2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 15:44:01 +08:00
linux-next/drivers/edac/edac_mc.c
Borislav Petkov 861e6ed667 EDAC: Drop per-memory controller buses
... and use the single edac_subsys object returned from
subsys_system_register(). The idea is to have a single bus
and multiple devices on it.

Signed-off-by: Borislav Petkov <bp@suse.de>
Acked-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org>
CC: Aristeu Rozanski Filho <arozansk@redhat.com>
CC: Greg KH <gregkh@linuxfoundation.org>
CC: Justin Ernst <justin.ernst@hpe.com>
CC: linux-edac <linux-edac@vger.kernel.org>
CC: Mauro Carvalho Chehab <mchehab@kernel.org>
CC: Russ Anderson <rja@hpe.com>
Cc: Tony Luck <tony.luck@intel.com>
Link: https://lkml.kernel.org/r/20180926152752.GG5584@zn.tnic
2018-11-13 21:55:24 +01:00

1255 lines
31 KiB
C

/*
* edac_mc kernel module
* (C) 2005, 2006 Linux Networx (http://lnxi.com)
* This file may be distributed under the terms of the
* GNU General Public License.
*
* Written by Thayne Harbaugh
* Based on work by Dan Hollis <goemon at anime dot net> and others.
* http://www.anime.net/~goemon/linux-ecc/
*
* Modified by Dave Peterson and Doug Thompson
*
*/
#include <linux/module.h>
#include <linux/proc_fs.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/smp.h>
#include <linux/init.h>
#include <linux/sysctl.h>
#include <linux/highmem.h>
#include <linux/timer.h>
#include <linux/slab.h>
#include <linux/jiffies.h>
#include <linux/spinlock.h>
#include <linux/list.h>
#include <linux/ctype.h>
#include <linux/edac.h>
#include <linux/bitops.h>
#include <linux/uaccess.h>
#include <asm/page.h>
#include "edac_mc.h"
#include "edac_module.h"
#include <ras/ras_event.h>
#ifdef CONFIG_EDAC_ATOMIC_SCRUB
#include <asm/edac.h>
#else
#define edac_atomic_scrub(va, size) do { } while (0)
#endif
int edac_op_state = EDAC_OPSTATE_INVAL;
EXPORT_SYMBOL_GPL(edac_op_state);
static int edac_report = EDAC_REPORTING_ENABLED;
/* lock to memory controller's control array */
static DEFINE_MUTEX(mem_ctls_mutex);
static LIST_HEAD(mc_devices);
/*
* Used to lock EDAC MC to just one module, avoiding two drivers e. g.
* apei/ghes and i7core_edac to be used at the same time.
*/
static const char *edac_mc_owner;
int edac_get_report_status(void)
{
return edac_report;
}
EXPORT_SYMBOL_GPL(edac_get_report_status);
void edac_set_report_status(int new)
{
if (new == EDAC_REPORTING_ENABLED ||
new == EDAC_REPORTING_DISABLED ||
new == EDAC_REPORTING_FORCE)
edac_report = new;
}
EXPORT_SYMBOL_GPL(edac_set_report_status);
static int edac_report_set(const char *str, const struct kernel_param *kp)
{
if (!str)
return -EINVAL;
if (!strncmp(str, "on", 2))
edac_report = EDAC_REPORTING_ENABLED;
else if (!strncmp(str, "off", 3))
edac_report = EDAC_REPORTING_DISABLED;
else if (!strncmp(str, "force", 5))
edac_report = EDAC_REPORTING_FORCE;
return 0;
}
static int edac_report_get(char *buffer, const struct kernel_param *kp)
{
int ret = 0;
switch (edac_report) {
case EDAC_REPORTING_ENABLED:
ret = sprintf(buffer, "on");
break;
case EDAC_REPORTING_DISABLED:
ret = sprintf(buffer, "off");
break;
case EDAC_REPORTING_FORCE:
ret = sprintf(buffer, "force");
break;
default:
ret = -EINVAL;
break;
}
return ret;
}
static const struct kernel_param_ops edac_report_ops = {
.set = edac_report_set,
.get = edac_report_get,
};
module_param_cb(edac_report, &edac_report_ops, &edac_report, 0644);
unsigned edac_dimm_info_location(struct dimm_info *dimm, char *buf,
unsigned len)
{
struct mem_ctl_info *mci = dimm->mci;
int i, n, count = 0;
char *p = buf;
for (i = 0; i < mci->n_layers; i++) {
n = snprintf(p, len, "%s %d ",
edac_layer_name[mci->layers[i].type],
dimm->location[i]);
p += n;
len -= n;
count += n;
if (!len)
break;
}
return count;
}
#ifdef CONFIG_EDAC_DEBUG
static void edac_mc_dump_channel(struct rank_info *chan)
{
edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx);
edac_dbg(4, " channel = %p\n", chan);
