2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-28 07:04:00 +08:00
linux-next/arch/x86/kernel/crash.c
Lee, Chun-Yi e3c41e37b0 x86/kexec: Fix kexec crash in syscall kexec_file_load()
The original bug is a page fault crash that sometimes happens
on big machines when preparing ELF headers:

    BUG: unable to handle kernel paging request at ffffc90613fc9000
    IP: [<ffffffff8103d645>] prepare_elf64_ram_headers_callback+0x165/0x260

The bug is caused by us under-counting the number of memory ranges
and subsequently not allocating enough ELF header space for them.
The bug is typically masked on smaller systems, because the ELF header
allocation is rounded up to the next page.

This patch modifies the code in fill_up_crash_elf_data() by using
walk_system_ram_res() instead of walk_system_ram_range() to correctly
count the max number of crash memory ranges. That's because the
walk_system_ram_range() filters out small memory regions that
reside in the same page, but walk_system_ram_res() does not.

Here's how I found the bug:

After tracing prepare_elf64_headers() and prepare_elf64_ram_headers_callback(),
the code uses walk_system_ram_res() to fill-in crash memory regions information
to the program header, so it counts those small memory regions that
reside in a page area.

But, when the kernel was using walk_system_ram_range() in
fill_up_crash_elf_data() to count the number of crash memory regions,
it filters out small regions.

I printed those small memory regions, for example:

  kexec: Get nr_ram ranges. vaddr=0xffff880077592258 paddr=0x77592258, sz=0xdc0

Based on the code in walk_system_ram_range(), this memory region
will be filtered out:

  pfn = (0x77592258 + 0x1000 - 1) >> 12 = 0x77593
  end_pfn = (0x77592258 + 0xfc0 -1 + 1) >> 12 = 0x77593
  end_pfn - pfn = 0x77593 - 0x77593 = 0  <=== if (end_pfn > pfn) is FALSE

So, the max_nr_ranges that's counted by the kernel doesn't include
small memory regions - causing us to under-allocate the required space.
That causes the page fault crash that happens in a later code path
when preparing ELF headers.

This bug is not easy to reproduce on small machines that have few
CPUs, because the allocated page aligned ELF buffer has more free
space to cover those small memory regions' PT_LOAD headers.

Signed-off-by: Lee, Chun-Yi <jlee@suse.com>
Cc: Andy Lutomirski <luto@kernel.org>
Cc: Baoquan He <bhe@redhat.com>
Cc: Jiang Liu <jiang.liu@linux.intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Takashi Iwai <tiwai@suse.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Viresh Kumar <viresh.kumar@linaro.org>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: kexec@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Cc: <stable@vger.kernel.org>
Link: http://lkml.kernel.org/r/1443531537-29436-1-git-send-email-jlee@suse.com
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-02 09:13:06 +02:00

