices);
if (ret) {
btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
ret);
goto fail_block_groups;
}
ret = btrfs_sysfs_add_mounted(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
goto fail_fsdev_sysfs;
}
ret = btrfs_init_space_info(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to initialize space info: %d", ret);
goto fail_sysfs;
}
ret = btrfs_read_block_groups(fs_info);
if (ret) {
btrfs_err(fs_info, "failed to read block groups: %d", ret);
goto fail_sysfs;
}
btrfs_free_zone_cache(fs_info);
if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
!btrfs_check_rw_degradable(fs_info, NULL)) {
btrfs_warn(fs_info,
"writable mount is not allowed due to too many missing devices");
goto fail_sysfs;
}
fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
"btrfs-cleaner");
if (IS_ERR(fs_info->cleaner_kthread))
goto fail_sysfs;
fs_info->transaction_kthread = kthread_run(transaction_kthread,
tree_root,
"btrfs-transaction");
if (IS_ERR(fs_info->transaction_kthread))
goto fail_cleaner;
if (!btrfs_test_opt(fs_info, NOSSD) &&
!fs_info->fs_devices->rotating) {
btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
}
/*
* Mount does not set all options immediately, we can do it now and do
* not have to wait for transaction commit
*/
btrfs_apply_pending_changes(fs_info);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
ret = btrfsic_mount(fs_info, fs_devices,
btrfs_test_opt(fs_info,
CHECK_INTEGRITY_DATA) ? 1 : 0,
fs_info->check_integrity_print_mask);
if (ret)
btrfs_warn(fs_info,
"failed to initialize integrity check module: %d",
ret);
}
#endif
ret = btrfs_read_qgroup_config(fs_info);
if (ret)
goto fail_trans_kthread;
if (btrfs_build_ref_tree(fs_info))
btrfs_err(fs_info, "couldn't build ref tree");
/* do not make disk changes in broken FS or nologreplay is given */
if (btrfs_super_log_root(disk_super) != 0 &&
!btrfs_test_opt(fs_info, NOLOGREPLAY)) {
btrfs_info(fs_info, "start tree-log replay");
ret = btrfs_replay_log(fs_info, fs_devices);
if (ret) {
err = ret;
goto fail_qgroup;
}
}
fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
if (IS_ERR(fs_info->fs_root)) {
err = PTR_ERR(fs_info->fs_root);
btrfs_warn(fs_info, "failed to read fs tree: %d", err);
fs_info->fs_root = NULL;
goto fail_qgroup;
}
if (sb_rdonly(sb))
goto clear_oneshot;
ret = btrfs_start_pre_rw_mount(fs_info);
if (ret) {
close_ctree(fs_info);
return ret;
}
btrfs_discard_resume(fs_info);
if (fs_info->uuid_root &&
(btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
btrfs_info(fs_info, "checking UUID tree");
ret = btrfs_check_uuid_tree(fs_info);
if (ret) {
btrfs_warn(fs_info,
"failed to check the UUID tree: %d", ret);
close_ctree(fs_info);
return ret;
}
}
set_bit(BTRFS_FS_OPEN, &fs_info->flags);
/* Kick the cleaner thread so it'll start deleting snapshots. */
if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
wake_up_process(fs_info->cleaner_kthread);
clear_oneshot:
btrfs_clear_oneshot_options(fs_info);
return 0;
fail_qgroup:
btrfs_free_qgroup_config(fs_info);
fail_trans_kthread:
kthread_stop(fs_info->transaction_kthread);
btrfs_cleanup_transaction(fs_info);
btrfs_free_fs_roots(fs_info);
fail_cleaner:
kthread_stop(fs_info->cleaner_kthread);
/*
* make sure we're done with the btree inode before we stop our
* kthreads
*/
filemap_write_and_wait(fs_info->btree_inode->i_mapping);
fail_sysfs:
btrfs_sysfs_remove_mounted(fs_info);
fail_fsdev_sysfs:
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
fail_block_groups:
btrfs_put_block_group_cache(fs_info);
fail_tree_roots:
if (fs_info->data_reloc_root)
btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
free_root_pointers(fs_info, true);
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
fail_sb_buffer:
btrfs_stop_all_workers(fs_info);
btrfs_free_block_groups(fs_info);
fail_alloc:
btrfs_mapping_tree_free(&fs_info->mapping_tree);
iput(fs_info->btree_inode);
fail:
btrfs_close_devices(fs_info->fs_devices);
return err;
}
ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
static void btrfs_end_super_write(struct bio *bio)
{
struct btrfs_device *device = bio->bi_private;
struct bio_vec *bvec;
struct bvec_iter_all iter_all;
struct page *page;
bio_for_each_segment_all(bvec, bio, iter_all) {
page = bvec->bv_page;
if (bio->bi_status) {
btrfs_warn_rl_in_rcu(device->fs_info,
"lost page write due to IO error on %s (%d)",
rcu_str_deref(device->name),
blk_status_to_errno(bio->bi_status));
ClearPageUptodate(page);
SetPageError(page);
btrfs_dev_stat_inc_and_print(device,
BTRFS_DEV_STAT_WRITE_ERRS);
} else {
SetPageUptodate(page);
}
put_page(page);
unlock_page(page);
}
bio_put(bio);
}
struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
int copy_num)
{
struct btrfs_super_block *super;
struct page *page;
u64 bytenr, bytenr_orig;
struct address_space *mapping = bdev->bd_inode->i_mapping;
int ret;
bytenr_orig = btrfs_sb_offset(copy_num);
ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
if (ret == -ENOENT)
return ERR_PTR(-EINVAL);
else if (ret)
return ERR_PTR(ret);
if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
return ERR_PTR(-EINVAL);
page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
if (IS_ERR(page))
return ERR_CAST(page);
super = page_address(page);
if (btrfs_super_magic(super) != BTRFS_MAGIC) {
btrfs_release_disk_super(super);
return ERR_PTR(-ENODATA);
}
if (btrfs_super_bytenr(super) != bytenr_orig) {
btrfs_release_disk_super(super);
return ERR_PTR(-EINVAL);
}
return super;
}
struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
{
struct btrfs_super_block *super, *latest = NULL;
int i;
u64 transid = 0;
/* we would like to check all the supers, but that would make
* a btrfs mount succeed after a mkfs from a different FS.