edac_dbg(4, " channel->csrow = %p\n", chan->csrow);
edac_dbg(4, " channel->dimm = %p\n", chan->dimm);
}
static void edac_mc_dump_dimm(struct dimm_info *dimm, int number)
{
char location[80];
edac_dimm_info_location(dimm, location, sizeof(location));
edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n",
dimm->mci->csbased ? "rank" : "dimm",
number, location, dimm->csrow, dimm->cschannel);
edac_dbg(4, " dimm = %p\n", dimm);
edac_dbg(4, " dimm->label = '%s'\n", dimm->label);
edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
edac_dbg(4, " dimm->grain = %d\n", dimm->grain);
edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages);
}
static void edac_mc_dump_csrow(struct csrow_info *csrow)
{
edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx);
edac_dbg(4, " csrow = %p\n", csrow);
edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page);
edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page);
edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask);
edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels);
edac_dbg(4, " csrow->channels = %p\n", csrow->channels);
edac_dbg(4, " csrow->mci = %p\n", csrow->mci);
}
static void edac_mc_dump_mci(struct mem_ctl_info *mci)
{
edac_dbg(3, "\tmci = %p\n", mci);
edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap);
edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap);
edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check);
edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n",
mci->nr_csrows, mci->csrows);
edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n",
mci->tot_dimms, mci->dimms);
edac_dbg(3, "\tdev = %p\n", mci->pdev);
edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n",
mci->mod_name, mci->ctl_name);
edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info);
}
#endif /* CONFIG_EDAC_DEBUG */
const char * const edac_mem_types[] = {
[MEM_EMPTY] = "Empty",
[MEM_RESERVED] = "Reserved",
[MEM_UNKNOWN] = "Unknown",
[MEM_FPM] = "FPM",
[MEM_EDO] = "EDO",
[MEM_BEDO] = "BEDO",
[MEM_SDR] = "Unbuffered-SDR",
[MEM_RDR] = "Registered-SDR",
[MEM_DDR] = "Unbuffered-DDR",
[MEM_RDDR] = "Registered-DDR",
[MEM_RMBS] = "RMBS",
[MEM_DDR2] = "Unbuffered-DDR2",
[MEM_FB_DDR2] = "FullyBuffered-DDR2",
[MEM_RDDR2] = "Registered-DDR2",
[MEM_XDR] = "XDR",
[MEM_DDR3] = "Unbuffered-DDR3",
[MEM_RDDR3] = "Registered-DDR3",
[MEM_LRDDR3] = "Load-Reduced-DDR3-RAM",
[MEM_DDR4] = "Unbuffered-DDR4",
[MEM_RDDR4] = "Registered-DDR4",
[MEM_LRDDR4] = "Load-Reduced-DDR4-RAM",
[MEM_NVDIMM] = "Non-volatile-RAM",
};
EXPORT_SYMBOL_GPL(edac_mem_types);
/**
* edac_align_ptr - Prepares the pointer offsets for a single-shot allocation
* @p: pointer to a pointer with the memory offset to be used. At
* return, this will be incremented to point to the next offset
* @size: Size of the data structure to be reserved
* @n_elems: Number of elements that should be reserved
*
* If 'size' is a constant, the compiler will optimize this whole function
* down to either a no-op or the addition of a constant to the value of '*p'.
*
* The 'p' pointer is absolutely needed to keep the proper advancing
* further in memory to the proper offsets when allocating the struct along
* with its embedded structs, as edac_device_alloc_ctl_info() does it
* above, for example.
*
* At return, the pointer 'p' will be incremented to be used on a next call
* to this function.
*/
void *edac_align_ptr(void **p, unsigned size, int n_elems)
{
unsigned align, r;
void *ptr = *p;
*p += size * n_elems;
/*
* 'p' can possibly be an unaligned item X such that sizeof(X) is
* 'size'. Adjust 'p' so that its alignment is at least as
* stringent as what the compiler would provide for X and return
* the aligned result.
* Here we assume that the alignment of a "long long" is the most
* stringent alignment that the compiler will ever provide by default.
* As far as I know, this is a reasonable assumption.