702 lines
17 KiB
C

/*
* Architecture specific (i386/x86_64) functions for kexec based crash dumps.
*
* Created by: Hariprasad Nellitheertha (hari@in.ibm.com)
*
* Copyright (C) IBM Corporation, 2004. All rights reserved.
* Copyright (C) Red Hat Inc., 2014. All rights reserved.
* Authors:
* Vivek Goyal <vgoyal@redhat.com>
*
*/
#define pr_fmt(fmt) "kexec: " fmt
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/smp.h>
#include <linux/reboot.h>
#include <linux/kexec.h>
#include <linux/delay.h>
#include <linux/elf.h>
#include <linux/elfcore.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <asm/processor.h>
#include <asm/hardirq.h>
#include <asm/nmi.h>
#include <asm/hw_irq.h>
#include <asm/apic.h>
#include <asm/io_apic.h>
#include <asm/hpet.h>
#include <linux/kdebug.h>
#include <asm/cpu.h>
#include <asm/reboot.h>
#include <asm/virtext.h>
/* Alignment required for elf header segment */
#define ELF_CORE_HEADER_ALIGN 4096
/* This primarily represents number of split ranges due to exclusion */
#define CRASH_MAX_RANGES 16
struct crash_mem_range {
u64 start, end;
};
struct crash_mem {
unsigned int nr_ranges;
struct crash_mem_range ranges[CRASH_MAX_RANGES];
};
/* Misc data about ram ranges needed to prepare elf headers */
struct crash_elf_data {
struct kimage *image;
/*
* Total number of ram ranges we have after various adjustments for
* GART, crash reserved region etc.
*/
unsigned int max_nr_ranges;
unsigned long gart_start, gart_end;
/* Pointer to elf header */
void *ehdr;
/* Pointer to next phdr */
void *bufp;
struct crash_mem mem;
};
/* Used while preparing memory map entries for second kernel */
struct crash_memmap_data {
struct boot_params *params;
/* Type of memory */
unsigned int type;
};
int in_crash_kexec;
/*
* This is used to VMCLEAR all VMCSs loaded on the
* processor. And when loading kvm_intel module, the
* callback function pointer will be assigned.
*
* protected by rcu.
*/
crash_vmclear_fn __rcu *crash_vmclear_loaded_vmcss = NULL;
EXPORT_SYMBOL_GPL(crash_vmclear_loaded_vmcss);
unsigned long crash_zero_bytes;
static inline void cpu_crash_vmclear_loaded_vmcss(void)
{
crash_vmclear_fn *do_vmclear_operation = NULL;
rcu_read_lock();
do_vmclear_operation = rcu_dereference(crash_vmclear_loaded_vmcss);
if (do_vmclear_operation)
do_vmclear_operation();
rcu_read_unlock();
}
#if defined(CONFIG_SMP) && defined(CONFIG_X86_LOCAL_APIC)
static void kdump_nmi_callback(int cpu, struct pt_regs *regs)
{
#ifdef CONFIG_X86_32
struct pt_regs fixed_regs;
if (!user_mode(regs)) {
crash_fixup_ss_esp(&fixed_regs, regs);
regs = &fixed_regs;
}
#endif
crash_save_cpu(regs, cpu);
/*
* VMCLEAR VMCSs loaded on all cpus if needed.
*/
cpu_crash_vmclear_loaded_vmcss();
/* Disable VMX or SVM if needed.
*
* We need to disable virtualization on all CPUs.
* Having VMX or SVM enabled on any CPU may break rebooting
* after the kdump kernel has finished its task.
*/
cpu_emergency_vmxoff();
cpu_emergency_svm_disable();
disable_local_APIC();
}
static void kdump_nmi_shootdown_cpus(void)
{
in_crash_kexec = 1;
nmi_shootdown_cpus(kdump_nmi_callback);
disable_local_APIC();
}
#else
static void kdump_nmi_shootdown_cpus(void)
{
/* There are no cpus to shootdown */
}
#endif
void native_machine_crash_shutdown(struct pt_regs *regs)
{
/* This function is only called after the system
* has panicked or is otherwise in a critical state.
* The minimum amount of code to allow a kexec'd kernel
* to run successfully needs to happen here.
*
* In practice this means shooting down the other cpus in
* an SMP system.
*/
/* The kernel is broken so disable interrupts */
local_irq_disable();
kdump_nmi_shootdown_cpus();
/*
* VMCLEAR VMCSs loaded on this cpu if needed.
*/
cpu_crash_vmclear_loaded_vmcss();
/* Booting kdump kernel with VMX or SVM enabled won't work,
* because (among other limitations) we can't disable paging
* with the virt flags.
*/
cpu_emergency_vmxoff();
cpu_emergency_svm_disable();
#ifdef CONFIG_X86_IO_APIC
/* Prevent crash_kexec() from deadlocking on ioapic_lock. */
ioapic_zap_locks();
disable_IO_APIC();
#endif
lapic_shutdown();
#ifdef CONFIG_HPET_TIMER
hpet_disable();
#endif
