2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-27 22:53:55 +08:00
linux-next/drivers/phy/phy-xgene.c
Peter Griffin 4f0eb5d7ef phy: remove .owner field for drivers using module_platform_driver
This patch removes the superflous .owner field for drivers which
use the module_platform_driver or platform_driver_register api,
as this is overriden in __platform_driver_register.

Signed-off-by: Peter Griffin <peter.griffin@linaro.org>
Signed-off-by: Kishon Vijay Abraham I <kishon@ti.com>
2014-09-24 15:18:34 +05:30

1750 lines
60 KiB
C

/*
* AppliedMicro X-Gene Multi-purpose PHY driver
*
* Copyright (c) 2014, Applied Micro Circuits Corporation
* Author: Loc Ho <lho@apm.com>
* Tuan Phan <tphan@apm.com>
* Suman Tripathi <stripathi@apm.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or (at your
* option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* The APM X-Gene PHY consists of two PLL clock macro's (CMU) and lanes.
* The first PLL clock macro is used for internal reference clock. The second
* PLL clock macro is used to generate the clock for the PHY. This driver
* configures the first PLL CMU, the second PLL CMU, and programs the PHY to
* operate according to the mode of operation. The first PLL CMU is only
* required if internal clock is enabled.
*
* Logical Layer Out Of HW module units:
*
* -----------------
* | Internal | |------|
* | Ref PLL CMU |----| | ------------- ---------
* ------------ ---- | MUX |-----|PHY PLL CMU|----| Serdes|
* | | | | ---------
* External Clock ------| | -------------
* |------|
*
* The Ref PLL CMU CSR (Configuration System Registers) is accessed
* indirectly from the SDS offset at 0x2000. It is only required for
* internal reference clock.
* The PHY PLL CMU CSR is accessed indirectly from the SDS offset at 0x0000.
* The Serdes CSR is accessed indirectly from the SDS offset at 0x0400.
*
* The Ref PLL CMU can be located within the same PHY IP or outside the PHY IP
* due to shared Ref PLL CMU. For PHY with Ref PLL CMU shared with another IP,
* it is located outside the PHY IP. This is the case for the PHY located
* at 0x1f23a000 (SATA Port 4/5). For such PHY, another resource is required
* to located the SDS/Ref PLL CMU module and its clock for that IP enabled.
*
* Currently, this driver only supports Gen3 SATA mode with external clock.
*/
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/delay.h>
#include <linux/phy/phy.h>
#include <linux/clk.h>
/* Max 2 lanes per a PHY unit */
#define MAX_LANE 2
/* Register offset inside the PHY */
#define SERDES_PLL_INDIRECT_OFFSET 0x0000
#define SERDES_PLL_REF_INDIRECT_OFFSET 0x2000
#define SERDES_INDIRECT_OFFSET 0x0400
#define SERDES_LANE_STRIDE 0x0200
/* Some default Serdes parameters */
#define DEFAULT_SATA_TXBOOST_GAIN { 0x1e, 0x1e, 0x1e }
#define DEFAULT_SATA_TXEYEDIRECTION { 0x0, 0x0, 0x0 }
#define DEFAULT_SATA_TXEYETUNING { 0xa, 0xa, 0xa }
#define DEFAULT_SATA_SPD_SEL { 0x1, 0x3, 0x7 }
#define DEFAULT_SATA_TXAMP { 0x8, 0x8, 0x8 }
#define DEFAULT_SATA_TXCN1 { 0x2, 0x2, 0x2 }
#define DEFAULT_SATA_TXCN2 { 0x0, 0x0, 0x0 }
#define DEFAULT_SATA_TXCP1 { 0xa, 0xa, 0xa }
#define SATA_SPD_SEL_GEN3 0x7
#define SATA_SPD_SEL_GEN2 0x3
#define SATA_SPD_SEL_GEN1 0x1
#define SSC_DISABLE 0
#define SSC_ENABLE 1
#define FBDIV_VAL_50M 0x77
#define REFDIV_VAL_50M 0x1
#define FBDIV_VAL_100M 0x3B
#define REFDIV_VAL_100M 0x0
/* SATA Clock/Reset CSR */
#define SATACLKENREG 0x00000000
#define SATA0_CORE_CLKEN 0x00000002
#define SATA1_CORE_CLKEN 0x00000004
#define SATASRESETREG 0x00000004
#define SATA_MEM_RESET_MASK 0x00000020
#define SATA_MEM_RESET_RD(src) (((src) & 0x00000020) >> 5)
#define SATA_SDS_RESET_MASK 0x00000004
#define SATA_CSR_RESET_MASK 0x00000001
#define SATA_CORE_RESET_MASK 0x00000002
#define SATA_PMCLK_RESET_MASK 0x00000010
#define SATA_PCLK_RESET_MASK 0x00000008
/* SDS CSR used for PHY Indirect access */
#define SATA_ENET_SDS_PCS_CTL0 0x00000000
#define REGSPEC_CFG_I_TX_WORDMODE0_SET(dst, src) \
(((dst) & ~0x00070000) | (((u32) (src) << 16) & 0x00070000))
#define REGSPEC_CFG_I_RX_WORDMODE0_SET(dst, src) \
(((dst) & ~0x00e00000) | (((u32) (src) << 21) & 0x00e00000))
#define SATA_ENET_SDS_CTL0 0x0000000c
#define REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(dst, src) \
(((dst) & ~0x00007fff) | (((u32) (src)) & 0x00007fff))
#define SATA_ENET_SDS_CTL1 0x00000010
#define CFG_I_SPD_SEL_CDR_OVR1_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src)) & 0x0000000f))
#define SATA_ENET_SDS_RST_CTL 0x00000024
#define SATA_ENET_SDS_IND_CMD_REG 0x0000003c
#define CFG_IND_WR_CMD_MASK 0x00000001
#define CFG_IND_RD_CMD_MASK 0x00000002
#define CFG_IND_CMD_DONE_MASK 0x00000004
#define CFG_IND_ADDR_SET(dst, src) \
(((dst) & ~0x003ffff0) | (((u32) (src) << 4) & 0x003ffff0))
#define SATA_ENET_SDS_IND_RDATA_REG 0x00000040
#define SATA_ENET_SDS_IND_WDATA_REG 0x00000044
#define SATA_ENET_CLK_MACRO_REG 0x0000004c
#define I_RESET_B_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src)) & 0x00000001))
#define I_PLL_FBDIV_SET(dst, src) \
(((dst) & ~0x001ff000) | (((u32) (src) << 12) & 0x001ff000))
#define I_CUSTOMEROV_SET(dst, src) \
(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
#define O_PLL_LOCK_RD(src) (((src) & 0x40000000) >> 30)
#define O_PLL_READY_RD(src) (((src) & 0x80000000) >> 31)
/* PLL Clock Macro Unit (CMU) CSR accessing from SDS indirectly */
#define CMU_REG0 0x00000
#define CMU_REG0_PLL_REF_SEL_MASK 0x00002000
#define CMU_REG0_PLL_REF_SEL_SET(dst, src) \
(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
#define CMU_REG0_PDOWN_MASK 0x00004000
#define CMU_REG0_CAL_COUNT_RESOL_SET(dst, src) \
(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
#define CMU_REG1 0x00002
#define CMU_REG1_PLL_CP_SET(dst, src) \
(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
#define CMU_REG1_PLL_MANUALCAL_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG1_PLL_CP_SEL_SET(dst, src) \
(((dst) & ~0x000003e0) | (((u32) (src) << 5) & 0x000003e0))
#define CMU_REG1_REFCLK_CMOS_SEL_MASK 0x00000001
#define CMU_REG1_REFCLK_CMOS_SEL_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG2 0x00004
#define CMU_REG2_PLL_REFDIV_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define CMU_REG2_PLL_LFRES_SET(dst, src) \
(((dst) & ~0x0000001e) | (((u32) (src) << 1) & 0x0000001e))
#define CMU_REG2_PLL_FBDIV_SET(dst, src) \
(((dst) & ~0x00003fe0) | (((u32) (src) << 5) & 0x00003fe0))
#define CMU_REG3 0x00006
#define CMU_REG3_VCOVARSEL_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
#define CMU_REG3_VCO_MOMSEL_INIT_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define CMU_REG3_VCO_MANMOMSEL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define CMU_REG4 0x00008
#define CMU_REG5 0x0000a
#define CMU_REG5_PLL_LFSMCAP_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define CMU_REG5_PLL_LOCK_RESOLUTION_SET(dst, src) \
(((dst) & ~0x0000000e) | (((u32) (src) << 1) & 0x0000000e))
#define CMU_REG5_PLL_LFCAP_SET(dst, src) \
(((dst) & ~0x00003000) | (((u32) (src) << 12) & 0x00003000))
#define CMU_REG5_PLL_RESETB_MASK 0x00000001
#define CMU_REG6 0x0000c
#define CMU_REG6_PLL_VREGTRIM_SET(dst, src) \
(((dst) & ~0x00000600) | (((u32) (src) << 9) & 0x00000600))
#define CMU_REG6_MAN_PVT_CAL_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define CMU_REG7 0x0000e