*/
if (size > sizeof(long))
align = sizeof(long long);
else if (size > sizeof(int))
align = sizeof(long);
else if (size > sizeof(short))
align = sizeof(int);
else if (size > sizeof(char))
align = sizeof(short);
else
return (char *)ptr;
r = (unsigned long)p % align;
if (r == 0)
return (char *)ptr;
*p += align - r;
return (void *)(((unsigned long)ptr) + align - r);
}
static void _edac_mc_free(struct mem_ctl_info *mci)
{
int i, chn, row;
struct csrow_info *csr;
const unsigned int tot_dimms = mci->tot_dimms;
const unsigned int tot_channels = mci->num_cschannel;
const unsigned int tot_csrows = mci->nr_csrows;
if (mci->dimms) {
for (i = 0; i < tot_dimms; i++)
kfree(mci->dimms[i]);
kfree(mci->dimms);
}
if (mci->csrows) {
for (row = 0; row < tot_csrows; row++) {
csr = mci->csrows[row];
if (csr) {
if (csr->channels) {
for (chn = 0; chn < tot_channels; chn++)
kfree(csr->channels[chn]);
kfree(csr->channels);
}
kfree(csr);
}
}
kfree(mci->csrows);
}
kfree(mci);
}
struct mem_ctl_info *edac_mc_alloc(unsigned mc_num,
unsigned n_layers,
struct edac_mc_layer *layers,
unsigned sz_pvt)
{
struct mem_ctl_info *mci;
struct edac_mc_layer *layer;
struct csrow_info *csr;
struct rank_info *chan;
struct dimm_info *dimm;
u32 *ce_per_layer[EDAC_MAX_LAYERS], *ue_per_layer[EDAC_MAX_LAYERS];
unsigned pos[EDAC_MAX_LAYERS];
unsigned size, tot_dimms = 1, count = 1;
unsigned tot_csrows = 1, tot_channels = 1, tot_errcount = 0;
void *pvt, *p, *ptr = NULL;
int i, j, row, chn, n, len, off;
bool per_rank = false;
BUG_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0);
/*
* Calculate the total amount of dimms and csrows/cschannels while
* in the old API emulation mode
*/
for (i = 0; i < n_layers; i++) {
tot_dimms *= layers[i].size;
if (layers[i].is_virt_csrow)
tot_csrows *= layers[i].size;
else
tot_channels *= layers[i].size;
if (layers[i].type == EDAC_MC_LAYER_CHIP_SELECT)
per_rank = true;
}
/* Figure out the offsets of the various items from the start of an mc
* structure. We want the alignment of each item to be at least as
* stringent as what the compiler would provide if we could simply
* hardcode everything into a single struct.
*/
mci = edac_align_ptr(&ptr, sizeof(*mci), 1);
layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers);
for (i = 0; i < n_layers; i++) {
count *= layers[i].size;
edac_dbg(4, "errcount layer %d size %d\n", i, count);
ce_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
ue_per_layer[i] = edac_align_ptr(&ptr, sizeof(u32), count);
tot_errcount += 2 * count;
}
edac_dbg(4, "allocating %d error counters\n", tot_errcount);
pvt = edac_align_ptr(&ptr, sz_pvt, 1);
size = ((unsigned long)pvt) + sz_pvt;
edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n",
size,
tot_dimms,
per_rank ? "ranks" : "dimms",
tot_csrows * tot_channels);
mci = kzalloc(size, GFP_KERNEL);
if (mci == NULL)
return NULL;
/* Adjust pointers so they point within the memory we just allocated
* rather than an imaginary chunk of memory located at address 0.
