2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 11:44:01 +08:00
linux-next/fs/super.c
Josef "Jeff" Sipek 0f7fc9e4d0 [PATCH] VFS: change struct file to use struct path
This patch changes struct file to use struct path instead of having
independent pointers to struct dentry and struct vfsmount, and converts all
users of f_{dentry,vfsmnt} in fs/ to use f_path.{dentry,mnt}.

Additionally, it adds two #define's to make the transition easier for users of
the f_dentry and f_vfsmnt.

Signed-off-by: Josef "Jeff" Sipek <jsipek@cs.sunysb.edu>
Signed-off-by: Andrew Morton <akpm@osdl.org>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>
2006-12-08 08:28:41 -08:00

940 lines
22 KiB
C

/*
* linux/fs/super.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* super.c contains code to handle: - mount structures
* - super-block tables
* - filesystem drivers list
* - mount system call
* - umount system call
* - ustat system call
*
* GK 2/5/95 - Changed to support mounting the root fs via NFS
*
* Added kerneld support: Jacques Gelinas and Bjorn Ekwall
* Added change_root: Werner Almesberger & Hans Lermen, Feb '96
* Added options to /proc/mounts:
* Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
* Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
* Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/smp_lock.h>
#include <linux/acct.h>
#include <linux/blkdev.h>
#include <linux/quotaops.h>
#include <linux/namei.h>
#include <linux/buffer_head.h> /* for fsync_super() */
#include <linux/mount.h>
#include <linux/security.h>
#include <linux/syscalls.h>
#include <linux/vfs.h>
#include <linux/writeback.h> /* for the emergency remount stuff */
#include <linux/idr.h>
#include <linux/kobject.h>
#include <linux/mutex.h>
#include <asm/uaccess.h>
void get_filesystem(struct file_system_type *fs);
void put_filesystem(struct file_system_type *fs);
struct file_system_type *get_fs_type(const char *name);
LIST_HEAD(super_blocks);
DEFINE_SPINLOCK(sb_lock);
/**
* alloc_super - create new superblock
* @type: filesystem type superblock should belong to
*
* Allocates and initializes a new &struct super_block. alloc_super()
* returns a pointer new superblock or %NULL if allocation had failed.
*/
static struct super_block *alloc_super(struct file_system_type *type)
{
struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
static struct super_operations default_op;
if (s) {
if (security_sb_alloc(s)) {
kfree(s);
s = NULL;
goto out;
}
INIT_LIST_HEAD(&s->s_dirty);
INIT_LIST_HEAD(&s->s_io);
INIT_LIST_HEAD(&s->s_files);
INIT_LIST_HEAD(&s->s_instances);
INIT_HLIST_HEAD(&s->s_anon);
INIT_LIST_HEAD(&s->s_inodes);
init_rwsem(&s->s_umount);
mutex_init(&s->s_lock);
lockdep_set_class(&s->s_umount, &type->s_umount_key);
/*
* The locking rules for s_lock are up to the
* filesystem. For example ext3fs has different
* lock ordering than usbfs:
*/
lockdep_set_class(&s->s_lock, &type->s_lock_key);
down_write(&s->s_umount);
s->s_count = S_BIAS;
atomic_set(&s->s_active, 1);
mutex_init(&s->s_vfs_rename_mutex);
mutex_init(&s->s_dquot.dqio_mutex);
mutex_init(&s->s_dquot.dqonoff_mutex);
init_rwsem(&s->s_dquot.dqptr_sem);
init_waitqueue_head(&s->s_wait_unfrozen);
s->s_maxbytes = MAX_NON_LFS;
s->dq_op = sb_dquot_ops;
s->s_qcop = sb_quotactl_ops;
s->s_op = &default_op;
s->s_time_gran = 1000000000;
}
out:
return s;
}
/**
* destroy_super - frees a superblock
* @s: superblock to free
*
* Frees a superblock.
*/
static inline void destroy_super(struct super_block *s)
{
security_sb_free(s);
kfree(s);
}
/* Superblock refcounting */
/*
* Drop a superblock's refcount. Returns non-zero if the superblock was
* destroyed. The caller must hold sb_lock.