* So, we need to add a special mount option to scan for
* later supers, using BTRFS_SUPER_MIRROR_MAX instead
*/
for (i = 0; i < 1; i++) {
super = btrfs_read_dev_one_super(bdev, i);
if (IS_ERR(super))
continue;
if (!latest || btrfs_super_generation(super) > transid) {
if (latest)
btrfs_release_disk_super(super);
latest = super;
transid = btrfs_super_generation(super);
}
}
return super;
}
/*
* Write superblock @sb to the @device. Do not wait for completion, all the
* pages we use for writing are locked.
*
* Write @max_mirrors copies of the superblock, where 0 means default that fit
* the expected device size at commit time. Note that max_mirrors must be
* same for write and wait phases.
*
* Return number of errors when page is not found or submission fails.
*/
static int write_dev_supers(struct btrfs_device *device,
struct btrfs_super_block *sb, int max_mirrors)
{
struct btrfs_fs_info *fs_info = device->fs_info;
struct address_space *mapping = device->bdev->bd_inode->i_mapping;
SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
int i;
int errors = 0;
int ret;
u64 bytenr, bytenr_orig;
if (max_mirrors == 0)
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
shash->tfm = fs_info->csum_shash;
for (i = 0; i < max_mirrors; i++) {
struct page *page;
struct bio *bio;
struct btrfs_super_block *disk_super;
bytenr_orig = btrfs_sb_offset(i);
ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
if (ret == -ENOENT) {
continue;
} else if (ret < 0) {
btrfs_err(device->fs_info,
"couldn't get super block location for mirror %d",
i);
errors++;
continue;
}
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
device->commit_total_bytes)
break;
btrfs_set_super_bytenr(sb, bytenr_orig);
crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
sb->csum);
page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
GFP_NOFS);
if (!page) {
btrfs_err(device->fs_info,
"couldn't get super block page for bytenr %llu",
bytenr);
errors++;
continue;
}
/* Bump the refcount for wait_dev_supers() */
get_page(page);
disk_super = page_address(page);
memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
/*
* Directly use bios here instead of relying on the page cache
* to do I/O, so we don't lose the ability to do integrity
* checking.
*/
bio = bio_alloc(device->bdev, 1,
REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
GFP_NOFS);
bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
bio->bi_private = device;
bio->bi_end_io = btrfs_end_super_write;
__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
offset_in_page(bytenr));
/*
* We FUA only the first super block. The others we allow to
* go down lazy and there's a short window where the on-disk
* copies might still contain the older version.
*/
if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
bio->bi_opf |= REQ_FUA;
btrfsic_check_bio(bio);
submit_bio(bio);
if (btrfs_advance_sb_log(device, i))
errors++;
}
return errors < i ? 0 : -1;
}
/*
* Wait for write completion of superblocks done by write_dev_supers,
* @max_mirrors same for write and wait phases.
*
* Return number of errors when page is not found or not marked up to
* date.
*/
static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
{
int i;
int errors = 0;
bool primary_failed = false;
int ret;
u64 bytenr;
if (max_mirrors == 0)
max_mirrors = BTRFS_SUPER_MIRROR_MAX;
for (i = 0; i < max_mirrors; i++) {
struct page *page;
ret = btrfs_sb_log_location(device, i, READ, &bytenr);
if (ret == -ENOENT) {
break;
} else if (ret < 0) {
errors++;
if (i == 0)
primary_failed = true;
continue;
}
if (bytenr + BTRFS_SUPER_INFO_SIZE >=
device->commit_total_bytes)
break;
page = find_get_page(device->bdev->bd_inode->i_mapping,
bytenr >> PAGE_SHIFT);
if (!page) {
errors++;
if (i == 0)
primary_failed = true;
continue;
}
/* Page is submitted locked and unlocked once the IO completes */
wait_on_page_locked(page);
if (PageError(page)) {
errors++;
if (i == 0)
primary_failed = true;
}
/* Drop our reference */
put_page(page);
/* Drop the reference from the writing run */
put_page(page);
}
/* log error, force error return */
if (primary_failed) {
btrfs_err(device->fs_info, "error writing primary super block to device %llu",
device->devid);
return -1;
}
return errors < i ? 0 : -1;
}
/*
* endio for the write_dev_flush, this will wake anyone waiting
* for the barrier when it is done
*/
static void btrfs_end_empty_barrier(struct bio *bio)
{
complete(bio->bi_private);
}
/*
* Submit a flush request to the device if it supports it. Error handling is
* done in the waiting counterpart.