*/
layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer));
for (i = 0; i < n_layers; i++) {
mci->ce_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ce_per_layer[i]));
mci->ue_per_layer[i] = (u32 *)((char *)mci + ((unsigned long)ue_per_layer[i]));
}
pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL;
/* setup index and various internal pointers */
mci->mc_idx = mc_num;
mci->tot_dimms = tot_dimms;
mci->pvt_info = pvt;
mci->n_layers = n_layers;
mci->layers = layer;
memcpy(mci->layers, layers, sizeof(*layer) * n_layers);
mci->nr_csrows = tot_csrows;
mci->num_cschannel = tot_channels;
mci->csbased = per_rank;
/*
* Alocate and fill the csrow/channels structs
*/
mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL);
if (!mci->csrows)
goto error;
for (row = 0; row < tot_csrows; row++) {
csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL);
if (!csr)
goto error;
mci->csrows[row] = csr;
csr->csrow_idx = row;
csr->mci = mci;
csr->nr_channels = tot_channels;
csr->channels = kcalloc(tot_channels, sizeof(*csr->channels),
GFP_KERNEL);
if (!csr->channels)
goto error;
for (chn = 0; chn < tot_channels; chn++) {
chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL);
if (!chan)
goto error;
csr->channels[chn] = chan;
chan->chan_idx = chn;
chan->csrow = csr;
}
}
/*
* Allocate and fill the dimm structs
*/
mci->dimms = kcalloc(tot_dimms, sizeof(*mci->dimms), GFP_KERNEL);
if (!mci->dimms)
goto error;
memset(&pos, 0, sizeof(pos));
row = 0;
chn = 0;
for (i = 0; i < tot_dimms; i++) {
chan = mci->csrows[row]->channels[chn];
off = EDAC_DIMM_OFF(layer, n_layers, pos[0], pos[1], pos[2]);
if (off < 0 || off >= tot_dimms) {
edac_mc_printk(mci, KERN_ERR, "EDAC core bug: EDAC_DIMM_OFF is trying to do an illegal data access\n");
goto error;
}
dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL);
if (!dimm)
goto error;
mci->dimms[off] = dimm;
dimm->mci = mci;
/*
* Copy DIMM location and initialize it.
*/
len = sizeof(dimm->label);
p = dimm->label;
n = snprintf(p, len, "mc#%u", mc_num);
p += n;
len -= n;
for (j = 0; j < n_layers; j++) {
n = snprintf(p, len, "%s#%u",
edac_layer_name[layers[j].type],
pos[j]);
p += n;
len -= n;
dimm->location[j] = pos[j];
if (len <= 0)
break;
}
/* Link it to the csrows old API data */
chan->dimm = dimm;
dimm->csrow = row;
dimm->cschannel = chn;
/* Increment csrow location */
if (layers[0].is_virt_csrow) {
chn++;
if (chn == tot_channels) {
chn = 0;
row++;
}
} else {
row++;
if (row == tot_csrows) {
row = 0;
chn++;
}
}
/* Increment dimm location */
for (j = n_layers - 1; j >= 0; j--) {
pos[j]++;
if (pos[j] < layers[j].size)
break;
pos[j] = 0;
}
}
mci->op_state = OP_ALLOC;
return mci;
error:
_edac_mc_free(mci);
return NULL;
}
EXPORT_SYMBOL_GPL(edac_mc_alloc);
void edac_mc_free(struct mem_ctl_info *mci)
{
edac_dbg(1, "\n");
/* If we're not yet registered with sysfs free only what was allocated
* in edac_mc_alloc().
*/
if (!device_is_registered(&mci->dev)) {
_edac_mc_free(mci);
return;
}
/* the mci instance is freed here, when the sysfs object is dropped */
edac_unregister_sysfs(mci);
}
EXPORT_SYMBOL_GPL(edac_mc_free);
bool edac_has_mcs(void)
{
bool ret;
mutex_lock(&mem_ctls_mutex);
ret = list_empty(&mc_devices);
mutex_unlock(&mem_ctls_mutex);
return !ret;
}
EXPORT_SYMBOL_GPL(edac_has_mcs);
/* Caller must hold mem_ctls_mutex */
static struct mem_ctl_info *__find_mci_by_dev(struct device *dev)
{
struct mem_ctl_info *mci;
struct list_head *item;
edac_dbg(3, "\n");
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->pdev == dev)
return mci;
}
return NULL;
}
/**
* find_mci_by_dev
*
* scan list of controllers looking for the one that manages
* the 'dev' device
* @dev: pointer to a struct device related with the MCI
*/
struct mem_ctl_info *find_mci_by_dev(struct device *dev)
{
struct mem_ctl_info *ret;
mutex_lock(&mem_ctls_mutex);
ret = __find_mci_by_dev(dev);
mutex_unlock(&mem_ctls_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(find_mci_by_dev);
/*
* edac_mc_workq_function
* performs the operation scheduled by a workq request
*/
static void edac_mc_workq_function(struct work_struct *work_req)
{
struct delayed_work *d_work = to_delayed_work(work_req);
struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work);
mutex_lock(&mem_ctls_mutex);
if (mci->op_state != OP_RUNNING_POLL) {
mutex_unlock(&mem_ctls_mutex);
return;
}
if (edac_op_state == EDAC_OPSTATE_POLL)
mci->edac_check(mci);
mutex_unlock(&mem_ctls_mutex);
/* Queue ourselves again. */
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
}
/*
* edac_mc_reset_delay_period(unsigned long value)
*
* user space has updated our poll period value, need to
* reset our workq delays
*/
void edac_mc_reset_delay_period(unsigned long value)
{
struct mem_ctl_info *mci;
struct list_head *item;
mutex_lock(&mem_ctls_mutex);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->op_state == OP_RUNNING_POLL)
edac_mod_work(&mci->work, value);
}
mutex_unlock(&mem_ctls_mutex);
}
/* Return 0 on success, 1 on failure.