*/
int __put_super(struct super_block *sb)
{
int ret = 0;
if (!--sb->s_count) {
destroy_super(sb);
ret = 1;
}
return ret;
}
/*
* Drop a superblock's refcount.
* Returns non-zero if the superblock is about to be destroyed and
* at least is already removed from super_blocks list, so if we are
* making a loop through super blocks then we need to restart.
* The caller must hold sb_lock.
*/
int __put_super_and_need_restart(struct super_block *sb)
{
/* check for race with generic_shutdown_super() */
if (list_empty(&sb->s_list)) {
/* super block is removed, need to restart... */
__put_super(sb);
return 1;
}
/* can't be the last, since s_list is still in use */
sb->s_count--;
BUG_ON(sb->s_count == 0);
return 0;
}
/**
* put_super - drop a temporary reference to superblock
* @sb: superblock in question
*
* Drops a temporary reference, frees superblock if there's no
* references left.
*/
static void put_super(struct super_block *sb)
{
spin_lock(&sb_lock);
__put_super(sb);
spin_unlock(&sb_lock);
}
/**
* deactivate_super - drop an active reference to superblock
* @s: superblock to deactivate
*
* Drops an active reference to superblock, acquiring a temprory one if
* there is no active references left. In that case we lock superblock,
* tell fs driver to shut it down and drop the temporary reference we
* had just acquired.
*/
void deactivate_super(struct super_block *s)
{
struct file_system_type *fs = s->s_type;
if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
s->s_count -= S_BIAS-1;
spin_unlock(&sb_lock);
DQUOT_OFF(s);
down_write(&s->s_umount);
fs->kill_sb(s);
put_filesystem(fs);
put_super(s);
}
}
EXPORT_SYMBOL(deactivate_super);
/**
* grab_super - acquire an active reference
* @s: reference we are trying to make active
*
* Tries to acquire an active reference. grab_super() is used when we
* had just found a superblock in super_blocks or fs_type->fs_supers
* and want to turn it into a full-blown active reference. grab_super()
* is called with sb_lock held and drops it. Returns 1 in case of
* success, 0 if we had failed (superblock contents was already dead or
* dying when grab_super() had been called).
*/
static int grab_super(struct super_block *s) __releases(sb_lock)
{
s->s_count++;
spin_unlock(&sb_lock);
down_write(&s->s_umount);
if (s->s_root) {
spin_lock(&sb_lock);
if (s->s_count > S_BIAS) {
atomic_inc(&s->s_active);
s->s_count--;
spin_unlock(&sb_lock);
return 1;
}
spin_unlock(&sb_lock);
}
up_write(&s->s_umount);
put_super(s);
yield();
return 0;
}
/*
* Superblock locking. We really ought to get rid of these two.
*/
void lock_super(struct super_block * sb)
{
get_fs_excl();
mutex_lock(&sb->s_lock);
}
void unlock_super(struct super_block * sb)
{
put_fs_excl();
mutex_unlock(&sb->s_lock);
}
EXPORT_SYMBOL(lock_super);
EXPORT_SYMBOL(unlock_super);
/*
* Write out and wait upon all dirty data associated with this
* superblock. Filesystem data as well as the underlying block
* device. Takes the superblock lock. Requires a second blkdev
* flush by the caller to complete the operation.
*/
void __fsync_super(struct super_block *sb)
{
sync_inodes_sb(sb, 0);
DQUOT_SYNC(sb);
lock_super(sb);
if (sb->s_dirt && sb->s_op->write_super)
sb->s_op->write_super(sb);
unlock_super(sb);
if (sb->s_op->sync_fs)
sb->s_op->sync_fs(sb, 1);
sync_blockdev(sb->s_bdev);
sync_inodes_sb(sb, 1);
}
/*
* Write out and wait upon all dirty data associated with this
* superblock. Filesystem data as well as the underlying block
* device. Takes the superblock lock.
