2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 00:54:15 +08:00
linux-next/drivers/clocksource/Kconfig
Doug Anderson 3252a646aa clocksource: exynos_mct: Only use 32-bits where possible
The MCT has a nice 64-bit counter.  That means that we _can_ register
as a 64-bit clocksource and sched_clock.  ...but that doesn't mean we
should.

The 64-bit counter is read by reading two 32-bit registers.  That
means reading needs to be something like:
- Read upper half
- Read lower half
- Read upper half and confirm that it hasn't changed.

That wouldn't be terrible, but:
- THe MCT isn't very fast to access (hundreds of nanoseconds).
- The clocksource is queried _all the time_.

In total system profiles of real workloads on ChromeOS, we've seen
exynos_frc_read() taking 2% or more of CPU time even after optimizing
the 3 reads above to 2 (see below).

The MCT is clocked at ~24MHz on all known systems.  That means that
the 32-bit half of the counter rolls over every ~178 seconds.  This
inspired an optimization in ChromeOS to cache the upper half between
calls, moving 3 reads to 2.  ...but we can do better!  Having a 32-bit
timer that flips every 178 seconds is more than sufficient for Linux.
Let's just use the lower half of the MCT.

Times on 5420 to do 1000000 gettimeofday() calls from userspace:
* Original code:                      1323852 us
* ChromeOS cache upper half:          1173084 us
* ChromeOS + ldmia to optimize:       1045674 us
* Use lower 32-bit only (this code):  1014429 us

As you can see, the time used doesn't increase linearly with the
number of reads and we can make 64-bit work almost as fast as 32-bit
with a bit of assembly code.  But since there's no real gain for
64-bit, let's go with the simplest and fastest implementation.

Note: with this change roughly half the time for gettimeofday() is
spent in exynos_frc_read().  The rest is timer / system call overhead.

Also note: this patch disables the use of the MCT on ARM64 systems
until we've sorted out how to make "cycles_t" always 32-bit.  Really
ARM64 systems should be using arch timers anyway.

Signed-off-by: Doug Anderson <dianders@chromium.org>
Acked-by Vincent Guittot <vincent.guittot@linaro.org>
Signed-off-by: Kukjin Kim <kgene.kim@samsung.com>
Signed-off-by: Daniel Lezcano <daniel.lezcano@linaro.org>
2014-07-23 12:02:41 +02:00