* Before calling this function, caller must
* assign a unique value to mci->mc_idx.
*
* locking model:
*
* called with the mem_ctls_mutex lock held
*/
static int add_mc_to_global_list(struct mem_ctl_info *mci)
{
struct list_head *item, *insert_before;
struct mem_ctl_info *p;
insert_before = &mc_devices;
p = __find_mci_by_dev(mci->pdev);
if (unlikely(p != NULL))
goto fail0;
list_for_each(item, &mc_devices) {
p = list_entry(item, struct mem_ctl_info, link);
if (p->mc_idx >= mci->mc_idx) {
if (unlikely(p->mc_idx == mci->mc_idx))
goto fail1;
insert_before = item;
break;
}
}
list_add_tail_rcu(&mci->link, insert_before);
return 0;
fail0:
edac_printk(KERN_WARNING, EDAC_MC,
"%s (%s) %s %s already assigned %d\n", dev_name(p->pdev),
edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx);
return 1;
fail1:
edac_printk(KERN_WARNING, EDAC_MC,
"bug in low-level driver: attempt to assign\n"
" duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
return 1;
}
static int del_mc_from_global_list(struct mem_ctl_info *mci)
{
list_del_rcu(&mci->link);
/* these are for safe removal of devices from global list while
* NMI handlers may be traversing list
*/
synchronize_rcu();
INIT_LIST_HEAD(&mci->link);
return list_empty(&mc_devices);
}
struct mem_ctl_info *edac_mc_find(int idx)
{
struct mem_ctl_info *mci = NULL;
struct list_head *item;
mutex_lock(&mem_ctls_mutex);
list_for_each(item, &mc_devices) {
mci = list_entry(item, struct mem_ctl_info, link);
if (mci->mc_idx >= idx) {
if (mci->mc_idx == idx) {
goto unlock;
}
break;
}
}
unlock:
mutex_unlock(&mem_ctls_mutex);
return mci;
}
EXPORT_SYMBOL(edac_mc_find);
const char *edac_get_owner(void)
{
return edac_mc_owner;
}
EXPORT_SYMBOL_GPL(edac_get_owner);
/* FIXME - should a warning be printed if no error detection? correction? */
int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci,
const struct attribute_group **groups)
{
int ret = -EINVAL;
edac_dbg(0, "\n");
#ifdef CONFIG_EDAC_DEBUG
if (edac_debug_level >= 3)
edac_mc_dump_mci(mci);
if (edac_debug_level >= 4) {
int i;
for (i = 0; i < mci->nr_csrows; i++) {
struct csrow_info *csrow = mci->csrows[i];
u32 nr_pages = 0;
int j;
for (j = 0; j < csrow->nr_channels; j++)
nr_pages += csrow->channels[j]->dimm->nr_pages;
if (!nr_pages)
continue;
edac_mc_dump_csrow(csrow);
for (j = 0; j < csrow->nr_channels; j++)
if (csrow->channels[j]->dimm->nr_pages)
edac_mc_dump_channel(csrow->channels[j]);
}
for (i = 0; i < mci->tot_dimms; i++)
if (mci->dimms[i]->nr_pages)
edac_mc_dump_dimm(mci->dimms[i], i);
}
#endif
mutex_lock(&mem_ctls_mutex);
if (edac_mc_owner && edac_mc_owner != mci->mod_name) {
ret = -EPERM;
goto fail0;
}
if (add_mc_to_global_list(mci))
goto fail0;
/* set load time so that error rate can be tracked */
mci->start_time = jiffies;
mci->bus = edac_get_sysfs_subsys();
if (edac_create_sysfs_mci_device(mci, groups)) {
edac_mc_printk(mci, KERN_WARNING,
"failed to create sysfs device\n");
goto fail1;
}
if (mci->edac_check) {
mci->op_state = OP_RUNNING_POLL;
INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function);
edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec()));
} else {
mci->op_state = OP_RUNNING_INTERRUPT;
}
/* Report action taken */
edac_mc_printk(mci, KERN_INFO,
"Giving out device to module %s controller %s: DEV %s (%s)\n",
mci->mod_name, mci->ctl_name, mci->dev_name,
edac_op_state_to_string(mci->op_state));
edac_mc_owner = mci->mod_name;
mutex_unlock(&mem_ctls_mutex);
return 0;
fail1:
del_mc_from_global_list(mci);
fail0:
mutex_unlock(&mem_ctls_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups);
struct mem_ctl_info *edac_mc_del_mc(struct device *dev)
{
struct mem_ctl_info *mci;
edac_dbg(0, "\n");
mutex_lock(&mem_ctls_mutex);
/* find the requested mci struct in the global list */
mci = __find_mci_by_dev(dev);
if (mci == NULL) {
mutex_unlock(&mem_ctls_mutex);
return NULL;
}
/* mark MCI offline: */
mci->op_state = OP_OFFLINE;
if (del_mc_from_global_list(mci))
edac_mc_owner = NULL;