*/
static void write_dev_flush(struct btrfs_device *device)
{
struct bio *bio = device->flush_bio;
#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
/*
* When a disk has write caching disabled, we skip submission of a bio
* with flush and sync requests before writing the superblock, since
* it's not needed. However when the integrity checker is enabled, this
* results in reports that there are metadata blocks referred by a
* superblock that were not properly flushed. So don't skip the bio
* submission only when the integrity checker is enabled for the sake
* of simplicity, since this is a debug tool and not meant for use in
* non-debug builds.
*/
struct request_queue *q = bdev_get_queue(device->bdev);
if (!test_bit(QUEUE_FLAG_WC, &q->queue_flags))
return;
#endif
bio_reset(bio, device->bdev, REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
bio->bi_end_io = btrfs_end_empty_barrier;
init_completion(&device->flush_wait);
bio->bi_private = &device->flush_wait;
btrfsic_check_bio(bio);
submit_bio(bio);
set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
}
/*
* If the flush bio has been submitted by write_dev_flush, wait for it.
*/
static blk_status_t wait_dev_flush(struct btrfs_device *device)
{
struct bio *bio = device->flush_bio;
if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
return BLK_STS_OK;
clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
wait_for_completion_io(&device->flush_wait);
return bio->bi_status;
}
static int check_barrier_error(struct btrfs_fs_info *fs_info)
{
if (!btrfs_check_rw_degradable(fs_info, NULL))
return -EIO;
return 0;
}
/*
* send an empty flush down to each device in parallel,
* then wait for them
*/
static int barrier_all_devices(struct btrfs_fs_info *info)
{
struct list_head *head;
struct btrfs_device *dev;
int errors_wait = 0;
blk_status_t ret;
lockdep_assert_held(&info->fs_devices->device_list_mutex);
/* send down all the barriers */
head = &info->fs_devices->devices;
list_for_each_entry(dev, head, dev_list) {
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
continue;
if (!dev->bdev)
continue;
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
write_dev_flush(dev);
dev->last_flush_error = BLK_STS_OK;
}
/* wait for all the barriers */
list_for_each_entry(dev, head, dev_list) {
if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
continue;
if (!dev->bdev) {
errors_wait++;
continue;
}
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
ret = wait_dev_flush(dev);
if (ret) {
dev->last_flush_error = ret;
btrfs_dev_stat_inc_and_print(dev,
BTRFS_DEV_STAT_FLUSH_ERRS);
errors_wait++;
}
}
if (errors_wait) {
/*
* At some point we need the status of all disks
* to arrive at the volume status. So error checking
* is being pushed to a separate loop.
*/
return check_barrier_error(info);
}
return 0;
}
int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
{
int raid_type;
int min_tolerated = INT_MAX;
if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
(flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
min_tolerated = min_t(int, min_tolerated,
btrfs_raid_array[BTRFS_RAID_SINGLE].
tolerated_failures);
for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
if (raid_type == BTRFS_RAID_SINGLE)
continue;
if (!(flags & btrfs_raid_array[raid_type].bg_flag))
continue;
min_tolerated = min_t(int, min_tolerated,
btrfs_raid_array[raid_type].
tolerated_failures);
}
if (min_tolerated == INT_MAX) {
pr_warn("BTRFS: unknown raid flag: %llu", flags);
min_tolerated = 0;
}
return min_tolerated;
}
int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
{
struct list_head *head;
struct btrfs_device *dev;
struct btrfs_super_block *sb;
struct btrfs_dev_item *dev_item;
int ret;
int do_barriers;
int max_errors;
int total_errors = 0;
u64 flags;
do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
/*
* max_mirrors == 0 indicates we're from commit_transaction,
* not from fsync where the tree roots in fs_info have not
* been consistent on disk.
