mirror of
https://github.com/edk2-porting/linux-next.git
synced 2024-12-21 11:44:01 +08:00
53d5ed627d
In preparation for moving check_signature, change these users from asm/io.h to linux/io.h Signed-off-by: Matthew Wilcox <willy@parisc-linux.org> Signed-off-by: Andrew Morton <akpm@osdl.org> Signed-off-by: Linus Torvalds <torvalds@osdl.org>
1675 lines
51 KiB
C
1675 lines
51 KiB
C
/* $Id: $
|
|
* linux/drivers/scsi/wd7000.c
|
|
*
|
|
* Copyright (C) 1992 Thomas Wuensche
|
|
* closely related to the aha1542 driver from Tommy Thorn
|
|
* ( as close as different hardware allows on a lowlevel-driver :-) )
|
|
*
|
|
* Revised (and renamed) by John Boyd <boyd@cis.ohio-state.edu> to
|
|
* accommodate Eric Youngdale's modifications to scsi.c. Nov 1992.
|
|
*
|
|
* Additional changes to support scatter/gather. Dec. 1992. tw/jb
|
|
*
|
|
* No longer tries to reset SCSI bus at boot (it wasn't working anyway).
|
|
* Rewritten to support multiple host adapters.
|
|
* Miscellaneous cleanup.
|
|
* So far, still doesn't do reset or abort correctly, since I have no idea
|
|
* how to do them with this board (8^(. Jan 1994 jb
|
|
*
|
|
* This driver now supports both of the two standard configurations (per
|
|
* the 3.36 Owner's Manual, my latest reference) by the same method as
|
|
* before; namely, by looking for a BIOS signature. Thus, the location of
|
|
* the BIOS signature determines the board configuration. Until I have
|
|
* time to do something more flexible, users should stick to one of the
|
|
* following:
|
|
*
|
|
* Standard configuration for single-adapter systems:
|
|
* - BIOS at CE00h
|
|
* - I/O base address 350h
|
|
* - IRQ level 15
|
|
* - DMA channel 6
|
|
* Standard configuration for a second adapter in a system:
|
|
* - BIOS at C800h
|
|
* - I/O base address 330h
|
|
* - IRQ level 11
|
|
* - DMA channel 5
|
|
*
|
|
* Anyone who can recompile the kernel is welcome to add others as need
|
|
* arises, but unpredictable results may occur if there are conflicts.
|
|
* In any event, if there are multiple adapters in a system, they MUST
|
|
* use different I/O bases, IRQ levels, and DMA channels, since they will be
|
|
* indistinguishable (and in direct conflict) otherwise.
|
|
*
|
|
* As a point of information, the NO_OP command toggles the CMD_RDY bit
|
|
* of the status port, and this fact could be used as a test for the I/O
|
|
* base address (or more generally, board detection). There is an interrupt
|
|
* status port, so IRQ probing could also be done. I suppose the full
|
|
* DMA diagnostic could be used to detect the DMA channel being used. I
|
|
* haven't done any of this, though, because I think there's too much of
|
|
* a chance that such explorations could be destructive, if some other
|
|
* board's resources are used inadvertently. So, call me a wimp, but I
|
|
* don't want to try it. The only kind of exploration I trust is memory
|
|
* exploration, since it's more certain that reading memory won't be
|
|
* destructive.
|
|
*
|
|
* More to my liking would be a LILO boot command line specification, such
|
|
* as is used by the aha152x driver (and possibly others). I'll look into
|
|
* it, as I have time...
|
|
*
|
|
* I get mail occasionally from people who either are using or are
|
|
* considering using a WD7000 with Linux. There is a variety of
|
|
* nomenclature describing WD7000's. To the best of my knowledge, the
|
|
* following is a brief summary (from an old WD doc - I don't work for
|
|
* them or anything like that):
|
|
*
|
|
* WD7000-FASST2: This is a WD7000 board with the real-mode SST ROM BIOS
|
|
* installed. Last I heard, the BIOS was actually done by Columbia
|
|
* Data Products. The BIOS is only used by this driver (and thus
|
|
* by Linux) to identify the board; none of it can be executed under
|
|
* Linux.