220 lines
5.3 KiB
Plaintext

menu "Clock Source drivers"
config CLKSRC_OF
bool
config CLKSRC_I8253
bool
config CLKEVT_I8253
bool
config I8253_LOCK
bool
config CLKBLD_I8253
def_bool y if CLKSRC_I8253 || CLKEVT_I8253 || I8253_LOCK
config CLKSRC_MMIO
bool
config DW_APB_TIMER
bool
config DW_APB_TIMER_OF
bool
select DW_APB_TIMER
select CLKSRC_OF
config ARMADA_370_XP_TIMER
bool
select CLKSRC_OF
config ORION_TIMER
select CLKSRC_OF
select CLKSRC_MMIO
bool
config SUN4I_TIMER
select CLKSRC_MMIO
bool
config SUN5I_HSTIMER
select CLKSRC_MMIO
bool
config VT8500_TIMER
bool
config CADENCE_TTC_TIMER
bool
config CLKSRC_NOMADIK_MTU
bool
depends on (ARCH_NOMADIK || ARCH_U8500)
select CLKSRC_MMIO
help
Support for Multi Timer Unit. MTU provides access
to multiple interrupt generating programmable
32-bit free running decrementing counters.
config CLKSRC_NOMADIK_MTU_SCHED_CLOCK
bool
depends on CLKSRC_NOMADIK_MTU
help
Use the Multi Timer Unit as the sched_clock.
config CLKSRC_DBX500_PRCMU
bool "Clocksource PRCMU Timer"
depends on UX500_SOC_DB8500
default y
help
Use the always on PRCMU Timer as clocksource
config CLKSRC_DBX500_PRCMU_SCHED_CLOCK
bool "Clocksource PRCMU Timer sched_clock"
depends on (CLKSRC_DBX500_PRCMU && !CLKSRC_NOMADIK_MTU_SCHED_CLOCK)
default y
help
Use the always on PRCMU Timer as sched_clock
config CLKSRC_EFM32
bool "Clocksource for Energy Micro's EFM32 SoCs" if !ARCH_EFM32
depends on OF && ARM && (ARCH_EFM32 || COMPILE_TEST)
select CLKSRC_MMIO
default ARCH_EFM32
help
Support to use the timers of EFM32 SoCs as clock source and clock
event device.
config ARM_ARCH_TIMER
bool
select CLKSRC_OF if OF
config ARM_ARCH_TIMER_EVTSTREAM
bool "Support for ARM architected timer event stream generation"
default y if ARM_ARCH_TIMER
depends on ARM_ARCH_TIMER
help
This option enables support for event stream generation based on
the ARM architected timer. It is used for waking up CPUs executing
the wfe instruction at a frequency represented as a power-of-2
divisor of the clock rate.
The main use of the event stream is wfe-based timeouts of userspace
locking implementations. It might also be useful for imposing timeout
on wfe to safeguard against any programming errors in case an expected
event is not generated.
This must be disabled for hardware validation purposes to detect any
hardware anomalies of missing events.
config ARM_GLOBAL_TIMER
bool
select CLKSRC_OF if OF
help
This options enables support for the ARM global timer unit
config CLKSRC_ARM_GLOBAL_TIMER_SCHED_CLOCK
bool
depends on ARM_GLOBAL_TIMER
default y
help
Use ARM global timer clock source as sched_clock
config CLKSRC_METAG_GENERIC
def_bool y if METAG
help
This option enables support for the Meta per-thread timers.
config CLKSRC_EXYNOS_MCT
def_bool y if ARCH_EXYNOS
depends on !ARM64
help
Support for Multi Core Timer controller on Exynos SoCs.
config CLKSRC_SAMSUNG_PWM
bool
help
This is a new clocksource driver for the PWM timer found in
Samsung S3C, S5P and Exynos SoCs, replacing an earlier driver
for all devicetree enabled platforms. This driver will be
needed only on systems that do not have the Exynos MCT available.
config FSL_FTM_TIMER
bool
help
Support for Freescale FlexTimer Module (FTM) timer.
config VF_PIT_TIMER
bool
help
Support for Period Interrupt Timer on Freescale Vybrid Family SoCs.
config SYS_SUPPORTS_SH_CMT
bool
config MTK_TIMER
select CLKSRC_OF
select CLKSRC_MMIO
bool
config SYS_SUPPORTS_SH_MTU2
bool
config SYS_SUPPORTS_SH_TMU
bool
config SYS_SUPPORTS_EM_STI
bool
config SH_TIMER_CMT
bool "Renesas CMT timer driver" if COMPILE_TEST
depends on GENERIC_CLOCKEVENTS
default SYS_SUPPORTS_SH_CMT
help
This enables build of a clocksource and clockevent driver for
the Compare Match Timer (CMT) hardware available in 16/32/48-bit
variants on a wide range of Mobile and Automotive SoCs from Renesas.
config SH_TIMER_MTU2
bool "Renesas MTU2 timer driver" if COMPILE_TEST
depends on GENERIC_CLOCKEVENTS
default SYS_SUPPORTS_SH_MTU2
help
This enables build of a clockevent driver for the Multi-Function
Timer Pulse Unit 2 (MTU2) hardware available on SoCs from Renesas.
This hardware comes with 16 bit-timer registers.
config SH_TIMER_TMU
bool "Renesas TMU timer driver" if COMPILE_TEST
depends on GENERIC_CLOCKEVENTS
default SYS_SUPPORTS_SH_TMU
help
This enables build of a clocksource and clockevent driver for
the 32-bit Timer Unit (TMU) hardware available on a wide range
SoCs from Renesas.
config EM_TIMER_STI
bool "Renesas STI timer driver" if COMPILE_TEST
depends on GENERIC_CLOCKEVENTS && HAS_IOMEM
default SYS_SUPPORTS_EM_STI
help
This enables build of a clocksource and clockevent driver for
the 48-bit System Timer (STI) hardware available on a SoCs
such as EMEV2 from former NEC Electronics.
config CLKSRC_QCOM
bool
config CLKSRC_VERSATILE
bool "ARM Versatile (Express) reference platforms clock source"
depends on GENERIC_SCHED_CLOCK && !ARCH_USES_GETTIMEOFFSET
select CLKSRC_OF
default y if MFD_VEXPRESS_SYSREG
help
This option enables clock source based on free running
counter available in the "System Registers" block of
ARM Versatile, RealView and Versatile Express reference
platforms.
endmenu