*/
if (max_mirrors == 0)
backup_super_roots(fs_info);
sb = fs_info->super_for_commit;
dev_item = &sb->dev_item;
mutex_lock(&fs_info->fs_devices->device_list_mutex);
head = &fs_info->fs_devices->devices;
max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
if (do_barriers) {
ret = barrier_all_devices(fs_info);
if (ret) {
mutex_unlock(
&fs_info->fs_devices->device_list_mutex);
btrfs_handle_fs_error(fs_info, ret,
"errors while submitting device barriers.");
return ret;
}
}
list_for_each_entry(dev, head, dev_list) {
if (!dev->bdev) {
total_errors++;
continue;
}
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
btrfs_set_stack_device_generation(dev_item, 0);
btrfs_set_stack_device_type(dev_item, dev->type);
btrfs_set_stack_device_id(dev_item, dev->devid);
btrfs_set_stack_device_total_bytes(dev_item,
dev->commit_total_bytes);
btrfs_set_stack_device_bytes_used(dev_item,
dev->commit_bytes_used);
btrfs_set_stack_device_io_align(dev_item, dev->io_align);
btrfs_set_stack_device_io_width(dev_item, dev->io_width);
btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
BTRFS_FSID_SIZE);
flags = btrfs_super_flags(sb);
btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
ret = btrfs_validate_write_super(fs_info, sb);
if (ret < 0) {
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
btrfs_handle_fs_error(fs_info, -EUCLEAN,
"unexpected superblock corruption detected");
return -EUCLEAN;
}
ret = write_dev_supers(dev, sb, max_mirrors);
if (ret)
total_errors++;
}
if (total_errors > max_errors) {
btrfs_err(fs_info, "%d errors while writing supers",
total_errors);
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
/* FUA is masked off if unsupported and can't be the reason */
btrfs_handle_fs_error(fs_info, -EIO,
"%d errors while writing supers",
total_errors);
return -EIO;
}
total_errors = 0;
list_for_each_entry(dev, head, dev_list) {
if (!dev->bdev)
continue;
if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
!test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
continue;
ret = wait_dev_supers(dev, max_mirrors);
if (ret)
total_errors++;
}
mutex_unlock(&fs_info->fs_devices->device_list_mutex);
if (total_errors > max_errors) {
btrfs_handle_fs_error(fs_info, -EIO,
"%d errors while writing supers",
total_errors);
return -EIO;
}
return 0;
}
/* Drop a fs root from the radix tree and free it. */
void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
struct btrfs_root *root)
{
bool drop_ref = false;
spin_lock(&fs_info->fs_roots_lock);
xa_erase(&fs_info->fs_roots, (unsigned long)root->root_key.objectid);
if (test_and_clear_bit(BTRFS_ROOT_REGISTERED, &root->state))
drop_ref = true;
spin_unlock(&fs_info->fs_roots_lock);
if (BTRFS_FS_ERROR(fs_info)) {
ASSERT(root->log_root == NULL);
if (root->reloc_root) {
btrfs_put_root(root->reloc_root);
root->reloc_root = NULL;
}
}
if (drop_ref)
btrfs_put_root(root);
}
int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *roots[8];
unsigned long index = 0;
int i;
int err = 0;
int grabbed;
while (1) {
struct btrfs_root *root;
spin_lock(&fs_info->fs_roots_lock);
if (!xa_find(&fs_info->fs_roots, &index, ULONG_MAX, XA_PRESENT)) {
spin_unlock(&fs_info->fs_roots_lock);
return err;
}
grabbed = 0;
xa_for_each_start(&fs_info->fs_roots, index, root, index) {
/* Avoid grabbing roots in dead_roots */
if (btrfs_root_refs(&root->root_item) > 0)
roots[grabbed++] = btrfs_grab_root(root);
if (grabbed >= ARRAY_SIZE(roots))
break;
}
spin_unlock(&fs_info->fs_roots_lock);
for (i = 0; i < grabbed; i++) {
if (!roots[i])
continue;
index = roots[i]->root_key.objectid;
err = btrfs_orphan_cleanup(roots[i]);
if (err)
goto out;
btrfs_put_root(roots[i]);
}
index++;
}
out:
/* Release the roots that remain uncleaned due to error */
for (; i < grabbed; i++) {
if (roots[i])
btrfs_put_root(roots[i]);
}
return err;
}
int btrfs_commit_super(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root = fs_info->tree_root;
struct btrfs_trans_handle *trans;
mutex_lock(&fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
wake_up_process(fs_info->cleaner_kthread);
/* wait until ongoing cleanup work done */
down_write(&fs_info->cleanup_work_sem);
up_write(&fs_info->cleanup_work_sem);
trans = btrfs_join_transaction(root);
if (IS_ERR(trans))
return PTR_ERR(trans);
return btrfs_commit_transaction(trans);
}
static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
{
struct btrfs_transaction *trans;
struct btrfs_transaction *tmp;
bool found = false;
if (list_empty(&fs_info->trans_list))
return;
/*
* This function is only called at the very end of close_ctree(),
* thus no other running transaction, no need to take trans_lock.