|
|
*
|
|
* WD7000-ASC: This is the original adapter board, with or without BIOS.
|
|
* The board uses a WD33C93 or WD33C93A SBIC, which in turn is
|
|
* controlled by an onboard Z80 processor. The board interface
|
|
* visible to the host CPU is defined effectively by the Z80's
|
|
* firmware, and it is this firmware's revision level that is
|
|
* determined and reported by this driver. (The version of the
|
|
* on-board BIOS is of no interest whatsoever.) The host CPU has
|
|
* no access to the SBIC; hence the fact that it is a WD33C93 is
|
|
* also of no interest to this driver.
|
|
*
|
|
* WD7000-AX:
|
|
* WD7000-MX:
|
|
* WD7000-EX: These are newer versions of the WD7000-ASC. The -ASC is
|
|
* largely built from discrete components; these boards use more
|
|
* integration. The -AX is an ISA bus board (like the -ASC),
|
|
* the -MX is an MCA (i.e., PS/2) bus board), and the -EX is an
|
|
* EISA bus board.
|
|
*
|
|
* At the time of my documentation, the -?X boards were "future" products,
|
|
* and were not yet available. However, I vaguely recall that Thomas
|
|
* Wuensche had an -AX, so I believe at least it is supported by this
|
|
* driver. I have no personal knowledge of either -MX or -EX boards.
|
|
*
|
|
* P.S. Just recently, I've discovered (directly from WD and Future
|
|
* Domain) that all but the WD7000-EX have been out of production for
|
|
* two years now. FD has production rights to the 7000-EX, and are
|
|
* producing it under a new name, and with a new BIOS. If anyone has
|
|
* one of the FD boards, it would be nice to come up with a signature
|
|
* for it.
|
|
* J.B. Jan 1994.
|
|
*
|
|
*
|
|
* Revisions by Miroslav Zagorac <zaga@fly.cc.fer.hr>
|
|
*
|
|
* 08/24/1996.
|
|
*
|
|
* Enhancement for wd7000_detect function has been made, so you don't have
|
|
* to enter BIOS ROM address in initialisation data (see struct Config).
|
|
* We cannot detect IRQ, DMA and I/O base address for now, so we have to
|
|
* enter them as arguments while wd_7000 is detected. If someone has IRQ,
|
|
* DMA or I/O base address set to some other value, he can enter them in
|
|
* configuration without any problem. Also I wrote a function wd7000_setup,
|
|
* so now you can enter WD-7000 definition as kernel arguments,
|
|
* as in lilo.conf:
|
|
*
|
|
* append="wd7000=IRQ,DMA,IO"
|
|
*
|
|
* PS: If card BIOS ROM is disabled, function wd7000_detect now will recognize
|
|
* adapter, unlike the old one. Anyway, BIOS ROM from WD7000 adapter is
|
|
* useless for Linux. B^)
|
|
*
|
|
*
|
|
* 09/06/1996.
|
|
*
|
|
* Autodetecting of I/O base address from wd7000_detect function is removed,
|
|
* some little bugs removed, etc...
|
|
*
|
|
* Thanks to Roger Scott for driver debugging.
|
|
*
|
|
* 06/07/1997
|
|
*
|
|
* Added support for /proc file system (/proc/scsi/wd7000/[0...] files).
|
|
* Now, driver can handle hard disks with capacity >1GB.
|
|
*
|
|
* 01/15/1998
|
|
*
|
|
* Added support for BUS_ON and BUS_OFF parameters in config line.
|
|
* Miscellaneous cleanup.