crash_save_cpu(regs, safe_smp_processor_id());
}
#ifdef CONFIG_KEXEC_FILE
static int get_nr_ram_ranges_callback(u64 start, u64 end, void *arg)
{
unsigned int *nr_ranges = arg;
(*nr_ranges)++;
return 0;
}
static int get_gart_ranges_callback(u64 start, u64 end, void *arg)
{
struct crash_elf_data *ced = arg;
ced->gart_start = start;
ced->gart_end = end;
/* Not expecting more than 1 gart aperture */
return 1;
}
/* Gather all the required information to prepare elf headers for ram regions */
static void fill_up_crash_elf_data(struct crash_elf_data *ced,
struct kimage *image)
{
unsigned int nr_ranges = 0;
ced->image = image;
walk_system_ram_res(0, -1, &nr_ranges,
get_nr_ram_ranges_callback);
ced->max_nr_ranges = nr_ranges;
/*
* We don't create ELF headers for GART aperture as an attempt
* to dump this memory in second kernel leads to hang/crash.
* If gart aperture is present, one needs to exclude that region
* and that could lead to need of extra phdr.
*/
walk_iomem_res("GART", IORESOURCE_MEM, 0, -1,
ced, get_gart_ranges_callback);
/*
* If we have gart region, excluding that could potentially split
* a memory range, resulting in extra header. Account for that.
*/
if (ced->gart_end)
ced->max_nr_ranges++;
/* Exclusion of crash region could split memory ranges */
ced->max_nr_ranges++;
/* If crashk_low_res is not 0, another range split possible */
if (crashk_low_res.end)
ced->max_nr_ranges++;
}
static int exclude_mem_range(struct crash_mem *mem,
unsigned long long mstart, unsigned long long mend)
{
int i, j;
unsigned long long start, end;
struct crash_mem_range temp_range = {0, 0};
for (i = 0; i < mem->nr_ranges; i++) {
start = mem->ranges[i].start;
end = mem->ranges[i].end;
if (mstart > end || mend < start)
continue;
/* Truncate any area outside of range */
if (mstart < start)
mstart = start;
if (mend > end)
mend = end;
/* Found completely overlapping range */
if (mstart == start && mend == end) {
mem->ranges[i].start = 0;
mem->ranges[i].end = 0;
if (i < mem->nr_ranges - 1) {
/* Shift rest of the ranges to left */
for (j = i; j < mem->nr_ranges - 1; j++) {
mem->ranges[j].start =
mem->ranges[j+1].start;
mem->ranges[j].end =
mem->ranges[j+1].end;
}
}
mem->nr_ranges--;
return 0;
}
if (mstart > start && mend < end) {
/* Split original range */
mem->ranges[i].end = mstart - 1;
temp_range.start = mend + 1;
temp_range.end = end;
} else if (mstart != start)
mem->ranges[i].end = mstart - 1;
else
mem->ranges[i].start = mend + 1;
break;
}
/* If a split happend, add the split to array */
if (!temp_range.end)
return 0;
/* Split happened */
if (i == CRASH_MAX_RANGES - 1) {
pr_err("Too many crash ranges after split\n");
return -ENOMEM;
}
/* Location where new range should go */
j = i + 1;
if (j < mem->nr_ranges) {
/* Move over all ranges one slot towards the end */
for (i = mem->nr_ranges - 1; i >= j; i--)
mem->ranges[i + 1] = mem->ranges[i];
}
mem->ranges[j].start = temp_range.start;
mem->ranges[j].end = temp_range.end;
mem->nr_ranges++;
return 0;
}
/*
* Look for any unwanted ranges between mstart, mend and remove them. This
* might lead to split and split ranges are put in ced->mem.ranges[] array
*/
static int elf_header_exclude_ranges(struct crash_elf_data *ced,
unsigned long long mstart, unsigned long long mend)
{
struct crash_mem *cmem = &ced->mem;
int ret = 0;
memset(cmem->ranges, 0, sizeof(cmem->ranges));
cmem->ranges[0].start = mstart;
cmem->ranges[0].end = mend;
cmem->nr_ranges = 1;
/* Exclude crashkernel region */
ret = exclude_mem_range(cmem, crashk_res.start, crashk_res.end);
if (ret)
return ret;
if (crashk_low_res.end) {
ret = exclude_mem_range(cmem, crashk_low_res.start, crashk_low_res.end);
if (ret)
return ret;
}
/* Exclude GART region */
if (ced->gart_end) {
ret = exclude_mem_range(cmem, ced->gart_start, ced->gart_end);
if (ret)
return ret;
}
return ret;
}
static int prepare_elf64_ram_headers_callback(u64 start, u64 end, void *arg)
{
struct crash_elf_data *ced = arg;
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
unsigned long mstart, mend;
struct kimage *image = ced->image;
struct crash_mem *cmem;
int ret, i;
ehdr = ced->ehdr;