mutex_unlock(&mem_ctls_mutex);
if (mci->edac_check)
edac_stop_work(&mci->work);
/* remove from sysfs */
edac_remove_sysfs_mci_device(mci);
edac_printk(KERN_INFO, EDAC_MC,
"Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
mci->mod_name, mci->ctl_name, edac_dev_name(mci));
return mci;
}
EXPORT_SYMBOL_GPL(edac_mc_del_mc);
static void edac_mc_scrub_block(unsigned long page, unsigned long offset,
u32 size)
{
struct page *pg;
void *virt_addr;
unsigned long flags = 0;
edac_dbg(3, "\n");
/* ECC error page was not in our memory. Ignore it. */
if (!pfn_valid(page))
return;
/* Find the actual page structure then map it and fix */
pg = pfn_to_page(page);
if (PageHighMem(pg))
local_irq_save(flags);
virt_addr = kmap_atomic(pg);
/* Perform architecture specific atomic scrub operation */
edac_atomic_scrub(virt_addr + offset, size);
/* Unmap and complete */
kunmap_atomic(virt_addr);
if (PageHighMem(pg))
local_irq_restore(flags);
}
/* FIXME - should return -1 */
int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
{
struct csrow_info **csrows = mci->csrows;
int row, i, j, n;
edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page);
row = -1;
for (i = 0; i < mci->nr_csrows; i++) {
struct csrow_info *csrow = csrows[i];
n = 0;
for (j = 0; j < csrow->nr_channels; j++) {
struct dimm_info *dimm = csrow->channels[j]->dimm;
n += dimm->nr_pages;
}
if (n == 0)
continue;
edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n",
mci->mc_idx,
csrow->first_page, page, csrow->last_page,
csrow->page_mask);
if ((page >= csrow->first_page) &&
(page <= csrow->last_page) &&
((page & csrow->page_mask) ==
(csrow->first_page & csrow->page_mask))) {
row = i;
break;
}
}
if (row == -1)
edac_mc_printk(mci, KERN_ERR,
"could not look up page error address %lx\n",
(unsigned long)page);
return row;
}
EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
const char *edac_layer_name[] = {
[EDAC_MC_LAYER_BRANCH] = "branch",
[EDAC_MC_LAYER_CHANNEL] = "channel",
[EDAC_MC_LAYER_SLOT] = "slot",
[EDAC_MC_LAYER_CHIP_SELECT] = "csrow",
[EDAC_MC_LAYER_ALL_MEM] = "memory",
};
EXPORT_SYMBOL_GPL(edac_layer_name);
static void edac_inc_ce_error(struct mem_ctl_info *mci,
bool enable_per_layer_report,
const int pos[EDAC_MAX_LAYERS],
const u16 count)
{
int i, index = 0;
mci->ce_mc += count;
if (!enable_per_layer_report) {
mci->ce_noinfo_count += count;
return;
}
for (i = 0; i < mci->n_layers; i++) {
if (pos[i] < 0)
break;
index += pos[i];
mci->ce_per_layer[i][index] += count;
if (i < mci->n_layers - 1)
index *= mci->layers[i + 1].size;
}
}
static void edac_inc_ue_error(struct mem_ctl_info *mci,
bool enable_per_layer_report,
const int pos[EDAC_MAX_LAYERS],
const u16 count)
{
int i, index = 0;
mci->ue_mc += count;
if (!enable_per_layer_report) {
mci->ue_noinfo_count += count;
return;
}
for (i = 0; i < mci->n_layers; i++) {
if (pos[i] < 0)
break;
index += pos[i];
mci->ue_per_layer[i][index] += count;
if (i < mci->n_layers - 1)
index *= mci->layers[i + 1].size;
}
}
static void edac_ce_error(struct mem_ctl_info *mci,
const u16 error_count,
const int pos[EDAC_MAX_LAYERS],
const char *msg,
const char *location,
const char *label,
const char *detail,
const char *other_detail,
const bool enable_per_layer_report,
const unsigned long page_frame_number,
const unsigned long offset_in_page,
long grain)
{
unsigned long remapped_page;
char *msg_aux = "";
if (*msg)
msg_aux = " ";
if (edac_mc_get_log_ce()) {
if (other_detail && *other_detail)
edac_mc_printk(mci, KERN_WARNING,
"%d CE %s%son %s (%s %s - %s)\n",
error_count, msg, msg_aux, label,
location, detail, other_detail);
else
edac_mc_printk(mci, KERN_WARNING,
"%d CE %s%son %s (%s %s)\n",
error_count, msg, msg_aux, label,
location, detail);
}
edac_inc_ce_error(mci, enable_per_layer_report, pos, error_count);
if (mci->scrub_mode == SCRUB_SW_SRC) {
/*
* Some memory controllers (called MCs below) can remap
* memory so that it is still available at a different
* address when PCI devices map into memory.