#define CMU_REG7_PLL_CALIB_DONE_RD(src) ((0x00004000 & (u32) (src)) >> 14)
#define CMU_REG7_VCO_CAL_FAIL_RD(src) ((0x00000c00 & (u32) (src)) >> 10)
#define CMU_REG8 0x00010
#define CMU_REG9 0x00012
#define CMU_REG9_WORD_LEN_8BIT 0x000
#define CMU_REG9_WORD_LEN_10BIT 0x001
#define CMU_REG9_WORD_LEN_16BIT 0x002
#define CMU_REG9_WORD_LEN_20BIT 0x003
#define CMU_REG9_WORD_LEN_32BIT 0x004
#define CMU_REG9_WORD_LEN_40BIT 0x005
#define CMU_REG9_WORD_LEN_64BIT 0x006
#define CMU_REG9_WORD_LEN_66BIT 0x007
#define CMU_REG9_TX_WORD_MODE_CH1_SET(dst, src) \
(((dst) & ~0x00000380) | (((u32) (src) << 7) & 0x00000380))
#define CMU_REG9_TX_WORD_MODE_CH0_SET(dst, src) \
(((dst) & ~0x00000070) | (((u32) (src) << 4) & 0x00000070))
#define CMU_REG9_PLL_POST_DIVBY2_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG9_VBG_BYPASSB_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define CMU_REG9_IGEN_BYPASS_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define CMU_REG10 0x00014
#define CMU_REG10_VREG_REFSEL_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG11 0x00016
#define CMU_REG12 0x00018
#define CMU_REG12_STATE_DELAY9_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define CMU_REG13 0x0001a
#define CMU_REG14 0x0001c
#define CMU_REG15 0x0001e
#define CMU_REG16 0x00020
#define CMU_REG16_PVT_DN_MAN_ENA_MASK 0x00000001
#define CMU_REG16_PVT_UP_MAN_ENA_MASK 0x00000002
#define CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(dst, src) \
(((dst) & ~0x0000001c) | (((u32) (src) << 2) & 0x0000001c))
#define CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define CMU_REG16_BYPASS_PLL_LOCK_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define CMU_REG17 0x00022
#define CMU_REG17_PVT_CODE_R2A_SET(dst, src) \
(((dst) & ~0x00007f00) | (((u32) (src) << 8) & 0x00007f00))
#define CMU_REG17_RESERVED_7_SET(dst, src) \
(((dst) & ~0x000000e0) | (((u32) (src) << 5) & 0x000000e0))
#define CMU_REG17_PVT_TERM_MAN_ENA_MASK 0x00008000
#define CMU_REG18 0x00024
#define CMU_REG19 0x00026
#define CMU_REG20 0x00028
#define CMU_REG21 0x0002a
#define CMU_REG22 0x0002c
#define CMU_REG23 0x0002e
#define CMU_REG24 0x00030
#define CMU_REG25 0x00032
#define CMU_REG26 0x00034
#define CMU_REG26_FORCE_PLL_LOCK_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define CMU_REG27 0x00036
#define CMU_REG28 0x00038
#define CMU_REG29 0x0003a
#define CMU_REG30 0x0003c
#define CMU_REG30_LOCK_COUNT_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define CMU_REG30_PCIE_MODE_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define CMU_REG31 0x0003e
#define CMU_REG32 0x00040
#define CMU_REG32_FORCE_VCOCAL_START_MASK 0x00004000
#define CMU_REG32_PVT_CAL_WAIT_SEL_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define CMU_REG32_IREF_ADJ_SET(dst, src) \
(((dst) & ~0x00000180) | (((u32) (src) << 7) & 0x00000180))
#define CMU_REG33 0x00042
#define CMU_REG34 0x00044
#define CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(dst, src) \
(((dst) & ~0x0000000f) | (((u32) (src) << 0) & 0x0000000f))
#define CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(dst, src) \
(((dst) & ~0x00000f00) | (((u32) (src) << 8) & 0x00000f00))
#define CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(dst, src) \
(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
#define CMU_REG35 0x00046
#define CMU_REG35_PLL_SSC_MOD_SET(dst, src) \
(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
#define CMU_REG36 0x00048
#define CMU_REG36_PLL_SSC_EN_SET(dst, src) \
(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
#define CMU_REG36_PLL_SSC_VSTEP_SET(dst, src) \
(((dst) & ~0x0000ffc0) | (((u32) (src) << 6) & 0x0000ffc0))
#define CMU_REG36_PLL_SSC_DSMSEL_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define CMU_REG37 0x0004a
#define CMU_REG38 0x0004c
#define CMU_REG39 0x0004e
/* PHY lane CSR accessing from SDS indirectly */
#define RXTX_REG0 0x000
#define RXTX_REG0_CTLE_EQ_HR_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG0_CTLE_EQ_QR_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG0_CTLE_EQ_FR_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG1 0x002
#define RXTX_REG1_RXACVCM_SET(dst, src) \
(((dst) & ~0x0000f000) | (((u32) (src) << 12) & 0x0000f000))
#define RXTX_REG1_CTLE_EQ_SET(dst, src) \
(((dst) & ~0x00000f80) | (((u32) (src) << 7) & 0x00000f80))
#define RXTX_REG1_RXVREG1_SET(dst, src) \
(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
#define RXTX_REG1_RXIREF_ADJ_SET(dst, src) \
(((dst) & ~0x00000006) | (((u32) (src) << 1) & 0x00000006))
#define RXTX_REG2 0x004
#define RXTX_REG2_VTT_ENA_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG2_TX_FIFO_ENA_SET(dst, src) \
(((dst) & ~0x00000020) | (((u32) (src) << 5) & 0x00000020))
#define RXTX_REG2_VTT_SEL_SET(dst, src) \
(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
#define RXTX_REG4 0x008
#define RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK 0x00000040
#define RXTX_REG4_TX_DATA_RATE_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define RXTX_REG4_TX_WORD_MODE_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG5 0x00a
#define RXTX_REG5_TX_CN1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG5_TX_CP1_SET(dst, src) \
(((dst) & ~0x000007e0) | (((u32) (src) << 5) & 0x000007e0))
#define RXTX_REG5_TX_CN2_SET(dst, src) \
(((dst) & ~0x0000001f) | (((u32) (src) << 0) & 0x0000001f))
#define RXTX_REG6 0x00c
#define RXTX_REG6_TXAMP_CNTL_SET(dst, src) \
(((dst) & ~0x00000780) | (((u32) (src) << 7) & 0x00000780))
#define RXTX_REG6_TXAMP_ENA_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG6_RX_BIST_ERRCNT_RD_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define RXTX_REG6_TX_IDLE_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG6_RX_BIST_RESYNC_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG7 0x00e
#define RXTX_REG7_RESETB_RXD_MASK 0x00000100
#define RXTX_REG7_RESETB_RXA_MASK 0x00000080
#define RXTX_REG7_BIST_ENA_RX_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG7_RX_WORD_MODE_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG8 0x010
#define RXTX_REG8_CDR_LOOP_ENA_SET(dst, src) \
(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
#define RXTX_REG8_CDR_BYPASS_RXLOS_SET(dst, src) \
(((dst) & ~0x00000800) | (((u32) (src) << 11) & 0x00000800))
#define RXTX_REG8_SSC_ENABLE_SET(dst, src) \
(((dst) & ~0x00000200) | (((u32) (src) << 9) & 0x00000200))
#define RXTX_REG8_SD_VREF_SET(dst, src) \
(((dst) & ~0x000000f0) | (((u32) (src) << 4) & 0x000000f0))
#define RXTX_REG8_SD_DISABLE_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG7 0x00e
#define RXTX_REG7_RESETB_RXD_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG7_RESETB_RXA_SET(dst, src) \
(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
#define RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK 0x00004000
#define RXTX_REG7_LOOP_BACK_ENA_CTLE_SET(dst, src) \
(((dst) & ~0x00004000) | (((u32) (src) << 14) & 0x00004000))
#define RXTX_REG11 0x016
#define RXTX_REG11_PHASE_ADJUST_LIMIT_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG12 0x018
#define RXTX_REG12_LATCH_OFF_ENA_SET(dst, src) \
(((dst) & ~0x00002000) | (((u32) (src) << 13) & 0x00002000))
#define RXTX_REG12_SUMOS_ENABLE_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG12_RX_DET_TERM_ENABLE_MASK 0x00000002