/* Exclude unwanted mem ranges */
ret = elf_header_exclude_ranges(ced, start, end);
if (ret)
return ret;
/* Go through all the ranges in ced->mem.ranges[] and prepare phdr */
cmem = &ced->mem;
for (i = 0; i < cmem->nr_ranges; i++) {
mstart = cmem->ranges[i].start;
mend = cmem->ranges[i].end;
phdr = ced->bufp;
ced->bufp += sizeof(Elf64_Phdr);
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_offset = mstart;
/*
* If a range matches backup region, adjust offset to backup
* segment.
*/
if (mstart == image->arch.backup_src_start &&
(mend - mstart + 1) == image->arch.backup_src_sz)
phdr->p_offset = image->arch.backup_load_addr;
phdr->p_paddr = mstart;
phdr->p_vaddr = (unsigned long long) __va(mstart);
phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
phdr->p_align = 0;
ehdr->e_phnum++;
pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
ehdr->e_phnum, phdr->p_offset);
}
return ret;
}
static int prepare_elf64_headers(struct crash_elf_data *ced,
void **addr, unsigned long *sz)
{
Elf64_Ehdr *ehdr;
Elf64_Phdr *phdr;
unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
unsigned char *buf, *bufp;
unsigned int cpu;
unsigned long long notes_addr;
int ret;
/* extra phdr for vmcoreinfo elf note */
nr_phdr = nr_cpus + 1;
nr_phdr += ced->max_nr_ranges;
/*
* kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
* area on x86_64 (ffffffff80000000 - ffffffffa0000000).
* I think this is required by tools like gdb. So same physical
* memory will be mapped in two elf headers. One will contain kernel
* text virtual addresses and other will have __va(physical) addresses.
*/
nr_phdr++;
elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
buf = vzalloc(elf_sz);
if (!buf)
return -ENOMEM;
bufp = buf;
ehdr = (Elf64_Ehdr *)bufp;
bufp += sizeof(Elf64_Ehdr);
memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
ehdr->e_ident[EI_CLASS] = ELFCLASS64;
ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
ehdr->e_ident[EI_VERSION] = EV_CURRENT;
ehdr->e_ident[EI_OSABI] = ELF_OSABI;
memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
ehdr->e_type = ET_CORE;
ehdr->e_machine = ELF_ARCH;
ehdr->e_version = EV_CURRENT;
ehdr->e_phoff = sizeof(Elf64_Ehdr);
ehdr->e_ehsize = sizeof(Elf64_Ehdr);
ehdr->e_phentsize = sizeof(Elf64_Phdr);
/* Prepare one phdr of type PT_NOTE for each present cpu */
for_each_present_cpu(cpu) {
phdr = (Elf64_Phdr *)bufp;
bufp += sizeof(Elf64_Phdr);
phdr->p_type = PT_NOTE;
notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
phdr->p_offset = phdr->p_paddr = notes_addr;
phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
(ehdr->e_phnum)++;
}
/* Prepare one PT_NOTE header for vmcoreinfo */
phdr = (Elf64_Phdr *)bufp;
bufp += sizeof(Elf64_Phdr);
phdr->p_type = PT_NOTE;
phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
phdr->p_filesz = phdr->p_memsz = sizeof(vmcoreinfo_note);
(ehdr->e_phnum)++;
#ifdef CONFIG_X86_64
/* Prepare PT_LOAD type program header for kernel text region */
phdr = (Elf64_Phdr *)bufp;
bufp += sizeof(Elf64_Phdr);
phdr->p_type = PT_LOAD;
phdr->p_flags = PF_R|PF_W|PF_X;
phdr->p_vaddr = (Elf64_Addr)_text;
phdr->p_filesz = phdr->p_memsz = _end - _text;
phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
(ehdr->e_phnum)++;
#endif
/* Prepare PT_LOAD headers for system ram chunks. */
ced->ehdr = ehdr;
ced->bufp = bufp;
ret = walk_system_ram_res(0, -1, ced,
prepare_elf64_ram_headers_callback);
if (ret < 0)
return ret;
*addr = buf;
*sz = elf_sz;
return 0;
}
/* Prepare elf headers. Return addr and size */
static int prepare_elf_headers(struct kimage *image, void **addr,
unsigned long *sz)
{
struct crash_elf_data *ced;
int ret;
ced = kzalloc(sizeof(*ced), GFP_KERNEL);
if (!ced)
return -ENOMEM;
fill_up_crash_elf_data(ced, image);
/* By default prepare 64bit headers */
ret = prepare_elf64_headers(ced, addr, sz);
kfree(ced);
return ret;
}
static int add_e820_entry(struct boot_params *params, struct e820entry *entry)
{
unsigned int nr_e820_entries;
nr_e820_entries = params->e820_entries;
if (nr_e820_entries >= E820MAX)
return 1;
memcpy(&params->e820_map[nr_e820_entries], entry,
sizeof(struct e820entry));
params->e820_entries++;