*/
ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
struct extent_state *cached = NULL;
u64 dirty_bytes = 0;
u64 cur = 0;
u64 found_start;
u64 found_end;
found = true;
while (!find_first_extent_bit(&trans->dirty_pages, cur,
&found_start, &found_end, EXTENT_DIRTY, &cached)) {
dirty_bytes += found_end + 1 - found_start;
cur = found_end + 1;
}
btrfs_warn(fs_info,
"transaction %llu (with %llu dirty metadata bytes) is not committed",
trans->transid, dirty_bytes);
btrfs_cleanup_one_transaction(trans, fs_info);
if (trans == fs_info->running_transaction)
fs_info->running_transaction = NULL;
list_del_init(&trans->list);
btrfs_put_transaction(trans);
trace_btrfs_transaction_commit(fs_info);
}
ASSERT(!found);
}
void __cold close_ctree(struct btrfs_fs_info *fs_info)
{
int ret;
set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
/*
* We don't want the cleaner to start new transactions, add more delayed
* iputs, etc. while we're closing. We can't use kthread_stop() yet
* because that frees the task_struct, and the transaction kthread might
* still try to wake up the cleaner.
*/
kthread_park(fs_info->cleaner_kthread);
/*
* If we had UNFINISHED_DROPS we could still be processing them, so
* clear that bit and wake up relocation so it can stop.
*/
btrfs_wake_unfinished_drop(fs_info);
/* wait for the qgroup rescan worker to stop */
btrfs_qgroup_wait_for_completion(fs_info, false);
/* wait for the uuid_scan task to finish */
down(&fs_info->uuid_tree_rescan_sem);
/* avoid complains from lockdep et al., set sem back to initial state */
up(&fs_info->uuid_tree_rescan_sem);
/* pause restriper - we want to resume on mount */
btrfs_pause_balance(fs_info);
btrfs_dev_replace_suspend_for_unmount(fs_info);
btrfs_scrub_cancel(fs_info);
/* wait for any defraggers to finish */
wait_event(fs_info->transaction_wait,
(atomic_read(&fs_info->defrag_running) == 0));
/* clear out the rbtree of defraggable inodes */
btrfs_cleanup_defrag_inodes(fs_info);
cancel_work_sync(&fs_info->async_reclaim_work);
cancel_work_sync(&fs_info->async_data_reclaim_work);
cancel_work_sync(&fs_info->preempt_reclaim_work);
cancel_work_sync(&fs_info->reclaim_bgs_work);
/* Cancel or finish ongoing discard work */
btrfs_discard_cleanup(fs_info);
if (!sb_rdonly(fs_info->sb)) {
/*
* The cleaner kthread is stopped, so do one final pass over
* unused block groups.
*/
btrfs_delete_unused_bgs(fs_info);
/*
* There might be existing delayed inode workers still running
* and holding an empty delayed inode item. We must wait for
* them to complete first because they can create a transaction.
* This happens when someone calls btrfs_balance_delayed_items()
* and then a transaction commit runs the same delayed nodes
* before any delayed worker has done something with the nodes.
* We must wait for any worker here and not at transaction
* commit time since that could cause a deadlock.
* This is a very rare case.
*/
btrfs_flush_workqueue(fs_info->delayed_workers);
ret = btrfs_commit_super(fs_info);
if (ret)
btrfs_err(fs_info, "commit super ret %d", ret);
}
if (BTRFS_FS_ERROR(fs_info))
btrfs_error_commit_super(fs_info);
kthread_stop(fs_info->transaction_kthread);
kthread_stop(fs_info->cleaner_kthread);
ASSERT(list_empty(&fs_info->delayed_iputs));
set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
if (btrfs_check_quota_leak(fs_info)) {
WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
btrfs_err(fs_info, "qgroup reserved space leaked");
}
btrfs_free_qgroup_config(fs_info);
ASSERT(list_empty(&fs_info->delalloc_roots));
if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
btrfs_info(fs_info, "at unmount delalloc count %lld",
percpu_counter_sum(&fs_info->delalloc_bytes));
}
if (percpu_counter_sum(&fs_info->ordered_bytes))
btrfs_info(fs_info, "at unmount dio bytes count %lld",
percpu_counter_sum(&fs_info->ordered_bytes));
btrfs_sysfs_remove_mounted(fs_info);
btrfs_sysfs_remove_fsid(fs_info->fs_devices);
btrfs_put_block_group_cache(fs_info);
/*
* we must make sure there is not any read request to
* submit after we stopping all workers.
*/
invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
btrfs_stop_all_workers(fs_info);
/* We shouldn't have any transaction open at this point */
warn_about_uncommitted_trans(fs_info);
clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
free_root_pointers(fs_info, true);
btrfs_free_fs_roots(fs_info);
/*
* We must free the block groups after dropping the fs_roots as we could
* have had an IO error and have left over tree log blocks that aren't
* cleaned up until the fs roots are freed. This makes the block group
* accounting appear to be wrong because there's pending reserved bytes,
* so make sure we do the block group cleanup afterwards.
*/
btrfs_free_block_groups(fs_info);
iput(fs_info->btree_inode);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
btrfsic_unmount(fs_info->fs_devices);
#endif
btrfs_mapping_tree_free(&fs_info->mapping_tree);
btrfs_close_devices(fs_info->fs_devices);
}
int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
int atomic)
{
int ret;
struct inode *btree_inode = buf->pages[0]->mapping->host;
ret = extent_buffer_uptodate(buf);
if (!ret)
return ret;
ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
parent_transid, atomic);
if (ret == -EAGAIN)
return ret;
return !ret;
}
void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
{
struct btrfs_fs_info *fs_info = buf->fs_info;
u64 transid = btrfs_header_generation(buf);
int was_dirty;
#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
/*
* This is a fast path so only do this check if we have sanity tests
* enabled. Normal people shouldn't be using unmapped buffers as dirty
* outside of the sanity tests.