|
|
*
|
|
* 03/01/1998
|
|
*
|
|
* WD7000 driver now work on kernels >= 2.1.x
|
|
*
|
|
*
|
|
* 12/31/2001 - Arnaldo Carvalho de Melo <acme@conectiva.com.br>
|
|
*
|
|
* use host->host_lock, not io_request_lock, cleanups
|
|
*
|
|
* 2002/10/04 - Alan Cox <alan@redhat.com>
|
|
*
|
|
* Use dev_id for interrupts, kill __FUNCTION__ pasting
|
|
* Add a lock for the scb pool, clean up all other cli/sti usage stuff
|
|
* Use the adapter lock for the other places we had the cli's
|
|
*
|
|
* 2002/10/06 - Alan Cox <alan@redhat.com>
|
|
*
|
|
* Switch to new style error handling
|
|
* Clean up delay to udelay, and yielding sleeps
|
|
* Make host reset actually reset the card
|
|
* Make everything static
|
|
*
|
|
* 2003/02/12 - Christoph Hellwig <hch@infradead.org>
|
|
*
|
|
* Cleaned up host template defintion
|
|
* Removed now obsolete wd7000.h
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/module.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/string.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/ioport.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/init.h>
|
|
#include <linux/stat.h>
|
|
#include <linux/io.h>
|
|
|
|
#include <asm/system.h>
|
|
#include <asm/dma.h>
|
|
|
|
#include <scsi/scsi.h>
|
|
#include <scsi/scsi_cmnd.h>
|
|
#include <scsi/scsi_device.h>
|
|
#include <scsi/scsi_host.h>
|
|
#include <scsi/scsicam.h>
|
|
|
|
|
|
#undef WD7000_DEBUG /* general debug */
|
|
#ifdef WD7000_DEBUG
|
|
#define dprintk printk
|
|
#else
|
|
#define dprintk(format,args...)
|
|
#endif
|
|
|
|
/*
|
|
* Mailbox structure sizes.
|
|
* I prefer to keep the number of ICMBs much larger than the number of
|
|
* OGMBs. OGMBs are used very quickly by the driver to start one or
|
|
* more commands, while ICMBs are used by the host adapter per command.
|
|
*/
|
|
#define OGMB_CNT 16
|
|
#define ICMB_CNT 32
|
|
|
|
/*
|
|
* Scb's are shared by all active adapters. So, if they all become busy,
|
|
* callers may be made to wait in alloc_scbs for them to free. That can
|
|
* be avoided by setting MAX_SCBS to NUM_CONFIG * WD7000_Q. If you'd
|
|
* rather conserve memory, use a smaller number (> 0, of course) - things
|
|
* will should still work OK.
|
|
*/
|
|
#define MAX_SCBS 32
|
|
|
|
/*
|
|
* In this version, sg_tablesize now defaults to WD7000_SG, and will
|
|
* be set to SG_NONE for older boards. This is the reverse of the
|
|
* previous default, and was changed so that the driver-level
|
|
* scsi_host_template would reflect the driver's support for scatter/
|
|
* gather.
|
|
*
|
|
* Also, it has been reported that boards at Revision 6 support scatter/
|
|
* gather, so the new definition of an "older" board has been changed
|
|
* accordingly.
|
|
*/
|
|
#define WD7000_Q 16
|
|
#define WD7000_SG 16
|
|
|
|
|
|
/*
|
|
* WD7000-specific mailbox structure
|
|
*
|
|
*/
|
|
typedef volatile struct mailbox {
|
|
unchar status;
|
|
unchar scbptr[3]; /* SCSI-style - MSB first (big endian) */
|
|
} Mailbox;
|
|
|
|
/*
|
|
* This structure should contain all per-adapter global data. I.e., any
|
|
* new global per-adapter data should put in here.