#define RXTX_REG12_RX_DET_TERM_ENABLE_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG13 0x01a
#define RXTX_REG14 0x01c
#define RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(dst, src) \
(((dst) & ~0x0000003f) | (((u32) (src) << 0) & 0x0000003f))
#define RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(dst, src) \
(((dst) & ~0x00000040) | (((u32) (src) << 6) & 0x00000040))
#define RXTX_REG26 0x034
#define RXTX_REG26_PERIOD_ERROR_LATCH_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG26_BLWC_ENA_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG21 0x02a
#define RXTX_REG21_DO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG21_XO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(src) ((0x0000000f & (u32)(src)))
#define RXTX_REG22 0x02c
#define RXTX_REG22_SO_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG22_EO_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(src) ((0x0000000f & (u32)(src)))
#define RXTX_REG23 0x02e
#define RXTX_REG23_DE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG23_XE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG24 0x030
#define RXTX_REG24_EE_LATCH_CALOUT_RD(src) ((0x0000fc00 & (u32) (src)) >> 10)
#define RXTX_REG24_SE_LATCH_CALOUT_RD(src) ((0x000003f0 & (u32) (src)) >> 4)
#define RXTX_REG27 0x036
#define RXTX_REG28 0x038
#define RXTX_REG31 0x03e
#define RXTX_REG38 0x04c
#define RXTX_REG38_CUSTOMER_PINMODE_INV_SET(dst, src) \
(((dst) & 0x0000fffe) | (((u32) (src) << 1) & 0x0000fffe))
#define RXTX_REG39 0x04e
#define RXTX_REG40 0x050
#define RXTX_REG41 0x052
#define RXTX_REG42 0x054
#define RXTX_REG43 0x056
#define RXTX_REG44 0x058
#define RXTX_REG45 0x05a
#define RXTX_REG46 0x05c
#define RXTX_REG47 0x05e
#define RXTX_REG48 0x060
#define RXTX_REG49 0x062
#define RXTX_REG50 0x064
#define RXTX_REG51 0x066
#define RXTX_REG52 0x068
#define RXTX_REG53 0x06a
#define RXTX_REG54 0x06c
#define RXTX_REG55 0x06e
#define RXTX_REG61 0x07a
#define RXTX_REG61_ISCAN_INBERT_SET(dst, src) \
(((dst) & ~0x00000010) | (((u32) (src) << 4) & 0x00000010))
#define RXTX_REG61_LOADFREQ_SHIFT_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(dst, src) \
(((dst) & ~0x000000c0) | (((u32) (src) << 6) & 0x000000c0))
#define RXTX_REG61_SPD_SEL_CDR_SET(dst, src) \
(((dst) & ~0x00003c00) | (((u32) (src) << 10) & 0x00003c00))
#define RXTX_REG62 0x07c
#define RXTX_REG62_PERIOD_H1_QLATCH_SET(dst, src) \
(((dst) & ~0x00003800) | (((u32) (src) << 11) & 0x00003800))
#define RXTX_REG81 0x0a2
#define RXTX_REG89_MU_TH7_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG89_MU_TH8_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG89_MU_TH9_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG96 0x0c0
#define RXTX_REG96_MU_FREQ1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG96_MU_FREQ2_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG96_MU_FREQ3_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG99 0x0c6
#define RXTX_REG99_MU_PHASE1_SET(dst, src) \
(((dst) & ~0x0000f800) | (((u32) (src) << 11) & 0x0000f800))
#define RXTX_REG99_MU_PHASE2_SET(dst, src) \
(((dst) & ~0x000007c0) | (((u32) (src) << 6) & 0x000007c0))
#define RXTX_REG99_MU_PHASE3_SET(dst, src) \
(((dst) & ~0x0000003e) | (((u32) (src) << 1) & 0x0000003e))
#define RXTX_REG102 0x0cc
#define RXTX_REG102_FREQLOOP_LIMIT_SET(dst, src) \
(((dst) & ~0x00000060) | (((u32) (src) << 5) & 0x00000060))
#define RXTX_REG114 0x0e4
#define RXTX_REG121 0x0f2
#define RXTX_REG121_SUMOS_CAL_CODE_RD(src) ((0x0000003e & (u32)(src)) >> 0x1)
#define RXTX_REG125 0x0fa
#define RXTX_REG125_PQ_REG_SET(dst, src) \
(((dst) & ~0x0000fe00) | (((u32) (src) << 9) & 0x0000fe00))
#define RXTX_REG125_SIGN_PQ_SET(dst, src) \
(((dst) & ~0x00000100) | (((u32) (src) << 8) & 0x00000100))
#define RXTX_REG125_SIGN_PQ_2C_SET(dst, src) \
(((dst) & ~0x00000080) | (((u32) (src) << 7) & 0x00000080))
#define RXTX_REG125_PHZ_MANUALCODE_SET(dst, src) \
(((dst) & ~0x0000007c) | (((u32) (src) << 2) & 0x0000007c))
#define RXTX_REG125_PHZ_MANUAL_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG127 0x0fe
#define RXTX_REG127_FORCE_SUM_CAL_START_MASK 0x00000002
#define RXTX_REG127_FORCE_LAT_CAL_START_MASK 0x00000004
#define RXTX_REG127_FORCE_SUM_CAL_START_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG127_FORCE_LAT_CAL_START_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG127_LATCH_MAN_CAL_ENA_SET(dst, src) \
(((dst) & ~0x00000008) | (((u32) (src) << 3) & 0x00000008))
#define RXTX_REG127_DO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG127_XO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG128 0x100
#define RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(dst, src) \
(((dst) & ~0x0000000c) | (((u32) (src) << 2) & 0x0000000c))
#define RXTX_REG128_EO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG128_SO_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG129 0x102
#define RXTX_REG129_DE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG129_XE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG130 0x104
#define RXTX_REG130_EE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x0000fc00) | (((u32) (src) << 10) & 0x0000fc00))
#define RXTX_REG130_SE_LATCH_MANCAL_SET(dst, src) \
(((dst) & ~0x000003f0) | (((u32) (src) << 4) & 0x000003f0))
#define RXTX_REG145 0x122
#define RXTX_REG145_TX_IDLE_SATA_SET(dst, src) \
(((dst) & ~0x00000001) | (((u32) (src) << 0) & 0x00000001))
#define RXTX_REG145_RXES_ENA_SET(dst, src) \
(((dst) & ~0x00000002) | (((u32) (src) << 1) & 0x00000002))
#define RXTX_REG145_RXDFE_CONFIG_SET(dst, src) \
(((dst) & ~0x0000c000) | (((u32) (src) << 14) & 0x0000c000))
#define RXTX_REG145_RXVWES_LATENA_SET(dst, src) \
(((dst) & ~0x00000004) | (((u32) (src) << 2) & 0x00000004))
#define RXTX_REG147 0x126
#define RXTX_REG148 0x128
/* Clock macro type */
enum cmu_type_t {
REF_CMU = 0, /* Clock macro is the internal reference clock */
PHY_CMU = 1, /* Clock macro is the PLL for the Serdes */
};
enum mux_type_t {
MUX_SELECT_ATA = 0, /* Switch the MUX to ATA */
MUX_SELECT_SGMMII = 0, /* Switch the MUX to SGMII */
};
enum clk_type_t {
CLK_EXT_DIFF = 0, /* External differential */
CLK_INT_DIFF = 1, /* Internal differential */
CLK_INT_SING = 2, /* Internal single ended */
};
enum phy_mode {
MODE_SATA = 0, /* List them for simple reference */
MODE_SGMII = 1,
MODE_PCIE = 2,
MODE_USB = 3,
MODE_XFI = 4,
MODE_MAX
};
struct xgene_sata_override_param {
u32 speed[MAX_LANE]; /* Index for override parameter per lane */
u32 txspeed[3]; /* Tx speed */
u32 txboostgain[MAX_LANE*3]; /* Tx freq boost and gain control */
u32 txeyetuning[MAX_LANE*3]; /* Tx eye tuning */
u32 txeyedirection[MAX_LANE*3]; /* Tx eye tuning direction */
u32 txamplitude[MAX_LANE*3]; /* Tx amplitude control */
u32 txprecursor_cn1[MAX_LANE*3]; /* Tx emphasis taps 1st pre-cursor */
u32 txprecursor_cn2[MAX_LANE*3]; /* Tx emphasis taps 2nd pre-cursor */
u32 txpostcursor_cp1[MAX_LANE*3]; /* Tx emphasis taps post-cursor */
};
struct xgene_phy_ctx {
struct device *dev;
struct phy *phy;
enum phy_mode mode; /* Mode of operation */
enum clk_type_t clk_type; /* Input clock selection */
void __iomem *sds_base; /* PHY CSR base addr */
struct clk *clk; /* Optional clock */
/* Override Serdes parameters */
struct xgene_sata_override_param sata_param;
};
/*
* For chip earlier than A3 version, enable this flag.