*/
if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
return;
#endif
btrfs_assert_tree_write_locked(buf);
if (transid != fs_info->generation)
WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
buf->start, transid, fs_info->generation);
was_dirty = set_extent_buffer_dirty(buf);
if (!was_dirty)
percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
buf->len,
fs_info->dirty_metadata_batch);
#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
/*
* Since btrfs_mark_buffer_dirty() can be called with item pointer set
* but item data not updated.
* So here we should only check item pointers, not item data.
*/
if (btrfs_header_level(buf) == 0 &&
btrfs_check_leaf_relaxed(buf)) {
btrfs_print_leaf(buf);
ASSERT(0);
}
#endif
}
static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
int flush_delayed)
{
/*
* looks as though older kernels can get into trouble with
* this code, they end up stuck in balance_dirty_pages forever
*/
int ret;
if (current->flags & PF_MEMALLOC)
return;
if (flush_delayed)
btrfs_balance_delayed_items(fs_info);
ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
BTRFS_DIRTY_METADATA_THRESH,
fs_info->dirty_metadata_batch);
if (ret > 0) {
balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
}
}
void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
{
__btrfs_btree_balance_dirty(fs_info, 1);
}
void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
{
__btrfs_btree_balance_dirty(fs_info, 0);
}
static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
{
/* cleanup FS via transaction */
btrfs_cleanup_transaction(fs_info);
mutex_lock(&fs_info->cleaner_mutex);
btrfs_run_delayed_iputs(fs_info);
mutex_unlock(&fs_info->cleaner_mutex);
down_write(&fs_info->cleanup_work_sem);
up_write(&fs_info->cleanup_work_sem);
}
static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
{
unsigned long index = 0;
int grabbed = 0;
struct btrfs_root *roots[8];
spin_lock(&fs_info->fs_roots_lock);
while ((grabbed = xa_extract(&fs_info->fs_roots, (void **)roots, index,
ULONG_MAX, 8, XA_PRESENT))) {
for (int i = 0; i < grabbed; i++)
roots[i] = btrfs_grab_root(roots[i]);
spin_unlock(&fs_info->fs_roots_lock);
for (int i = 0; i < grabbed; i++) {
if (!roots[i])
continue;
index = roots[i]->root_key.objectid;
btrfs_free_log(NULL, roots[i]);
btrfs_put_root(roots[i]);
}
index++;
spin_lock(&fs_info->fs_roots_lock);
}
spin_unlock(&fs_info->fs_roots_lock);
btrfs_free_log_root_tree(NULL, fs_info);
}
static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
{
struct btrfs_ordered_extent *ordered;
spin_lock(&root->ordered_extent_lock);
/*
* This will just short circuit the ordered completion stuff which will
* make sure the ordered extent gets properly cleaned up.
*/
list_for_each_entry(ordered, &root->ordered_extents,
root_extent_list)
set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
spin_unlock(&root->ordered_extent_lock);
}
static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&fs_info->ordered_root_lock);
list_splice_init(&fs_info->ordered_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
ordered_root);
list_move_tail(&root->ordered_root,
&fs_info->ordered_roots);
spin_unlock(&fs_info->ordered_root_lock);
btrfs_destroy_ordered_extents(root);
cond_resched();
spin_lock(&fs_info->ordered_root_lock);
}
spin_unlock(&fs_info->ordered_root_lock);
/*
* We need this here because if we've been flipped read-only we won't
* get sync() from the umount, so we need to make sure any ordered
* extents that haven't had their dirty pages IO start writeout yet
* actually get run and error out properly.