|
|
*/
|
|
typedef struct adapter {
|
|
struct Scsi_Host *sh; /* Pointer to Scsi_Host structure */
|
|
int iobase; /* This adapter's I/O base address */
|
|
int irq; /* This adapter's IRQ level */
|
|
int dma; /* This adapter's DMA channel */
|
|
int int_counter; /* This adapter's interrupt counter */
|
|
int bus_on; /* This adapter's BUS_ON time */
|
|
int bus_off; /* This adapter's BUS_OFF time */
|
|
struct { /* This adapter's mailboxes */
|
|
Mailbox ogmb[OGMB_CNT]; /* Outgoing mailboxes */
|
|
Mailbox icmb[ICMB_CNT]; /* Incoming mailboxes */
|
|
} mb;
|
|
int next_ogmb; /* to reduce contention at mailboxes */
|
|
unchar control; /* shadows CONTROL port value */
|
|
unchar rev1, rev2; /* filled in by wd7000_revision */
|
|
} Adapter;
|
|
|
|
/*
|
|
* (linear) base address for ROM BIOS
|
|
*/
|
|
static const long wd7000_biosaddr[] = {
|
|
0xc0000, 0xc2000, 0xc4000, 0xc6000, 0xc8000, 0xca000, 0xcc000, 0xce000,
|
|
0xd0000, 0xd2000, 0xd4000, 0xd6000, 0xd8000, 0xda000, 0xdc000, 0xde000
|
|
};
|
|
#define NUM_ADDRS ARRAY_SIZE(wd7000_biosaddr)
|
|
|
|
static const unsigned short wd7000_iobase[] = {
|
|
0x0300, 0x0308, 0x0310, 0x0318, 0x0320, 0x0328, 0x0330, 0x0338,
|
|
0x0340, 0x0348, 0x0350, 0x0358, 0x0360, 0x0368, 0x0370, 0x0378,
|
|
0x0380, 0x0388, 0x0390, 0x0398, 0x03a0, 0x03a8, 0x03b0, 0x03b8,
|
|
0x03c0, 0x03c8, 0x03d0, 0x03d8, 0x03e0, 0x03e8, 0x03f0, 0x03f8
|
|
};
|
|
#define NUM_IOPORTS ARRAY_SIZE(wd7000_iobase)
|
|
|
|
static const short wd7000_irq[] = { 3, 4, 5, 7, 9, 10, 11, 12, 14, 15 };
|
|
#define NUM_IRQS ARRAY_SIZE(wd7000_irq)
|
|
|
|
static const short wd7000_dma[] = { 5, 6, 7 };
|
|
#define NUM_DMAS ARRAY_SIZE(wd7000_dma)
|
|
|
|
/*
|
|
* The following is set up by wd7000_detect, and used thereafter for
|
|
* proc and other global ookups
|
|
*/
|
|
|
|
#define UNITS 8
|
|
static struct Scsi_Host *wd7000_host[UNITS];
|
|
|
|
#define BUS_ON 64 /* x 125ns = 8000ns (BIOS default) */
|
|
#define BUS_OFF 15 /* x 125ns = 1875ns (BIOS default) */
|
|
|
|
/*
|
|
* Standard Adapter Configurations - used by wd7000_detect
|
|
*/
|
|
typedef struct {
|
|
short irq; /* IRQ level */
|
|
short dma; /* DMA channel */
|
|
unsigned iobase; /* I/O base address */
|
|
short bus_on; /* Time that WD7000 spends on the AT-bus when */
|
|
/* transferring data. BIOS default is 8000ns. */
|
|
short bus_off; /* Time that WD7000 spends OFF THE BUS after */
|
|
/* while it is transferring data. */
|
|
/* BIOS default is 1875ns */
|
|
} Config;
|
|
|
|
/*
|
|
* Add here your configuration...