* To enable, pass boot argument phy_xgene.preA3Chip=1
*/
static int preA3Chip;
MODULE_PARM_DESC(preA3Chip, "Enable pre-A3 chip support (1=enable 0=disable)");
module_param_named(preA3Chip, preA3Chip, int, 0444);
static void sds_wr(void __iomem *csr_base, u32 indirect_cmd_reg,
u32 indirect_data_reg, u32 addr, u32 data)
{
unsigned long deadline = jiffies + HZ;
u32 val;
u32 cmd;
cmd = CFG_IND_WR_CMD_MASK | CFG_IND_CMD_DONE_MASK;
cmd = CFG_IND_ADDR_SET(cmd, addr);
writel(data, csr_base + indirect_data_reg);
readl(csr_base + indirect_data_reg); /* Force a barrier */
writel(cmd, csr_base + indirect_cmd_reg);
readl(csr_base + indirect_cmd_reg); /* Force a barrier */
do {
val = readl(csr_base + indirect_cmd_reg);
} while (!(val & CFG_IND_CMD_DONE_MASK) &&
time_before(jiffies, deadline));
if (!(val & CFG_IND_CMD_DONE_MASK))
pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
csr_base + indirect_cmd_reg, addr, data);
}
static void sds_rd(void __iomem *csr_base, u32 indirect_cmd_reg,
u32 indirect_data_reg, u32 addr, u32 *data)
{
unsigned long deadline = jiffies + HZ;
u32 val;
u32 cmd;
cmd = CFG_IND_RD_CMD_MASK | CFG_IND_CMD_DONE_MASK;
cmd = CFG_IND_ADDR_SET(cmd, addr);
writel(cmd, csr_base + indirect_cmd_reg);
readl(csr_base + indirect_cmd_reg); /* Force a barrier */
do {
val = readl(csr_base + indirect_cmd_reg);
} while (!(val & CFG_IND_CMD_DONE_MASK) &&
time_before(jiffies, deadline));
*data = readl(csr_base + indirect_data_reg);
if (!(val & CFG_IND_CMD_DONE_MASK))
pr_err("SDS WR timeout at 0x%p offset 0x%08X value 0x%08X\n",
csr_base + indirect_cmd_reg, addr, *data);
}
static void cmu_wr(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 data)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
if (cmu_type == REF_CMU)
reg += SERDES_PLL_REF_INDIRECT_OFFSET;
else
reg += SERDES_PLL_INDIRECT_OFFSET;
sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_WDATA_REG, reg, data);
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
pr_debug("CMU WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data, val);
}
static void cmu_rd(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 *data)
{
void __iomem *sds_base = ctx->sds_base;
if (cmu_type == REF_CMU)
reg += SERDES_PLL_REF_INDIRECT_OFFSET;
else
reg += SERDES_PLL_INDIRECT_OFFSET;
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, data);
pr_debug("CMU RD addr 0x%X value 0x%08X\n", reg, *data);
}
static void cmu_toggle1to0(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val |= bits;
cmu_wr(ctx, cmu_type, reg, val);
cmu_rd(ctx, cmu_type, reg, &val);
val &= ~bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void cmu_clrbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val &= ~bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void cmu_setbits(struct xgene_phy_ctx *ctx, enum cmu_type_t cmu_type,
u32 reg, u32 bits)
{
u32 val;
cmu_rd(ctx, cmu_type, reg, &val);
val |= bits;
cmu_wr(ctx, cmu_type, reg, val);
}
static void serdes_wr(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 data)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
reg += SERDES_INDIRECT_OFFSET;
reg += lane * SERDES_LANE_STRIDE;
sds_wr(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_WDATA_REG, reg, data);
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, &val);
pr_debug("SERDES WR addr 0x%X value 0x%08X <-> 0x%08X\n", reg, data,
val);
}
static void serdes_rd(struct xgene_phy_ctx *ctx, int lane, u32 reg, u32 *data)
{
void __iomem *sds_base = ctx->sds_base;
reg += SERDES_INDIRECT_OFFSET;
reg += lane * SERDES_LANE_STRIDE;
sds_rd(sds_base, SATA_ENET_SDS_IND_CMD_REG,
SATA_ENET_SDS_IND_RDATA_REG, reg, data);
pr_debug("SERDES RD addr 0x%X value 0x%08X\n", reg, *data);
}
static void serdes_clrbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
u32 bits)
{
u32 val;
serdes_rd(ctx, lane, reg, &val);
val &= ~bits;
serdes_wr(ctx, lane, reg, val);
}
static void serdes_setbits(struct xgene_phy_ctx *ctx, int lane, u32 reg,
u32 bits)
{
u32 val;
serdes_rd(ctx, lane, reg, &val);
val |= bits;
serdes_wr(ctx, lane, reg, val);
}
static void xgene_phy_cfg_cmu_clk_type(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
/* Set the reset sequence delay for TX ready assertion */
cmu_rd(ctx, cmu_type, CMU_REG12, &val);
val = CMU_REG12_STATE_DELAY9_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG12, val);
/* Set the programmable stage delays between various enable stages */
cmu_wr(ctx, cmu_type, CMU_REG13, 0x0222);
cmu_wr(ctx, cmu_type, CMU_REG14, 0x2225);
/* Configure clock type */
if (clk_type == CLK_EXT_DIFF) {
/* Select external clock mux */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
val = CMU_REG0_PLL_REF_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Select CMOS as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev, "Set external reference clock\n");
} else if (clk_type == CLK_INT_DIFF) {
/* Select internal clock mux */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
val = CMU_REG0_PLL_REF_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Select CMOS as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev, "Set internal reference clock\n");
} else if (clk_type == CLK_INT_SING) {
/*
* NOTE: This clock type is NOT support for controller
* whose internal clock shared in the PCIe controller
*
* Select internal clock mux
*/
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
/* Select CML as reference clock */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_REFCLK_CMOS_SEL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
dev_dbg(ctx->dev,
"Set internal single ended reference clock\n");
}
}
static void xgene_phy_sata_cfg_cmu_core(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
int ref_100MHz;
if (cmu_type == REF_CMU) {
/* Set VCO calibration voltage threshold */
cmu_rd(ctx, cmu_type, CMU_REG34, &val);
val = CMU_REG34_VCO_CAL_VTH_LO_MAX_SET(val, 0x7);
val = CMU_REG34_VCO_CAL_VTH_HI_MAX_SET(val, 0xc);
val = CMU_REG34_VCO_CAL_VTH_LO_MIN_SET(val, 0x3);
val = CMU_REG34_VCO_CAL_VTH_HI_MIN_SET(val, 0x8);
cmu_wr(ctx, cmu_type, CMU_REG34, val);
}
/* Set the VCO calibration counter */
cmu_rd(ctx, cmu_type, CMU_REG0, &val);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x4);
else
val = CMU_REG0_CAL_COUNT_RESOL_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG0, val);
/* Configure PLL for calibration */
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_PLL_CP_SET(val, 0x1);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG1_PLL_CP_SEL_SET(val, 0x5);
else
val = CMU_REG1_PLL_CP_SEL_SET(val, 0x3);
if (cmu_type == REF_CMU)
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
else
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
if (cmu_type != REF_CMU)
cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/* Configure the PLL for either 100MHz or 50MHz */
cmu_rd(ctx, cmu_type, CMU_REG2, &val);
if (cmu_type == REF_CMU) {