*/
int fsync_super(struct super_block *sb)
{
__fsync_super(sb);
return sync_blockdev(sb->s_bdev);
}
/**
* generic_shutdown_super - common helper for ->kill_sb()
* @sb: superblock to kill
*
* generic_shutdown_super() does all fs-independent work on superblock
* shutdown. Typical ->kill_sb() should pick all fs-specific objects
* that need destruction out of superblock, call generic_shutdown_super()
* and release aforementioned objects. Note: dentries and inodes _are_
* taken care of and do not need specific handling.
*
* Upon calling this function, the filesystem may no longer alter or
* rearrange the set of dentries belonging to this super_block, nor may it
* change the attachments of dentries to inodes.
*/
void generic_shutdown_super(struct super_block *sb)
{
struct super_operations *sop = sb->s_op;
if (sb->s_root) {
shrink_dcache_for_umount(sb);
fsync_super(sb);
lock_super(sb);
sb->s_flags &= ~MS_ACTIVE;
/* bad name - it should be evict_inodes() */
invalidate_inodes(sb);
lock_kernel();
if (sop->write_super && sb->s_dirt)
sop->write_super(sb);
if (sop->put_super)
sop->put_super(sb);
/* Forget any remaining inodes */
if (invalidate_inodes(sb)) {
printk("VFS: Busy inodes after unmount of %s. "
"Self-destruct in 5 seconds. Have a nice day...\n",
sb->s_id);
}
unlock_kernel();
unlock_super(sb);
}
spin_lock(&sb_lock);
/* should be initialized for __put_super_and_need_restart() */
list_del_init(&sb->s_list);
list_del(&sb->s_instances);
spin_unlock(&sb_lock);
up_write(&sb->s_umount);
}
EXPORT_SYMBOL(generic_shutdown_super);
/**
* sget - find or create a superblock
* @type: filesystem type superblock should belong to
* @test: comparison callback
* @set: setup callback
* @data: argument to each of them
*/
struct super_block *sget(struct file_system_type *type,
int (*test)(struct super_block *,void *),
int (*set)(struct super_block *,void *),
void *data)
{
struct super_block *s = NULL;
struct list_head *p;
int err;
retry:
spin_lock(&sb_lock);
if (test) list_for_each(p, &type->fs_supers) {
struct super_block *old;
old = list_entry(p, struct super_block, s_instances);
if (!test(old, data))
continue;
if (!grab_super(old))
goto retry;
if (s)
destroy_super(s);
return old;
}
if (!s) {
spin_unlock(&sb_lock);
s = alloc_super(type);
if (!s)
return ERR_PTR(-ENOMEM);
goto retry;
}
err = set(s, data);
if (err) {
spin_unlock(&sb_lock);
destroy_super(s);
return ERR_PTR(err);
}
s->s_type = type;
strlcpy(s->s_id, type->name, sizeof(s->s_id));
list_add_tail(&s->s_list, &super_blocks);
list_add(&s->s_instances, &type->fs_supers);
spin_unlock(&sb_lock);
get_filesystem(type);
return s;
}
EXPORT_SYMBOL(sget);
void drop_super(struct super_block *sb)
{
up_read(&sb->s_umount);
put_super(sb);
}
EXPORT_SYMBOL(drop_super);
static inline void write_super(struct super_block *sb)
{
lock_super(sb);
if (sb->s_root && sb->s_dirt)
if (sb->s_op->write_super)
sb->s_op->write_super(sb);
unlock_super(sb);
}
/*
* Note: check the dirty flag before waiting, so we don't
* hold up the sync while mounting a device. (The newly
* mounted device won't need syncing.)
*/
void sync_supers(void)
{
struct super_block *sb;
spin_lock(&sb_lock);
restart:
list_for_each_entry(sb, &super_blocks, s_list) {
if (sb->s_dirt) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
write_super(sb);
up_read(&sb->s_umount);
spin_lock(&sb_lock);
if (__put_super_and_need_restart(sb))
goto restart;
}
}
spin_unlock(&sb_lock);
}
/*
* Call the ->sync_fs super_op against all filesytems which are r/w and
* which implement it.
*
* This operation is careful to avoid the livelock which could easily happen
* if two or more filesystems are being continuously dirtied. s_need_sync_fs
* is used only here. We set it against all filesystems and then clear it as
* we sync them. So redirtied filesystems are skipped.