return 0;
}
static int memmap_entry_callback(u64 start, u64 end, void *arg)
{
struct crash_memmap_data *cmd = arg;
struct boot_params *params = cmd->params;
struct e820entry ei;
ei.addr = start;
ei.size = end - start + 1;
ei.type = cmd->type;
add_e820_entry(params, &ei);
return 0;
}
static int memmap_exclude_ranges(struct kimage *image, struct crash_mem *cmem,
unsigned long long mstart,
unsigned long long mend)
{
unsigned long start, end;
int ret = 0;
cmem->ranges[0].start = mstart;
cmem->ranges[0].end = mend;
cmem->nr_ranges = 1;
/* Exclude Backup region */
start = image->arch.backup_load_addr;
end = start + image->arch.backup_src_sz - 1;
ret = exclude_mem_range(cmem, start, end);
if (ret)
return ret;
/* Exclude elf header region */
start = image->arch.elf_load_addr;
end = start + image->arch.elf_headers_sz - 1;
return exclude_mem_range(cmem, start, end);
}
/* Prepare memory map for crash dump kernel */
int crash_setup_memmap_entries(struct kimage *image, struct boot_params *params)
{
int i, ret = 0;
unsigned long flags;
struct e820entry ei;
struct crash_memmap_data cmd;
struct crash_mem *cmem;
cmem = vzalloc(sizeof(struct crash_mem));
if (!cmem)
return -ENOMEM;
memset(&cmd, 0, sizeof(struct crash_memmap_data));
cmd.params = params;
/* Add first 640K segment */
ei.addr = image->arch.backup_src_start;
ei.size = image->arch.backup_src_sz;
ei.type = E820_RAM;
add_e820_entry(params, &ei);
/* Add ACPI tables */
cmd.type = E820_ACPI;
flags = IORESOURCE_MEM | IORESOURCE_BUSY;
walk_iomem_res("ACPI Tables", flags, 0, -1, &cmd,
memmap_entry_callback);
/* Add ACPI Non-volatile Storage */
cmd.type = E820_NVS;
walk_iomem_res("ACPI Non-volatile Storage", flags, 0, -1, &cmd,
memmap_entry_callback);
/* Add crashk_low_res region */
if (crashk_low_res.end) {
ei.addr = crashk_low_res.start;
ei.size = crashk_low_res.end - crashk_low_res.start + 1;
ei.type = E820_RAM;
add_e820_entry(params, &ei);
}
/* Exclude some ranges from crashk_res and add rest to memmap */
ret = memmap_exclude_ranges(image, cmem, crashk_res.start,
crashk_res.end);
if (ret)
goto out;
for (i = 0; i < cmem->nr_ranges; i++) {
ei.size = cmem->ranges[i].end - cmem->ranges[i].start + 1;
/* If entry is less than a page, skip it */
if (ei.size < PAGE_SIZE)
continue;
ei.addr = cmem->ranges[i].start;
ei.type = E820_RAM;
add_e820_entry(params, &ei);
}
out:
vfree(cmem);
return ret;
}
static int determine_backup_region(u64 start, u64 end, void *arg)
{
struct kimage *image = arg;
image->arch.backup_src_start = start;
image->arch.backup_src_sz = end - start + 1;
/* Expecting only one range for backup region */
return 1;
}
int crash_load_segments(struct kimage *image)
{
unsigned long src_start, src_sz, elf_sz;
void *elf_addr;
int ret;
/*
* Determine and load a segment for backup area. First 640K RAM
* region is backup source
*/
ret = walk_system_ram_res(KEXEC_BACKUP_SRC_START, KEXEC_BACKUP_SRC_END,
image, determine_backup_region);
/* Zero or postive return values are ok */
if (ret < 0)
return ret;
src_start = image->arch.backup_src_start;
src_sz = image->arch.backup_src_sz;
/* Add backup segment. */
if (src_sz) {
/*
* Ideally there is no source for backup segment. This is
* copied in purgatory after crash. Just add a zero filled
* segment for now to make sure checksum logic works fine.
*/
ret = kexec_add_buffer(image, (char *)&crash_zero_bytes,
sizeof(crash_zero_bytes), src_sz,
PAGE_SIZE, 0, -1, 0,
&image->arch.backup_load_addr);
if (ret)
return ret;
pr_debug("Loaded backup region at 0x%lx backup_start=0x%lx memsz=0x%lx\n",
image->arch.backup_load_addr, src_start, src_sz);
}
/* Prepare elf headers and add a segment */
ret = prepare_elf_headers(image, &elf_addr, &elf_sz);
if (ret)
return ret;
image->arch.elf_headers = elf_addr;
image->arch.elf_headers_sz = elf_sz;
ret = kexec_add_buffer(image, (char *)elf_addr, elf_sz, elf_sz,
ELF_CORE_HEADER_ALIGN, 0, -1, 0,
&image->arch.elf_load_addr);
if (ret) {
vfree((void *)image->arch.elf_headers);
return ret;
}
pr_debug("Loaded ELF headers at 0x%lx bufsz=0x%lx memsz=0x%lx\n",
image->arch.elf_load_addr, elf_sz, elf_sz);
return ret;
}
#endif /* CONFIG_KEXEC_FILE */