val = CMU_REG2_PLL_LFRES_SET(val, 0xa);
ref_100MHz = 1;
} else {
val = CMU_REG2_PLL_LFRES_SET(val, 0x3);
if (clk_type == CLK_EXT_DIFF)
ref_100MHz = 0;
else
ref_100MHz = 1;
}
if (ref_100MHz) {
val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_100M);
val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_100M);
} else {
val = CMU_REG2_PLL_FBDIV_SET(val, FBDIV_VAL_50M);
val = CMU_REG2_PLL_REFDIV_SET(val, REFDIV_VAL_50M);
}
cmu_wr(ctx, cmu_type, CMU_REG2, val);
/* Configure the VCO */
cmu_rd(ctx, cmu_type, CMU_REG3, &val);
if (cmu_type == REF_CMU) {
val = CMU_REG3_VCOVARSEL_SET(val, 0x3);
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x10);
} else {
val = CMU_REG3_VCOVARSEL_SET(val, 0xF);
if (preA3Chip)
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x15);
else
val = CMU_REG3_VCO_MOMSEL_INIT_SET(val, 0x1a);
val = CMU_REG3_VCO_MANMOMSEL_SET(val, 0x15);
}
cmu_wr(ctx, cmu_type, CMU_REG3, val);
/* Disable force PLL lock */
cmu_rd(ctx, cmu_type, CMU_REG26, &val);
val = CMU_REG26_FORCE_PLL_LOCK_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG26, val);
/* Setup PLL loop filter */
cmu_rd(ctx, cmu_type, CMU_REG5, &val);
val = CMU_REG5_PLL_LFSMCAP_SET(val, 0x3);
val = CMU_REG5_PLL_LFCAP_SET(val, 0x3);
if (cmu_type == REF_CMU || !preA3Chip)
val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x7);
else
val = CMU_REG5_PLL_LOCK_RESOLUTION_SET(val, 0x4);
cmu_wr(ctx, cmu_type, CMU_REG5, val);
/* Enable or disable manual calibration */
cmu_rd(ctx, cmu_type, CMU_REG6, &val);
val = CMU_REG6_PLL_VREGTRIM_SET(val, preA3Chip ? 0x0 : 0x2);
val = CMU_REG6_MAN_PVT_CAL_SET(val, preA3Chip ? 0x1 : 0x0);
cmu_wr(ctx, cmu_type, CMU_REG6, val);
/* Configure lane for 20-bits */
if (cmu_type == PHY_CMU) {
cmu_rd(ctx, cmu_type, CMU_REG9, &val);
val = CMU_REG9_TX_WORD_MODE_CH1_SET(val,
CMU_REG9_WORD_LEN_20BIT);
val = CMU_REG9_TX_WORD_MODE_CH0_SET(val,
CMU_REG9_WORD_LEN_20BIT);
val = CMU_REG9_PLL_POST_DIVBY2_SET(val, 0x1);
if (!preA3Chip) {
val = CMU_REG9_VBG_BYPASSB_SET(val, 0x0);
val = CMU_REG9_IGEN_BYPASS_SET(val , 0x0);
}
cmu_wr(ctx, cmu_type, CMU_REG9, val);
if (!preA3Chip) {
cmu_rd(ctx, cmu_type, CMU_REG10, &val);
val = CMU_REG10_VREG_REFSEL_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG10, val);
}
}
cmu_rd(ctx, cmu_type, CMU_REG16, &val);
val = CMU_REG16_CALIBRATION_DONE_OVERRIDE_SET(val, 0x1);
val = CMU_REG16_BYPASS_PLL_LOCK_SET(val, 0x1);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x4);
else
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG16, val);
/* Configure for SATA */
cmu_rd(ctx, cmu_type, CMU_REG30, &val);
val = CMU_REG30_PCIE_MODE_SET(val, 0x0);
val = CMU_REG30_LOCK_COUNT_SET(val, 0x3);
cmu_wr(ctx, cmu_type, CMU_REG30, val);
/* Disable state machine bypass */
cmu_wr(ctx, cmu_type, CMU_REG31, 0xF);
cmu_rd(ctx, cmu_type, CMU_REG32, &val);
val = CMU_REG32_PVT_CAL_WAIT_SEL_SET(val, 0x3);
if (cmu_type == REF_CMU || preA3Chip)
val = CMU_REG32_IREF_ADJ_SET(val, 0x3);
else
val = CMU_REG32_IREF_ADJ_SET(val, 0x1);
cmu_wr(ctx, cmu_type, CMU_REG32, val);
/* Set VCO calibration threshold */
if (cmu_type != REF_CMU && preA3Chip)
cmu_wr(ctx, cmu_type, CMU_REG34, 0x8d27);
else
cmu_wr(ctx, cmu_type, CMU_REG34, 0x873c);
/* Set CTLE Override and override waiting from state machine */
cmu_wr(ctx, cmu_type, CMU_REG37, 0xF00F);
}
static void xgene_phy_ssc_enable(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type)
{
u32 val;
/* Set SSC modulation value */
cmu_rd(ctx, cmu_type, CMU_REG35, &val);
val = CMU_REG35_PLL_SSC_MOD_SET(val, 98);
cmu_wr(ctx, cmu_type, CMU_REG35, val);
/* Enable SSC, set vertical step and DSM value */
cmu_rd(ctx, cmu_type, CMU_REG36, &val);
val = CMU_REG36_PLL_SSC_VSTEP_SET(val, 30);
val = CMU_REG36_PLL_SSC_EN_SET(val, 1);
val = CMU_REG36_PLL_SSC_DSMSEL_SET(val, 1);
cmu_wr(ctx, cmu_type, CMU_REG36, val);
/* Reset the PLL */
cmu_clrbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/* Force VCO calibration to restart */
cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
CMU_REG32_FORCE_VCOCAL_START_MASK);
}
static void xgene_phy_sata_cfg_lanes(struct xgene_phy_ctx *ctx)
{
u32 val;
u32 reg;
int i;
int lane;
for (lane = 0; lane < MAX_LANE; lane++) {
serdes_wr(ctx, lane, RXTX_REG147, 0x6);
/* Set boost control for quarter, half, and full rate */
serdes_rd(ctx, lane, RXTX_REG0, &val);
val = RXTX_REG0_CTLE_EQ_HR_SET(val, 0x10);
val = RXTX_REG0_CTLE_EQ_QR_SET(val, 0x10);
val = RXTX_REG0_CTLE_EQ_FR_SET(val, 0x10);
serdes_wr(ctx, lane, RXTX_REG0, val);
/* Set boost control value */
serdes_rd(ctx, lane, RXTX_REG1, &val);
val = RXTX_REG1_RXACVCM_SET(val, 0x7);
val = RXTX_REG1_CTLE_EQ_SET(val,
ctx->sata_param.txboostgain[lane * 3 +
ctx->sata_param.speed[lane]]);
serdes_wr(ctx, lane, RXTX_REG1, val);
/* Latch VTT value based on the termination to ground and
enable TX FIFO */
serdes_rd(ctx, lane, RXTX_REG2, &val);
val = RXTX_REG2_VTT_ENA_SET(val, 0x1);
val = RXTX_REG2_VTT_SEL_SET(val, 0x1);
val = RXTX_REG2_TX_FIFO_ENA_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG2, val);
/* Configure Tx for 20-bits */
serdes_rd(ctx, lane, RXTX_REG4, &val);
val = RXTX_REG4_TX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
serdes_wr(ctx, lane, RXTX_REG4, val);
if (!preA3Chip) {
serdes_rd(ctx, lane, RXTX_REG1, &val);
val = RXTX_REG1_RXVREG1_SET(val, 0x2);
val = RXTX_REG1_RXIREF_ADJ_SET(val, 0x2);
serdes_wr(ctx, lane, RXTX_REG1, val);
}
/* Set pre-emphasis first 1 and 2, and post-emphasis values */
serdes_rd(ctx, lane, RXTX_REG5, &val);
val = RXTX_REG5_TX_CN1_SET(val,
ctx->sata_param.txprecursor_cn1[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG5_TX_CP1_SET(val,
ctx->sata_param.txpostcursor_cp1[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG5_TX_CN2_SET(val,
ctx->sata_param.txprecursor_cn2[lane * 3 +
ctx->sata_param.speed[lane]]);
serdes_wr(ctx, lane, RXTX_REG5, val);
/* Set TX amplitude value */
serdes_rd(ctx, lane, RXTX_REG6, &val);
val = RXTX_REG6_TXAMP_CNTL_SET(val,
ctx->sata_param.txamplitude[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG6_TXAMP_ENA_SET(val, 0x1);
val = RXTX_REG6_TX_IDLE_SET(val, 0x0);
val = RXTX_REG6_RX_BIST_RESYNC_SET(val, 0x0);
val = RXTX_REG6_RX_BIST_ERRCNT_RD_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG6, val);
/* Configure Rx for 20-bits */
serdes_rd(ctx, lane, RXTX_REG7, &val);
val = RXTX_REG7_BIST_ENA_RX_SET(val, 0x0);
val = RXTX_REG7_RX_WORD_MODE_SET(val, CMU_REG9_WORD_LEN_20BIT);
serdes_wr(ctx, lane, RXTX_REG7, val);
/* Set CDR and LOS values and enable Rx SSC */
serdes_rd(ctx, lane, RXTX_REG8, &val);
val = RXTX_REG8_CDR_LOOP_ENA_SET(val, 0x1);
val = RXTX_REG8_CDR_BYPASS_RXLOS_SET(val, 0x0);
val = RXTX_REG8_SSC_ENABLE_SET(val, 0x1);
val = RXTX_REG8_SD_DISABLE_SET(val, 0x0);
val = RXTX_REG8_SD_VREF_SET(val, 0x4);
serdes_wr(ctx, lane, RXTX_REG8, val);
/* Set phase adjust upper/lower limits */
serdes_rd(ctx, lane, RXTX_REG11, &val);