*
* But if process A is currently running sync_filesytems and then process B
* calls sync_filesystems as well, process B will set all the s_need_sync_fs
* flags again, which will cause process A to resync everything. Fix that with
* a local mutex.
*
* (Fabian) Avoid sync_fs with clean fs & wait mode 0
*/
void sync_filesystems(int wait)
{
struct super_block *sb;
static DEFINE_MUTEX(mutex);
mutex_lock(&mutex); /* Could be down_interruptible */
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
if (!sb->s_op->sync_fs)
continue;
if (sb->s_flags & MS_RDONLY)
continue;
sb->s_need_sync_fs = 1;
}
restart:
list_for_each_entry(sb, &super_blocks, s_list) {
if (!sb->s_need_sync_fs)
continue;
sb->s_need_sync_fs = 0;
if (sb->s_flags & MS_RDONLY)
continue; /* hm. Was remounted r/o meanwhile */
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root && (wait || sb->s_dirt))
sb->s_op->sync_fs(sb, wait);
up_read(&sb->s_umount);
/* restart only when sb is no longer on the list */
spin_lock(&sb_lock);
if (__put_super_and_need_restart(sb))
goto restart;
}
spin_unlock(&sb_lock);
mutex_unlock(&mutex);
}
/**
* get_super - get the superblock of a device
* @bdev: device to get the superblock for
*
* Scans the superblock list and finds the superblock of the file system
* mounted on the device given. %NULL is returned if no match is found.
*/
struct super_block * get_super(struct block_device *bdev)
{
struct super_block *sb;
if (!bdev)
return NULL;
spin_lock(&sb_lock);
rescan:
list_for_each_entry(sb, &super_blocks, s_list) {
if (sb->s_bdev == bdev) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root)
return sb;
up_read(&sb->s_umount);
/* restart only when sb is no longer on the list */
spin_lock(&sb_lock);
if (__put_super_and_need_restart(sb))
goto rescan;
}
}
spin_unlock(&sb_lock);
return NULL;
}
EXPORT_SYMBOL(get_super);
struct super_block * user_get_super(dev_t dev)
{
struct super_block *sb;
spin_lock(&sb_lock);
rescan:
list_for_each_entry(sb, &super_blocks, s_list) {
if (sb->s_dev == dev) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root)
return sb;
up_read(&sb->s_umount);
/* restart only when sb is no longer on the list */
spin_lock(&sb_lock);
if (__put_super_and_need_restart(sb))
goto rescan;
}
}
spin_unlock(&sb_lock);
return NULL;
}
asmlinkage long sys_ustat(unsigned dev, struct ustat __user * ubuf)
{
struct super_block *s;
struct ustat tmp;
struct kstatfs sbuf;
int err = -EINVAL;
s = user_get_super(new_decode_dev(dev));
if (s == NULL)
goto out;
err = vfs_statfs(s->s_root, &sbuf);
drop_super(s);
if (err)
goto out;
memset(&tmp,0,sizeof(struct ustat));
tmp.f_tfree = sbuf.f_bfree;
tmp.f_tinode = sbuf.f_ffree;
err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
out:
return err;
}
/**
* mark_files_ro
* @sb: superblock in question
*
* All files are marked read/only. We don't care about pending
* delete files so this should be used in 'force' mode only
*/
static void mark_files_ro(struct super_block *sb)
{
struct file *f;
file_list_lock();
list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
if (S_ISREG(f->f_path.dentry->d_inode->i_mode) && file_count(f))
f->f_mode &= ~FMODE_WRITE;
}
file_list_unlock();
}
/**
* do_remount_sb - asks filesystem to change mount options.
* @sb: superblock in question
* @flags: numeric part of options
* @data: the rest of options
* @force: whether or not to force the change
*
* Alters the mount options of a mounted file system.