* MC's that can't do this, lose the memory where PCI
* devices are mapped. This mapping is MC-dependent
* and so we call back into the MC driver for it to
* map the MC page to a physical (CPU) page which can
* then be mapped to a virtual page - which can then
* be scrubbed.
*/
remapped_page = mci->ctl_page_to_phys ?
mci->ctl_page_to_phys(mci, page_frame_number) :
page_frame_number;
edac_mc_scrub_block(remapped_page,
offset_in_page, grain);
}
}
static void edac_ue_error(struct mem_ctl_info *mci,
const u16 error_count,
const int pos[EDAC_MAX_LAYERS],
const char *msg,
const char *location,
const char *label,
const char *detail,
const char *other_detail,
const bool enable_per_layer_report)
{
char *msg_aux = "";
if (*msg)
msg_aux = " ";
if (edac_mc_get_log_ue()) {
if (other_detail && *other_detail)
edac_mc_printk(mci, KERN_WARNING,
"%d UE %s%son %s (%s %s - %s)\n",
error_count, msg, msg_aux, label,
location, detail, other_detail);
else
edac_mc_printk(mci, KERN_WARNING,
"%d UE %s%son %s (%s %s)\n",
error_count, msg, msg_aux, label,
location, detail);
}
if (edac_mc_get_panic_on_ue()) {
if (other_detail && *other_detail)
panic("UE %s%son %s (%s%s - %s)\n",
msg, msg_aux, label, location, detail, other_detail);
else
panic("UE %s%son %s (%s%s)\n",
msg, msg_aux, label, location, detail);
}
edac_inc_ue_error(mci, enable_per_layer_report, pos, error_count);
}
void edac_raw_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci,
struct edac_raw_error_desc *e)
{
char detail[80];
int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer };
/* Memory type dependent details about the error */
if (type == HW_EVENT_ERR_CORRECTED) {
snprintf(detail, sizeof(detail),
"page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx",
e->page_frame_number, e->offset_in_page,
e->grain, e->syndrome);
edac_ce_error(mci, e->error_count, pos, e->msg, e->location, e->label,
detail, e->other_detail, e->enable_per_layer_report,
e->page_frame_number, e->offset_in_page, e->grain);
} else {
snprintf(detail, sizeof(detail),
"page:0x%lx offset:0x%lx grain:%ld",
e->page_frame_number, e->offset_in_page, e->grain);
edac_ue_error(mci, e->error_count, pos, e->msg, e->location, e->label,
detail, e->other_detail, e->enable_per_layer_report);
}
}
EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error);
void edac_mc_handle_error(const enum hw_event_mc_err_type type,
struct mem_ctl_info *mci,
const u16 error_count,
const unsigned long page_frame_number,
const unsigned long offset_in_page,
const unsigned long syndrome,
const int top_layer,
const int mid_layer,
const int low_layer,
const char *msg,
const char *other_detail)
{
char *p;
int row = -1, chan = -1;
int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer };
int i, n_labels = 0;
u8 grain_bits;
struct edac_raw_error_desc *e = &mci->error_desc;
edac_dbg(3, "MC%d\n", mci->mc_idx);
/* Fills the error report buffer */
memset(e, 0, sizeof (*e));
e->error_count = error_count;
e->top_layer = top_layer;
e->mid_layer = mid_layer;
e->low_layer = low_layer;
e->page_frame_number = page_frame_number;
e->offset_in_page = offset_in_page;
e->syndrome = syndrome;
e->msg = msg;
e->other_detail = other_detail;
/*
* Check if the event report is consistent and if the memory
* location is known. If it is known, enable_per_layer_report will be
* true, the DIMM(s) label info will be filled and the per-layer
* error counters will be incremented.