val = RXTX_REG11_PHASE_ADJUST_LIMIT_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG11, val);
/* Enable Latch Off; disable SUMOS and Tx termination */
serdes_rd(ctx, lane, RXTX_REG12, &val);
val = RXTX_REG12_LATCH_OFF_ENA_SET(val, 0x1);
val = RXTX_REG12_SUMOS_ENABLE_SET(val, 0x0);
val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG12, val);
/* Set period error latch to 512T and enable BWL */
serdes_rd(ctx, lane, RXTX_REG26, &val);
val = RXTX_REG26_PERIOD_ERROR_LATCH_SET(val, 0x0);
val = RXTX_REG26_BLWC_ENA_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG26, val);
serdes_wr(ctx, lane, RXTX_REG28, 0x0);
/* Set DFE loop preset value */
serdes_wr(ctx, lane, RXTX_REG31, 0x0);
/* Set Eye Monitor counter width to 12-bit */
serdes_rd(ctx, lane, RXTX_REG61, &val);
val = RXTX_REG61_ISCAN_INBERT_SET(val, 0x1);
val = RXTX_REG61_LOADFREQ_SHIFT_SET(val, 0x0);
val = RXTX_REG61_EYE_COUNT_WIDTH_SEL_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG61, val);
serdes_rd(ctx, lane, RXTX_REG62, &val);
val = RXTX_REG62_PERIOD_H1_QLATCH_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG62, val);
/* Set BW select tap X for DFE loop */
for (i = 0; i < 9; i++) {
reg = RXTX_REG81 + i * 2;
serdes_rd(ctx, lane, reg, &val);
val = RXTX_REG89_MU_TH7_SET(val, 0xe);
val = RXTX_REG89_MU_TH8_SET(val, 0xe);
val = RXTX_REG89_MU_TH9_SET(val, 0xe);
serdes_wr(ctx, lane, reg, val);
}
/* Set BW select tap X for frequency adjust loop */
for (i = 0; i < 3; i++) {
reg = RXTX_REG96 + i * 2;
serdes_rd(ctx, lane, reg, &val);
val = RXTX_REG96_MU_FREQ1_SET(val, 0x10);
val = RXTX_REG96_MU_FREQ2_SET(val, 0x10);
val = RXTX_REG96_MU_FREQ3_SET(val, 0x10);
serdes_wr(ctx, lane, reg, val);
}
/* Set BW select tap X for phase adjust loop */
for (i = 0; i < 3; i++) {
reg = RXTX_REG99 + i * 2;
serdes_rd(ctx, lane, reg, &val);
val = RXTX_REG99_MU_PHASE1_SET(val, 0x7);
val = RXTX_REG99_MU_PHASE2_SET(val, 0x7);
val = RXTX_REG99_MU_PHASE3_SET(val, 0x7);
serdes_wr(ctx, lane, reg, val);
}
serdes_rd(ctx, lane, RXTX_REG102, &val);
val = RXTX_REG102_FREQLOOP_LIMIT_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG102, val);
serdes_wr(ctx, lane, RXTX_REG114, 0xffe0);
serdes_rd(ctx, lane, RXTX_REG125, &val);
val = RXTX_REG125_SIGN_PQ_SET(val,
ctx->sata_param.txeyedirection[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG125_PQ_REG_SET(val,
ctx->sata_param.txeyetuning[lane * 3 +
ctx->sata_param.speed[lane]]);
val = RXTX_REG125_PHZ_MANUAL_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG125, val);
serdes_rd(ctx, lane, RXTX_REG127, &val);
val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x0);
serdes_wr(ctx, lane, RXTX_REG127, val);
serdes_rd(ctx, lane, RXTX_REG128, &val);
val = RXTX_REG128_LATCH_CAL_WAIT_SEL_SET(val, 0x3);
serdes_wr(ctx, lane, RXTX_REG128, val);
serdes_rd(ctx, lane, RXTX_REG145, &val);
val = RXTX_REG145_RXDFE_CONFIG_SET(val, 0x3);
val = RXTX_REG145_TX_IDLE_SATA_SET(val, 0x0);
if (preA3Chip) {
val = RXTX_REG145_RXES_ENA_SET(val, 0x1);
val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x1);
} else {
val = RXTX_REG145_RXES_ENA_SET(val, 0x0);
val = RXTX_REG145_RXVWES_LATENA_SET(val, 0x0);
}
serdes_wr(ctx, lane, RXTX_REG145, val);
/*
* Set Rx LOS filter clock rate, sample rate, and threshold
* windows
*/
for (i = 0; i < 4; i++) {
reg = RXTX_REG148 + i * 2;
serdes_wr(ctx, lane, reg, 0xFFFF);
}
}
}
static int xgene_phy_cal_rdy_chk(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
void __iomem *csr_serdes = ctx->sds_base;
int loop;
u32 val;
/* Release PHY main reset */
writel(0xdf, csr_serdes + SATA_ENET_SDS_RST_CTL);
readl(csr_serdes + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
if (cmu_type != REF_CMU) {
cmu_setbits(ctx, cmu_type, CMU_REG5, CMU_REG5_PLL_RESETB_MASK);
/*
* As per PHY design spec, the PLL reset requires a minimum
* of 800us.
*/
usleep_range(800, 1000);
cmu_rd(ctx, cmu_type, CMU_REG1, &val);
val = CMU_REG1_PLL_MANUALCAL_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG1, val);
/*
* As per PHY design spec, the PLL auto calibration requires
* a minimum of 800us.
*/
usleep_range(800, 1000);
cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
CMU_REG32_FORCE_VCOCAL_START_MASK);
/*
* As per PHY design spec, the PLL requires a minimum of
* 800us to settle.
*/
usleep_range(800, 1000);
}
if (!preA3Chip)
goto skip_manual_cal;
/*
* Configure the termination resister calibration
* The serial receive pins, RXP/RXN, have TERMination resistor
* that is required to be calibrated.
*/
cmu_rd(ctx, cmu_type, CMU_REG17, &val);
val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x12);
val = CMU_REG17_RESERVED_7_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG17, val);
cmu_toggle1to0(ctx, cmu_type, CMU_REG17,
CMU_REG17_PVT_TERM_MAN_ENA_MASK);
/*
* The serial transmit pins, TXP/TXN, have Pull-UP and Pull-DOWN
* resistors that are required to the calibrated.
* Configure the pull DOWN calibration
*/
cmu_rd(ctx, cmu_type, CMU_REG17, &val);
val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x29);
val = CMU_REG17_RESERVED_7_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG17, val);
cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
CMU_REG16_PVT_DN_MAN_ENA_MASK);
/* Configure the pull UP calibration */
cmu_rd(ctx, cmu_type, CMU_REG17, &val);
val = CMU_REG17_PVT_CODE_R2A_SET(val, 0x28);
val = CMU_REG17_RESERVED_7_SET(val, 0x0);
cmu_wr(ctx, cmu_type, CMU_REG17, val);
cmu_toggle1to0(ctx, cmu_type, CMU_REG16,
CMU_REG16_PVT_UP_MAN_ENA_MASK);
skip_manual_cal:
/* Poll the PLL calibration completion status for at least 1 ms */
loop = 100;
do {
cmu_rd(ctx, cmu_type, CMU_REG7, &val);
if (CMU_REG7_PLL_CALIB_DONE_RD(val))
break;
/*
* As per PHY design spec, PLL calibration status requires
* a minimum of 10us to be updated.
*/
usleep_range(10, 100);
} while (--loop > 0);
cmu_rd(ctx, cmu_type, CMU_REG7, &val);
dev_dbg(ctx->dev, "PLL calibration %s\n",
CMU_REG7_PLL_CALIB_DONE_RD(val) ? "done" : "failed");
if (CMU_REG7_VCO_CAL_FAIL_RD(val)) {
dev_err(ctx->dev,
"PLL calibration failed due to VCO failure\n");
return -1;
}
dev_dbg(ctx->dev, "PLL calibration successful\n");
cmu_rd(ctx, cmu_type, CMU_REG15, &val);
dev_dbg(ctx->dev, "PHY Tx is %sready\n", val & 0x300 ? "" : "not ");
return 0;
}
static void xgene_phy_pdwn_force_vco(struct xgene_phy_ctx *ctx,
enum cmu_type_t cmu_type,
enum clk_type_t clk_type)
{
u32 val;
dev_dbg(ctx->dev, "Reset VCO and re-start again\n");
if (cmu_type == PHY_CMU) {
cmu_rd(ctx, cmu_type, CMU_REG16, &val);
val = CMU_REG16_VCOCAL_WAIT_BTW_CODE_SET(val, 0x7);
cmu_wr(ctx, cmu_type, CMU_REG16, val);
}
cmu_toggle1to0(ctx, cmu_type, CMU_REG0, CMU_REG0_PDOWN_MASK);
cmu_toggle1to0(ctx, cmu_type, CMU_REG32,
CMU_REG32_FORCE_VCOCAL_START_MASK);
}
static int xgene_phy_hw_init_sata(struct xgene_phy_ctx *ctx,
enum clk_type_t clk_type, int ssc_enable)
{
void __iomem *sds_base = ctx->sds_base;