*/
int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
{
int retval;
#ifdef CONFIG_BLOCK
if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
return -EACCES;
#endif
if (flags & MS_RDONLY)
acct_auto_close(sb);
shrink_dcache_sb(sb);
fsync_super(sb);
/* If we are remounting RDONLY and current sb is read/write,
make sure there are no rw files opened */
if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
if (force)
mark_files_ro(sb);
else if (!fs_may_remount_ro(sb))
return -EBUSY;
}
if (sb->s_op->remount_fs) {
lock_super(sb);
retval = sb->s_op->remount_fs(sb, &flags, data);
unlock_super(sb);
if (retval)
return retval;
}
sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
return 0;
}
static void do_emergency_remount(unsigned long foo)
{
struct super_block *sb;
spin_lock(&sb_lock);
list_for_each_entry(sb, &super_blocks, s_list) {
sb->s_count++;
spin_unlock(&sb_lock);
down_read(&sb->s_umount);
if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
/*
* ->remount_fs needs lock_kernel().
*
* What lock protects sb->s_flags??
*/
lock_kernel();
do_remount_sb(sb, MS_RDONLY, NULL, 1);
unlock_kernel();
}
drop_super(sb);
spin_lock(&sb_lock);
}
spin_unlock(&sb_lock);
printk("Emergency Remount complete\n");
}
void emergency_remount(void)
{
pdflush_operation(do_emergency_remount, 0);
}
/*
* Unnamed block devices are dummy devices used by virtual
* filesystems which don't use real block-devices. -- jrs
*/
static struct idr unnamed_dev_idr;
static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
int set_anon_super(struct super_block *s, void *data)
{
int dev;
int error;
retry:
if (idr_pre_get(&unnamed_dev_idr, GFP_ATOMIC) == 0)
return -ENOMEM;
spin_lock(&unnamed_dev_lock);
error = idr_get_new(&unnamed_dev_idr, NULL, &dev);
spin_unlock(&unnamed_dev_lock);
if (error == -EAGAIN)
/* We raced and lost with another CPU. */
goto retry;
else if (error)
return -EAGAIN;
if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
spin_lock(&unnamed_dev_lock);
idr_remove(&unnamed_dev_idr, dev);
spin_unlock(&unnamed_dev_lock);
return -EMFILE;
}
s->s_dev = MKDEV(0, dev & MINORMASK);
return 0;
}
EXPORT_SYMBOL(set_anon_super);
void kill_anon_super(struct super_block *sb)
{
int slot = MINOR(sb->s_dev);
generic_shutdown_super(sb);
spin_lock(&unnamed_dev_lock);
idr_remove(&unnamed_dev_idr, slot);
spin_unlock(&unnamed_dev_lock);
}
EXPORT_SYMBOL(kill_anon_super);
void __init unnamed_dev_init(void)
{
idr_init(&unnamed_dev_idr);
}
void kill_litter_super(struct super_block *sb)
{
if (sb->s_root)
d_genocide(sb->s_root);
kill_anon_super(sb);
}
EXPORT_SYMBOL(kill_litter_super);
#ifdef CONFIG_BLOCK
static int set_bdev_super(struct super_block *s, void *data)
{
s->s_bdev = data;
s->s_dev = s->s_bdev->bd_dev;
return 0;
}
static int test_bdev_super(struct super_block *s, void *data)
{
return (void *)s->s_bdev == data;
}
static void bdev_uevent(struct block_device *bdev, enum kobject_action action)
{
if (bdev->bd_disk) {
if (bdev->bd_part)
kobject_uevent(&bdev->bd_part->kobj, action);
else
kobject_uevent(&bdev->bd_disk->kobj, action);
}
}
int get_sb_bdev(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data,
int (*fill_super)(struct super_block *, void *, int),
struct vfsmount *mnt)
{
struct block_device *bdev;
struct super_block *s;
int error = 0;
bdev = open_bdev_excl(dev_name, flags, fs_type);
if (IS_ERR(bdev))
return PTR_ERR(bdev);
/*
* once the super is inserted into the list by sget, s_umount
* will protect the lockfs code from trying to start a snapshot