*/
for (i = 0; i < mci->n_layers; i++) {
if (pos[i] >= (int)mci->layers[i].size) {
edac_mc_printk(mci, KERN_ERR,
"INTERNAL ERROR: %s value is out of range (%d >= %d)\n",
edac_layer_name[mci->layers[i].type],
pos[i], mci->layers[i].size);
/*
* Instead of just returning it, let's use what's
* known about the error. The increment routines and
* the DIMM filter logic will do the right thing by
* pointing the likely damaged DIMMs.
*/
pos[i] = -1;
}
if (pos[i] >= 0)
e->enable_per_layer_report = true;
}
/*
* Get the dimm label/grain that applies to the match criteria.
* As the error algorithm may not be able to point to just one memory
* stick, the logic here will get all possible labels that could
* pottentially be affected by the error.
* On FB-DIMM memory controllers, for uncorrected errors, it is common
* to have only the MC channel and the MC dimm (also called "branch")
* but the channel is not known, as the memory is arranged in pairs,
* where each memory belongs to a separate channel within the same
* branch.
*/
p = e->label;
*p = '\0';
for (i = 0; i < mci->tot_dimms; i++) {
struct dimm_info *dimm = mci->dimms[i];
if (top_layer >= 0 && top_layer != dimm->location[0])
continue;
if (mid_layer >= 0 && mid_layer != dimm->location[1])
continue;
if (low_layer >= 0 && low_layer != dimm->location[2])
continue;
/* get the max grain, over the error match range */
if (dimm->grain > e->grain)
e->grain = dimm->grain;
/*
* If the error is memory-controller wide, there's no need to
* seek for the affected DIMMs because the whole
* channel/memory controller/... may be affected.
* Also, don't show errors for empty DIMM slots.
*/
if (e->enable_per_layer_report && dimm->nr_pages) {
if (n_labels >= EDAC_MAX_LABELS) {
e->enable_per_layer_report = false;
break;
}
n_labels++;
if (p != e->label) {
strcpy(p, OTHER_LABEL);
p += strlen(OTHER_LABEL);
}
strcpy(p, dimm->label);
p += strlen(p);
*p = '\0';
/*
* get csrow/channel of the DIMM, in order to allow
* incrementing the compat API counters
*/
edac_dbg(4, "%s csrows map: (%d,%d)\n",
mci->csbased ? "rank" : "dimm",
dimm->csrow, dimm->cschannel);
if (row == -1)
row = dimm->csrow;
else if (row >= 0 && row != dimm->csrow)
row = -2;
if (chan == -1)
chan = dimm->cschannel;
else if (chan >= 0 && chan != dimm->cschannel)
chan = -2;
}
}
if (!e->enable_per_layer_report) {
strcpy(e->label, "any memory");
} else {
edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan);
if (p == e->label)
strcpy(e->label, "unknown memory");
if (type == HW_EVENT_ERR_CORRECTED) {
if (row >= 0) {
mci->csrows[row]->ce_count += error_count;
if (chan >= 0)
mci->csrows[row]->channels[chan]->ce_count += error_count;
}
} else
if (row >= 0)
mci->csrows[row]->ue_count += error_count;
}
/* Fill the RAM location data */
p = e->location;
for (i = 0; i < mci->n_layers; i++) {
if (pos[i] < 0)
continue;
p += sprintf(p, "%s:%d ",
edac_layer_name[mci->layers[i].type],
pos[i]);
}
if (p > e->location)
*(p - 1) = '\0';
/* Report the error via the trace interface */
grain_bits = fls_long(e->grain) + 1;
if (IS_ENABLED(CONFIG_RAS))
trace_mc_event(type, e->msg, e->label, e->error_count,
mci->mc_idx, e->top_layer, e->mid_layer,
e->low_layer,
(e->page_frame_number << PAGE_SHIFT) | e->offset_in_page,
grain_bits, e->syndrome, e->other_detail);
edac_raw_mc_handle_error(type, mci, e);
}
EXPORT_SYMBOL_GPL(edac_mc_handle_error);