|
|
*/
|
|
static Config configs[] = {
|
|
{15, 6, 0x350, BUS_ON, BUS_OFF}, /* defaults for single adapter */
|
|
{11, 5, 0x320, BUS_ON, BUS_OFF}, /* defaults for second adapter */
|
|
{7, 6, 0x350, BUS_ON, BUS_OFF}, /* My configuration (Zaga) */
|
|
{-1, -1, 0x0, BUS_ON, BUS_OFF} /* Empty slot */
|
|
};
|
|
#define NUM_CONFIGS ARRAY_SIZE(configs)
|
|
|
|
/*
|
|
* The following list defines strings to look for in the BIOS that identify
|
|
* it as the WD7000-FASST2 SST BIOS. I suspect that something should be
|
|
* added for the Future Domain version.
|
|
*/
|
|
typedef struct signature {
|
|
const char *sig; /* String to look for */
|
|
unsigned long ofs; /* offset from BIOS base address */
|
|
unsigned len; /* length of string */
|
|
} Signature;
|
|
|
|
static const Signature signatures[] = {
|
|
{"SSTBIOS", 0x0000d, 7} /* "SSTBIOS" @ offset 0x0000d */
|
|
};
|
|
#define NUM_SIGNATURES ARRAY_SIZE(signatures)
|
|
|
|
|
|
/*
|
|
* I/O Port Offsets and Bit Definitions
|
|
* 4 addresses are used. Those not defined here are reserved.
|
|
*/
|
|
#define ASC_STAT 0 /* Status, Read */
|
|
#define ASC_COMMAND 0 /* Command, Write */
|
|
#define ASC_INTR_STAT 1 /* Interrupt Status, Read */
|
|
#define ASC_INTR_ACK 1 /* Acknowledge, Write */
|
|
#define ASC_CONTROL 2 /* Control, Write */
|
|
|
|
/*
|
|
* ASC Status Port
|
|
*/
|
|
#define INT_IM 0x80 /* Interrupt Image Flag */
|
|
#define CMD_RDY 0x40 /* Command Port Ready */
|
|
#define CMD_REJ 0x20 /* Command Port Byte Rejected */
|
|
#define ASC_INIT 0x10 /* ASC Initialized Flag */
|
|
#define ASC_STATMASK 0xf0 /* The lower 4 Bytes are reserved */
|
|
|
|
/*
|
|
* COMMAND opcodes
|
|
*
|
|
* Unfortunately, I have no idea how to properly use some of these commands,
|
|
* as the OEM manual does not make it clear. I have not been able to use
|
|
* enable/disable unsolicited interrupts or the reset commands with any
|
|
* discernible effect whatsoever. I think they may be related to certain
|
|
* ICB commands, but again, the OEM manual doesn't make that clear.
|
|
*/
|
|
#define NO_OP 0 /* NO-OP toggles CMD_RDY bit in ASC_STAT */
|
|
#define INITIALIZATION 1 /* initialization (10 bytes) */
|
|
#define DISABLE_UNS_INTR 2 /* disable unsolicited interrupts */
|
|
#define ENABLE_UNS_INTR 3 /* enable unsolicited interrupts */
|
|
#define INTR_ON_FREE_OGMB 4 /* interrupt on free OGMB */
|
|
#define SOFT_RESET 5 /* SCSI bus soft reset */
|
|
#define HARD_RESET_ACK 6 /* SCSI bus hard reset acknowledge */
|
|
#define START_OGMB 0x80 /* start command in OGMB (n) */
|
|
#define SCAN_OGMBS 0xc0 /* start multiple commands, signature (n) */
|
|
/* where (n) = lower 6 bits */
|
|
/*
|
|
* For INITIALIZATION:
|
|
*/
|
|
typedef struct initCmd {
|
|
unchar op; /* command opcode (= 1) */
|
|
unchar ID; /* Adapter's SCSI ID */
|
|
unchar bus_on; /* Bus on time, x 125ns (see below) */
|
|
unchar bus_off; /* Bus off time, "" "" */
|
|
unchar rsvd; /* Reserved */
|
|
unchar mailboxes[3]; /* Address of Mailboxes, MSB first */
|
|
unchar ogmbs; /* Number of outgoing MBs, max 64, 0,1 = 1 */
|