*/
btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
}
static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
struct btrfs_fs_info *fs_info)
{
struct rb_node *node;
struct btrfs_delayed_ref_root *delayed_refs;
struct btrfs_delayed_ref_node *ref;
int ret = 0;
delayed_refs = &trans->delayed_refs;
spin_lock(&delayed_refs->lock);
if (atomic_read(&delayed_refs->num_entries) == 0) {
spin_unlock(&delayed_refs->lock);
btrfs_debug(fs_info, "delayed_refs has NO entry");
return ret;
}
while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
struct btrfs_delayed_ref_head *head;
struct rb_node *n;
bool pin_bytes = false;
head = rb_entry(node, struct btrfs_delayed_ref_head,
href_node);
if (btrfs_delayed_ref_lock(delayed_refs, head))
continue;
spin_lock(&head->lock);
while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
ref = rb_entry(n, struct btrfs_delayed_ref_node,
ref_node);
ref->in_tree = 0;
rb_erase_cached(&ref->ref_node, &head->ref_tree);
RB_CLEAR_NODE(&ref->ref_node);
if (!list_empty(&ref->add_list))
list_del(&ref->add_list);
atomic_dec(&delayed_refs->num_entries);
btrfs_put_delayed_ref(ref);
}
if (head->must_insert_reserved)
pin_bytes = true;
btrfs_free_delayed_extent_op(head->extent_op);
btrfs_delete_ref_head(delayed_refs, head);
spin_unlock(&head->lock);
spin_unlock(&delayed_refs->lock);
mutex_unlock(&head->mutex);
if (pin_bytes) {
struct btrfs_block_group *cache;
cache = btrfs_lookup_block_group(fs_info, head->bytenr);
BUG_ON(!cache);
spin_lock(&cache->space_info->lock);
spin_lock(&cache->lock);
cache->pinned += head->num_bytes;
btrfs_space_info_update_bytes_pinned(fs_info,
cache->space_info, head->num_bytes);
cache->reserved -= head->num_bytes;
cache->space_info->bytes_reserved -= head->num_bytes;
spin_unlock(&cache->lock);
spin_unlock(&cache->space_info->lock);
btrfs_put_block_group(cache);
btrfs_error_unpin_extent_range(fs_info, head->bytenr,
head->bytenr + head->num_bytes - 1);
}
btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
btrfs_put_delayed_ref_head(head);
cond_resched();
spin_lock(&delayed_refs->lock);
}
btrfs_qgroup_destroy_extent_records(trans);
spin_unlock(&delayed_refs->lock);
return ret;
}
static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
{
struct btrfs_inode *btrfs_inode;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&root->delalloc_lock);
list_splice_init(&root->delalloc_inodes, &splice);
while (!list_empty(&splice)) {
struct inode *inode = NULL;
btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
delalloc_inodes);
__btrfs_del_delalloc_inode(root, btrfs_inode);
spin_unlock(&root->delalloc_lock);
/*
* Make sure we get a live inode and that it'll not disappear
* meanwhile.
*/
inode = igrab(&btrfs_inode->vfs_inode);
if (inode) {
invalidate_inode_pages2(inode->i_mapping);
iput(inode);
}
spin_lock(&root->delalloc_lock);
}
spin_unlock(&root->delalloc_lock);
}
static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
{
struct btrfs_root *root;
struct list_head splice;
INIT_LIST_HEAD(&splice);
spin_lock(&fs_info->delalloc_root_lock);
list_splice_init(&fs_info->delalloc_roots, &splice);
while (!list_empty(&splice)) {
root = list_first_entry(&splice, struct btrfs_root,
delalloc_root);
root = btrfs_grab_root(root);
BUG_ON(!root);
spin_unlock(&fs_info->delalloc_root_lock);
btrfs_destroy_delalloc_inodes(root);
btrfs_put_root(root);
spin_lock(&fs_info->delalloc_root_lock);
}
spin_unlock(&fs_info->delalloc_root_lock);
}
static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
struct extent_io_tree *dirty_pages,
int mark)
{
int ret;
struct extent_buffer *eb;
u64 start = 0;
u64 end;
while (1) {
ret = find_first_extent_bit(dirty_pages, start, &start, &end,
mark, NULL);
if (ret)
break;
clear_extent_bits(dirty_pages, start, end, mark);
while (start <= end) {
eb = find_extent_buffer(fs_info, start);
start += fs_info->nodesize;
if (!eb)
continue;
wait_on_extent_buffer_writeback(eb);
if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
&eb->bflags))
clear_extent_buffer_dirty(eb);
free_extent_buffer_stale(eb);
}
}
return ret;
}
static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
struct extent_io_tree *unpin)
{
u64 start;
u64 end;
int ret;
while (1) {
struct extent_state *cached_state = NULL;
/*
* The btrfs_finish_extent_commit() may get the same range as
* ours between find_first_extent_bit and clear_extent_dirty.
* Hence, hold the unused_bg_unpin_mutex to avoid double unpin
* the same extent range.