u32 val;
int i;
/* Configure the PHY for operation */
dev_dbg(ctx->dev, "Reset PHY\n");
/* Place PHY into reset */
writel(0x0, sds_base + SATA_ENET_SDS_RST_CTL);
val = readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
/* Release PHY lane from reset (active high) */
writel(0x20, sds_base + SATA_ENET_SDS_RST_CTL);
readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
/* Release all PHY module out of reset except PHY main reset */
writel(0xde, sds_base + SATA_ENET_SDS_RST_CTL);
readl(sds_base + SATA_ENET_SDS_RST_CTL); /* Force a barrier */
/* Set the operation speed */
val = readl(sds_base + SATA_ENET_SDS_CTL1);
val = CFG_I_SPD_SEL_CDR_OVR1_SET(val,
ctx->sata_param.txspeed[ctx->sata_param.speed[0]]);
writel(val, sds_base + SATA_ENET_SDS_CTL1);
dev_dbg(ctx->dev, "Set the customer pin mode to SATA\n");
val = readl(sds_base + SATA_ENET_SDS_CTL0);
val = REGSPEC_CFG_I_CUSTOMER_PIN_MODE0_SET(val, 0x4421);
writel(val, sds_base + SATA_ENET_SDS_CTL0);
/* Configure the clock macro unit (CMU) clock type */
xgene_phy_cfg_cmu_clk_type(ctx, PHY_CMU, clk_type);
/* Configure the clock macro */
xgene_phy_sata_cfg_cmu_core(ctx, PHY_CMU, clk_type);
/* Enable SSC if enabled */
if (ssc_enable)
xgene_phy_ssc_enable(ctx, PHY_CMU);
/* Configure PHY lanes */
xgene_phy_sata_cfg_lanes(ctx);
/* Set Rx/Tx 20-bit */
val = readl(sds_base + SATA_ENET_SDS_PCS_CTL0);
val = REGSPEC_CFG_I_RX_WORDMODE0_SET(val, 0x3);
val = REGSPEC_CFG_I_TX_WORDMODE0_SET(val, 0x3);
writel(val, sds_base + SATA_ENET_SDS_PCS_CTL0);
/* Start PLL calibration and try for three times */
i = 10;
do {
if (!xgene_phy_cal_rdy_chk(ctx, PHY_CMU, clk_type))
break;
/* If failed, toggle the VCO power signal and start again */
xgene_phy_pdwn_force_vco(ctx, PHY_CMU, clk_type);
} while (--i > 0);
/* Even on failure, allow to continue any way */
if (i <= 0)
dev_err(ctx->dev, "PLL calibration failed\n");
return 0;
}
static int xgene_phy_hw_initialize(struct xgene_phy_ctx *ctx,
enum clk_type_t clk_type,
int ssc_enable)
{
int rc;
dev_dbg(ctx->dev, "PHY init clk type %d\n", clk_type);
if (ctx->mode == MODE_SATA) {
rc = xgene_phy_hw_init_sata(ctx, clk_type, ssc_enable);
if (rc)
return rc;
} else {
dev_err(ctx->dev, "Un-supported customer pin mode %d\n",
ctx->mode);
return -ENODEV;
}
return 0;
}
/*
* Receiver Offset Calibration:
*
* Calibrate the receiver signal path offset in two steps - summar and
* latch calibrations
*/
static void xgene_phy_force_lat_summer_cal(struct xgene_phy_ctx *ctx, int lane)
{
int i;
struct {
u32 reg;
u32 val;
} serdes_reg[] = {
{RXTX_REG38, 0x0},
{RXTX_REG39, 0xff00},
{RXTX_REG40, 0xffff},
{RXTX_REG41, 0xffff},
{RXTX_REG42, 0xffff},
{RXTX_REG43, 0xffff},
{RXTX_REG44, 0xffff},
{RXTX_REG45, 0xffff},
{RXTX_REG46, 0xffff},
{RXTX_REG47, 0xfffc},
{RXTX_REG48, 0x0},
{RXTX_REG49, 0x0},
{RXTX_REG50, 0x0},
{RXTX_REG51, 0x0},
{RXTX_REG52, 0x0},
{RXTX_REG53, 0x0},
{RXTX_REG54, 0x0},
{RXTX_REG55, 0x0},
};
/* Start SUMMER calibration */
serdes_setbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_SUM_CAL_START_MASK);
/*
* As per PHY design spec, the Summer calibration requires a minimum
* of 100us to complete.
*/
usleep_range(100, 500);
serdes_clrbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_SUM_CAL_START_MASK);
/*
* As per PHY design spec, the auto calibration requires a minimum
* of 100us to complete.
*/
usleep_range(100, 500);
/* Start latch calibration */
serdes_setbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_LAT_CAL_START_MASK);
/*
* As per PHY design spec, the latch calibration requires a minimum
* of 100us to complete.
*/
usleep_range(100, 500);
serdes_clrbits(ctx, lane, RXTX_REG127,
RXTX_REG127_FORCE_LAT_CAL_START_MASK);
/* Configure the PHY lane for calibration */
serdes_wr(ctx, lane, RXTX_REG28, 0x7);
serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
serdes_clrbits(ctx, lane, RXTX_REG4,
RXTX_REG4_TX_LOOPBACK_BUF_EN_MASK);
serdes_clrbits(ctx, lane, RXTX_REG7,
RXTX_REG7_LOOP_BACK_ENA_CTLE_MASK);
for (i = 0; i < ARRAY_SIZE(serdes_reg); i++)
serdes_wr(ctx, lane, serdes_reg[i].reg,
serdes_reg[i].val);
}
static void xgene_phy_reset_rxd(struct xgene_phy_ctx *ctx, int lane)
{
/* Reset digital Rx */
serdes_clrbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
/* As per PHY design spec, the reset requires a minimum of 100us. */
usleep_range(100, 150);
serdes_setbits(ctx, lane, RXTX_REG7, RXTX_REG7_RESETB_RXD_MASK);
}
static int xgene_phy_get_avg(int accum, int samples)
{
return (accum + (samples / 2)) / samples;
}
static void xgene_phy_gen_avg_val(struct xgene_phy_ctx *ctx, int lane)
{
int max_loop = 10;
int avg_loop = 0;
int lat_do = 0, lat_xo = 0, lat_eo = 0, lat_so = 0;
int lat_de = 0, lat_xe = 0, lat_ee = 0, lat_se = 0;
int sum_cal = 0;
int lat_do_itr, lat_xo_itr, lat_eo_itr, lat_so_itr;
int lat_de_itr, lat_xe_itr, lat_ee_itr, lat_se_itr;
int sum_cal_itr;
int fail_even;
int fail_odd;
u32 val;
dev_dbg(ctx->dev, "Generating avg calibration value for lane %d\n",
lane);
/* Enable RX Hi-Z termination */
serdes_setbits(ctx, lane, RXTX_REG12,
RXTX_REG12_RX_DET_TERM_ENABLE_MASK);
/* Turn off DFE */
serdes_wr(ctx, lane, RXTX_REG28, 0x0000);
/* DFE Presets to zero */
serdes_wr(ctx, lane, RXTX_REG31, 0x0000);
/*
* Receiver Offset Calibration:
* Calibrate the receiver signal path offset in two steps - summar
* and latch calibration.
* Runs the "Receiver Offset Calibration multiple times to determine
* the average value to use.
*/
while (avg_loop < max_loop) {
/* Start the calibration */
xgene_phy_force_lat_summer_cal(ctx, lane);
serdes_rd(ctx, lane, RXTX_REG21, &val);
lat_do_itr = RXTX_REG21_DO_LATCH_CALOUT_RD(val);
lat_xo_itr = RXTX_REG21_XO_LATCH_CALOUT_RD(val);
fail_odd = RXTX_REG21_LATCH_CAL_FAIL_ODD_RD(val);
serdes_rd(ctx, lane, RXTX_REG22, &val);
lat_eo_itr = RXTX_REG22_EO_LATCH_CALOUT_RD(val);
lat_so_itr = RXTX_REG22_SO_LATCH_CALOUT_RD(val);
fail_even = RXTX_REG22_LATCH_CAL_FAIL_EVEN_RD(val);
serdes_rd(ctx, lane, RXTX_REG23, &val);
lat_de_itr = RXTX_REG23_DE_LATCH_CALOUT_RD(val);
lat_xe_itr = RXTX_REG23_XE_LATCH_CALOUT_RD(val);
serdes_rd(ctx, lane, RXTX_REG24, &val);
lat_ee_itr = RXTX_REG24_EE_LATCH_CALOUT_RD(val);
lat_se_itr = RXTX_REG24_SE_LATCH_CALOUT_RD(val);
serdes_rd(ctx, lane, RXTX_REG121, &val);
sum_cal_itr = RXTX_REG121_SUMOS_CAL_CODE_RD(val);
/* Check for failure. If passed, sum them for averaging */
if ((fail_even == 0 || fail_even == 1) &&
(fail_odd == 0 || fail_odd == 1)) {
lat_do += lat_do_itr;
lat_xo += lat_xo_itr;
lat_eo += lat_eo_itr;
lat_so += lat_so_itr;
lat_de += lat_de_itr;
lat_xe += lat_xe_itr;
lat_ee += lat_ee_itr;
lat_se += lat_se_itr;
sum_cal += sum_cal_itr;
dev_dbg(ctx->dev, "Iteration %d:\n", avg_loop);
dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
lat_do_itr, lat_xo_itr, lat_eo_itr,
lat_so_itr);
dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
lat_de_itr, lat_xe_itr, lat_ee_itr,
lat_se_itr);