* while we are mounting
*/
mutex_lock(&bdev->bd_mount_mutex);
s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
mutex_unlock(&bdev->bd_mount_mutex);
if (IS_ERR(s))
goto error_s;
if (s->s_root) {
if ((flags ^ s->s_flags) & MS_RDONLY) {
up_write(&s->s_umount);
deactivate_super(s);
error = -EBUSY;
goto error_bdev;
}
close_bdev_excl(bdev);
} else {
char b[BDEVNAME_SIZE];
s->s_flags = flags;
strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
sb_set_blocksize(s, block_size(bdev));
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
up_write(&s->s_umount);
deactivate_super(s);
goto error;
}
s->s_flags |= MS_ACTIVE;
bdev_uevent(bdev, KOBJ_MOUNT);
}
return simple_set_mnt(mnt, s);
error_s:
error = PTR_ERR(s);
error_bdev:
close_bdev_excl(bdev);
error:
return error;
}
EXPORT_SYMBOL(get_sb_bdev);
void kill_block_super(struct super_block *sb)
{
struct block_device *bdev = sb->s_bdev;
bdev_uevent(bdev, KOBJ_UMOUNT);
generic_shutdown_super(sb);
sync_blockdev(bdev);
close_bdev_excl(bdev);
}
EXPORT_SYMBOL(kill_block_super);
#endif
int get_sb_nodev(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int),
struct vfsmount *mnt)
{
int error;
struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
if (IS_ERR(s))
return PTR_ERR(s);
s->s_flags = flags;
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
up_write(&s->s_umount);
deactivate_super(s);
return error;
}
s->s_flags |= MS_ACTIVE;
return simple_set_mnt(mnt, s);
}
EXPORT_SYMBOL(get_sb_nodev);
static int compare_single(struct super_block *s, void *p)
{
return 1;
}
int get_sb_single(struct file_system_type *fs_type,
int flags, void *data,
int (*fill_super)(struct super_block *, void *, int),
struct vfsmount *mnt)
{
struct super_block *s;
int error;
s = sget(fs_type, compare_single, set_anon_super, NULL);
if (IS_ERR(s))
return PTR_ERR(s);
if (!s->s_root) {
s->s_flags = flags;
error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
if (error) {
up_write(&s->s_umount);
deactivate_super(s);
return error;
}
s->s_flags |= MS_ACTIVE;
}
do_remount_sb(s, flags, data, 0);
return simple_set_mnt(mnt, s);
}
EXPORT_SYMBOL(get_sb_single);
struct vfsmount *
vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
{
struct vfsmount *mnt;
char *secdata = NULL;
int error;
if (!type)
return ERR_PTR(-ENODEV);
error = -ENOMEM;
mnt = alloc_vfsmnt(name);
if (!mnt)
goto out;
if (data) {
secdata = alloc_secdata();
if (!secdata)
goto out_mnt;
error = security_sb_copy_data(type, data, secdata);
if (error)
goto out_free_secdata;
}
error = type->get_sb(type, flags, name, data, mnt);
if (error < 0)
goto out_free_secdata;
error = security_sb_kern_mount(mnt->mnt_sb, secdata);
if (error)
goto out_sb;
mnt->mnt_mountpoint = mnt->mnt_root;
mnt->mnt_parent = mnt;
up_write(&mnt->mnt_sb->s_umount);
free_secdata(secdata);
return mnt;
out_sb:
dput(mnt->mnt_root);
up_write(&mnt->mnt_sb->s_umount);
deactivate_super(mnt->mnt_sb);
out_free_secdata:
free_secdata(secdata);
out_mnt:
free_vfsmnt(mnt);
out:
return ERR_PTR(error);
}
EXPORT_SYMBOL_GPL(vfs_kern_mount);
struct vfsmount *
do_kern_mount(const char *fstype, int flags, const char *name, void *data)
{
struct file_system_type *type = get_fs_type(fstype);
struct vfsmount *mnt;
if (!type)
return ERR_PTR(-ENODEV);
mnt = vfs_kern_mount(type, flags, name, data);
put_filesystem(type);
return mnt;
}
struct vfsmount *kern_mount(struct file_system_type *type)
{
return vfs_kern_mount(type, 0, type->name, NULL);
}
EXPORT_SYMBOL(kern_mount);