*/
mutex_lock(&fs_info->unused_bg_unpin_mutex);
ret = find_first_extent_bit(unpin, 0, &start, &end,
EXTENT_DIRTY, &cached_state);
if (ret) {
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
break;
}
clear_extent_dirty(unpin, start, end, &cached_state);
free_extent_state(cached_state);
btrfs_error_unpin_extent_range(fs_info, start, end);
mutex_unlock(&fs_info->unused_bg_unpin_mutex);
cond_resched();
}
return 0;
}
static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
{
struct inode *inode;
inode = cache->io_ctl.inode;
if (inode) {
invalidate_inode_pages2(inode->i_mapping);
BTRFS_I(inode)->generation = 0;
cache->io_ctl.inode = NULL;
iput(inode);
}
ASSERT(cache->io_ctl.pages == NULL);
btrfs_put_block_group(cache);
}
void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_block_group *cache;
spin_lock(&cur_trans->dirty_bgs_lock);
while (!list_empty(&cur_trans->dirty_bgs)) {
cache = list_first_entry(&cur_trans->dirty_bgs,
struct btrfs_block_group,
dirty_list);
if (!list_empty(&cache->io_list)) {
spin_unlock(&cur_trans->dirty_bgs_lock);
list_del_init(&cache->io_list);
btrfs_cleanup_bg_io(cache);
spin_lock(&cur_trans->dirty_bgs_lock);
}
list_del_init(&cache->dirty_list);
spin_lock(&cache->lock);
cache->disk_cache_state = BTRFS_DC_ERROR;
spin_unlock(&cache->lock);
spin_unlock(&cur_trans->dirty_bgs_lock);
btrfs_put_block_group(cache);
btrfs_delayed_refs_rsv_release(fs_info, 1);
spin_lock(&cur_trans->dirty_bgs_lock);
}
spin_unlock(&cur_trans->dirty_bgs_lock);
/*
* Refer to the definition of io_bgs member for details why it's safe
* to use it without any locking
*/
while (!list_empty(&cur_trans->io_bgs)) {
cache = list_first_entry(&cur_trans->io_bgs,
struct btrfs_block_group,
io_list);
list_del_init(&cache->io_list);
spin_lock(&cache->lock);
cache->disk_cache_state = BTRFS_DC_ERROR;
spin_unlock(&cache->lock);
btrfs_cleanup_bg_io(cache);
}
}
void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
struct btrfs_fs_info *fs_info)
{
struct btrfs_device *dev, *tmp;
btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
ASSERT(list_empty(&cur_trans->dirty_bgs));
ASSERT(list_empty(&cur_trans->io_bgs));
list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
post_commit_list) {
list_del_init(&dev->post_commit_list);
}
btrfs_destroy_delayed_refs(cur_trans, fs_info);
cur_trans->state = TRANS_STATE_COMMIT_START;
wake_up(&fs_info->transaction_blocked_wait);
cur_trans->state = TRANS_STATE_UNBLOCKED;
wake_up(&fs_info->transaction_wait);
btrfs_destroy_delayed_inodes(fs_info);
btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
EXTENT_DIRTY);
btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
btrfs_free_redirty_list(cur_trans);
cur_trans->state =TRANS_STATE_COMPLETED;
wake_up(&cur_trans->commit_wait);
}
static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
{
struct btrfs_transaction *t;
mutex_lock(&fs_info->transaction_kthread_mutex);
spin_lock(&fs_info->trans_lock);
while (!list_empty(&fs_info->trans_list)) {
t = list_first_entry(&fs_info->trans_list,
struct btrfs_transaction, list);
if (t->state >= TRANS_STATE_COMMIT_START) {
refcount_inc(&t->use_count);
spin_unlock(&fs_info->trans_lock);
btrfs_wait_for_commit(fs_info, t->transid);
btrfs_put_transaction(t);
spin_lock(&fs_info->trans_lock);
continue;
}
if (t == fs_info->running_transaction) {
t->state = TRANS_STATE_COMMIT_DOING;
spin_unlock(&fs_info->trans_lock);
/*
* We wait for 0 num_writers since we don't hold a trans
* handle open currently for this transaction.
*/
wait_event(t->writer_wait,
atomic_read(&t->num_writers) == 0);
} else {
spin_unlock(&fs_info->trans_lock);
}
btrfs_cleanup_one_transaction(t, fs_info);
spin_lock(&fs_info->trans_lock);
if (t == fs_info->running_transaction)
fs_info->running_transaction = NULL;
list_del_init(&t->list);
spin_unlock(&fs_info->trans_lock);
btrfs_put_transaction(t);
trace_btrfs_transaction_commit(fs_info);
spin_lock(&fs_info->trans_lock);
}
spin_unlock(&fs_info->trans_lock);
btrfs_destroy_all_ordered_extents(fs_info);
btrfs_destroy_delayed_inodes(fs_info);
btrfs_assert_delayed_root_empty(fs_info);
btrfs_destroy_all_delalloc_inodes(fs_info);
btrfs_drop_all_logs(fs_info);
mutex_unlock(&fs_info->transaction_kthread_mutex);
return 0;
}
int btrfs_init_root_free_objectid(struct btrfs_root *root)
{
struct btrfs_path *path;
int ret;
struct extent_buffer *l;
struct btrfs_key search_key;
struct btrfs_key found_key;
int slot;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
search_key.type = -1;
search_key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
if (ret < 0)
goto error;
BUG_ON(ret == 0); /* Corruption */
if (path->slots[0] > 0) {
slot = path->slots[0] - 1;
l = path->nodes[0];
btrfs_item_key_to_cpu(l, &found_key, slot);
root->free_objectid = max_t(u64, found_key.objectid + 1,
BTRFS_FIRST_FREE_OBJECTID);
} else {
root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
}
ret = 0;
error:
btrfs_free_path(path);
return ret;
}
int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
{
int ret;
mutex_lock(&root->objectid_mutex);
if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
btrfs_warn(root->fs_info,
"the objectid of root %llu reaches its highest value",
root->root_key.objectid);
ret = -ENOSPC;
goto out;
}
*objectid = root->free_objectid++;
ret = 0;
out:
mutex_unlock(&root->objectid_mutex);
return ret;
}