dev_dbg(ctx->dev, "SUM 0x%x\n", sum_cal_itr);
++avg_loop;
} else {
dev_err(ctx->dev,
"Receiver calibration failed at %d loop\n",
avg_loop);
}
xgene_phy_reset_rxd(ctx, lane);
}
/* Update latch manual calibration with average value */
serdes_rd(ctx, lane, RXTX_REG127, &val);
val = RXTX_REG127_DO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_do, max_loop));
val = RXTX_REG127_XO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_xo, max_loop));
serdes_wr(ctx, lane, RXTX_REG127, val);
serdes_rd(ctx, lane, RXTX_REG128, &val);
val = RXTX_REG128_EO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_eo, max_loop));
val = RXTX_REG128_SO_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_so, max_loop));
serdes_wr(ctx, lane, RXTX_REG128, val);
serdes_rd(ctx, lane, RXTX_REG129, &val);
val = RXTX_REG129_DE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_de, max_loop));
val = RXTX_REG129_XE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_xe, max_loop));
serdes_wr(ctx, lane, RXTX_REG129, val);
serdes_rd(ctx, lane, RXTX_REG130, &val);
val = RXTX_REG130_EE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_ee, max_loop));
val = RXTX_REG130_SE_LATCH_MANCAL_SET(val,
xgene_phy_get_avg(lat_se, max_loop));
serdes_wr(ctx, lane, RXTX_REG130, val);
/* Update SUMMER calibration with average value */
serdes_rd(ctx, lane, RXTX_REG14, &val);
val = RXTX_REG14_CLTE_LATCAL_MAN_PROG_SET(val,
xgene_phy_get_avg(sum_cal, max_loop));
serdes_wr(ctx, lane, RXTX_REG14, val);
dev_dbg(ctx->dev, "Average Value:\n");
dev_dbg(ctx->dev, "DO 0x%x XO 0x%x EO 0x%x SO 0x%x\n",
xgene_phy_get_avg(lat_do, max_loop),
xgene_phy_get_avg(lat_xo, max_loop),
xgene_phy_get_avg(lat_eo, max_loop),
xgene_phy_get_avg(lat_so, max_loop));
dev_dbg(ctx->dev, "DE 0x%x XE 0x%x EE 0x%x SE 0x%x\n",
xgene_phy_get_avg(lat_de, max_loop),
xgene_phy_get_avg(lat_xe, max_loop),
xgene_phy_get_avg(lat_ee, max_loop),
xgene_phy_get_avg(lat_se, max_loop));
dev_dbg(ctx->dev, "SUM 0x%x\n",
xgene_phy_get_avg(sum_cal, max_loop));
serdes_rd(ctx, lane, RXTX_REG14, &val);
val = RXTX_REG14_CTLE_LATCAL_MAN_ENA_SET(val, 0x1);
serdes_wr(ctx, lane, RXTX_REG14, val);
dev_dbg(ctx->dev, "Enable Manual Summer calibration\n");
serdes_rd(ctx, lane, RXTX_REG127, &val);
val = RXTX_REG127_LATCH_MAN_CAL_ENA_SET(val, 0x1);
dev_dbg(ctx->dev, "Enable Manual Latch calibration\n");
serdes_wr(ctx, lane, RXTX_REG127, val);
/* Disable RX Hi-Z termination */
serdes_rd(ctx, lane, RXTX_REG12, &val);
val = RXTX_REG12_RX_DET_TERM_ENABLE_SET(val, 0);
serdes_wr(ctx, lane, RXTX_REG12, val);
/* Turn on DFE */
serdes_wr(ctx, lane, RXTX_REG28, 0x0007);
/* Set DFE preset */
serdes_wr(ctx, lane, RXTX_REG31, 0x7e00);
}
static int xgene_phy_hw_init(struct phy *phy)
{
struct xgene_phy_ctx *ctx = phy_get_drvdata(phy);
int rc;
int i;
rc = xgene_phy_hw_initialize(ctx, CLK_EXT_DIFF, SSC_DISABLE);
if (rc) {
dev_err(ctx->dev, "PHY initialize failed %d\n", rc);
return rc;
}
/* Setup clock properly after PHY configuration */
if (!IS_ERR(ctx->clk)) {
/* HW requires an toggle of the clock */
clk_prepare_enable(ctx->clk);
clk_disable_unprepare(ctx->clk);
clk_prepare_enable(ctx->clk);
}
/* Compute average value */
for (i = 0; i < MAX_LANE; i++)
xgene_phy_gen_avg_val(ctx, i);
dev_dbg(ctx->dev, "PHY initialized\n");
return 0;
}
static const struct phy_ops xgene_phy_ops = {
.init = xgene_phy_hw_init,
.owner = THIS_MODULE,
};
static struct phy *xgene_phy_xlate(struct device *dev,
struct of_phandle_args *args)
{
struct xgene_phy_ctx *ctx = dev_get_drvdata(dev);
if (args->args_count <= 0)
return ERR_PTR(-EINVAL);
if (args->args[0] < MODE_SATA || args->args[0] >= MODE_MAX)
return ERR_PTR(-EINVAL);
ctx->mode = args->args[0];
return ctx->phy;
}
static void xgene_phy_get_param(struct platform_device *pdev,
const char *name, u32 *buffer,
int count, u32 *default_val,
u32 conv_factor)
{
int i;
if (!of_property_read_u32_array(pdev->dev.of_node, name, buffer,
count)) {
for (i = 0; i < count; i++)
buffer[i] /= conv_factor;
return;
}
/* Does not exist, load default */
for (i = 0; i < count; i++)
buffer[i] = default_val[i % 3];
}
static int xgene_phy_probe(struct platform_device *pdev)
{
struct phy_provider *phy_provider;
struct xgene_phy_ctx *ctx;
struct resource *res;
int rc = 0;
u32 default_spd[] = DEFAULT_SATA_SPD_SEL;
u32 default_txboost_gain[] = DEFAULT_SATA_TXBOOST_GAIN;
u32 default_txeye_direction[] = DEFAULT_SATA_TXEYEDIRECTION;
u32 default_txeye_tuning[] = DEFAULT_SATA_TXEYETUNING;
u32 default_txamp[] = DEFAULT_SATA_TXAMP;
u32 default_txcn1[] = DEFAULT_SATA_TXCN1;
u32 default_txcn2[] = DEFAULT_SATA_TXCN2;
u32 default_txcp1[] = DEFAULT_SATA_TXCP1;
int i;
ctx = devm_kzalloc(&pdev->dev, sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
ctx->dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
ctx->sds_base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(ctx->sds_base)) {
rc = PTR_ERR(ctx->sds_base);
goto error;
}
/* Retrieve optional clock */
ctx->clk = clk_get(&pdev->dev, NULL);
/* Load override paramaters */
xgene_phy_get_param(pdev, "apm,tx-eye-tuning",
ctx->sata_param.txeyetuning, 6, default_txeye_tuning, 1);
xgene_phy_get_param(pdev, "apm,tx-eye-direction",
ctx->sata_param.txeyedirection, 6, default_txeye_direction, 1);
xgene_phy_get_param(pdev, "apm,tx-boost-gain",
ctx->sata_param.txboostgain, 6, default_txboost_gain, 1);
xgene_phy_get_param(pdev, "apm,tx-amplitude",
ctx->sata_param.txamplitude, 6, default_txamp, 13300);
xgene_phy_get_param(pdev, "apm,tx-pre-cursor1",
ctx->sata_param.txprecursor_cn1, 6, default_txcn1, 18200);
xgene_phy_get_param(pdev, "apm,tx-pre-cursor2",
ctx->sata_param.txprecursor_cn2, 6, default_txcn2, 18200);
xgene_phy_get_param(pdev, "apm,tx-post-cursor",
ctx->sata_param.txpostcursor_cp1, 6, default_txcp1, 18200);
xgene_phy_get_param(pdev, "apm,tx-speed",
ctx->sata_param.txspeed, 3, default_spd, 1);
for (i = 0; i < MAX_LANE; i++)
ctx->sata_param.speed[i] = 2; /* Default to Gen3 */
ctx->dev = &pdev->dev;
platform_set_drvdata(pdev, ctx);
ctx->phy = devm_phy_create(ctx->dev, NULL, &xgene_phy_ops, NULL);
if (IS_ERR(ctx->phy)) {
dev_dbg(&pdev->dev, "Failed to create PHY\n");
rc = PTR_ERR(ctx->phy);
goto error;
}
phy_set_drvdata(ctx->phy, ctx);
phy_provider = devm_of_phy_provider_register(ctx->dev,
xgene_phy_xlate);
if (IS_ERR(phy_provider)) {
rc = PTR_ERR(phy_provider);
goto error;
}
return 0;
error:
return rc;
}
static const struct of_device_id xgene_phy_of_match[] = {
{.compatible = "apm,xgene-phy",},
{},
};
MODULE_DEVICE_TABLE(of, xgene_phy_of_match);
static struct platform_driver xgene_phy_driver = {
.probe = xgene_phy_probe,
.driver = {
.name = "xgene-phy",
.of_match_table = xgene_phy_of_match,
},
};
module_platform_driver(xgene_phy_driver);
MODULE_DESCRIPTION("APM X-Gene Multi-Purpose PHY driver");
MODULE_AUTHOR("Loc Ho <lho@apm.com>");
MODULE_LICENSE("GPL v2");
MODULE_VERSION("0.1");