|
unchar icmbs; /* Number of incoming MBs, "" "" */
|
|
} InitCmd;
|
|
|
|
/*
|
|
* Interrupt Status Port - also returns diagnostic codes at ASC reset
|
|
*
|
|
* if msb is zero, the lower bits are diagnostic status
|
|
* Diagnostics:
|
|
* 01 No diagnostic error occurred
|
|
* 02 RAM failure
|
|
* 03 FIFO R/W failed
|
|
* 04 SBIC register read/write failed
|
|
* 05 Initialization D-FF failed
|
|
* 06 Host IRQ D-FF failed
|
|
* 07 ROM checksum error
|
|
* Interrupt status (bitwise):
|
|
* 10NNNNNN outgoing mailbox NNNNNN is free
|
|
* 11NNNNNN incoming mailbox NNNNNN needs service
|
|
*/
|
|
#define MB_INTR 0xC0 /* Mailbox Service possible/required */
|
|
#define IMB_INTR 0x40 /* 1 Incoming / 0 Outgoing */
|
|
#define MB_MASK 0x3f /* mask for mailbox number */
|
|
|
|
/*
|
|
* CONTROL port bits
|
|
*/
|
|
#define INT_EN 0x08 /* Interrupt Enable */
|
|
#define DMA_EN 0x04 /* DMA Enable */
|
|
#define SCSI_RES 0x02 /* SCSI Reset */
|
|
#define ASC_RES 0x01 /* ASC Reset */
|
|
|
|
/*
|
|
* Driver data structures:
|
|
* - mb and scbs are required for interfacing with the host adapter.
|
|
* An SCB has extra fields not visible to the adapter; mb's
|
|
* _cannot_ do this, since the adapter assumes they are contiguous in
|
|
* memory, 4 bytes each, with ICMBs following OGMBs, and uses this fact
|
|
* to access them.
|
|
* - An icb is for host-only (non-SCSI) commands. ICBs are 16 bytes each;
|
|
* the additional bytes are used only by the driver.
|
|
* - For now, a pool of SCBs are kept in global storage by this driver,
|
|
* and are allocated and freed as needed.
|
|
*
|
|
* The 7000-FASST2 marks OGMBs empty as soon as it has _started_ a command,
|
|
* not when it has finished. Since the SCB must be around for completion,
|
|
* problems arise when SCBs correspond to OGMBs, which may be reallocated
|
|
* earlier (or delayed unnecessarily until a command completes).
|
|
* Mailboxes are used as transient data structures, simply for
|
|
* carrying SCB addresses to/from the 7000-FASST2.
|
|
*
|
|
* Note also since SCBs are not "permanently" associated with mailboxes,
|
|
* there is no need to keep a global list of scsi_cmnd pointers indexed
|
|
* by OGMB. Again, SCBs reference their scsi_cmnds directly, so mailbox
|
|
* indices need not be involved.
|
|
*/
|
|
|
|
/*
|
|
* WD7000-specific scatter/gather element structure
|
|
*/
|
|
typedef struct sgb {
|
|
unchar len[3];
|
|
unchar ptr[3]; /* Also SCSI-style - MSB first */
|
|
} Sgb;
|
|
|
|
typedef struct scb { /* Command Control Block 5.4.1 */
|
|
unchar op; /* Command Control Block Operation Code */
|
|
unchar idlun; /* op=0,2:Target Id, op=1:Initiator Id */
|
|
/* Outbound data transfer, length is checked */
|
|
/* Inbound data transfer, length is checked */
|
|
/* Logical Unit Number */
|
|
unchar cdb[12]; /* SCSI Command Block */
|
|
volatile unchar status; /* SCSI Return Status */
|
|
volatile unchar vue; /* Vendor Unique Error Code */
|
|
unchar maxlen[3]; /* Maximum Data Transfer Length */
|
|
unchar dataptr[3]; /* SCSI Data Block Pointer */
|
|
unchar linkptr[3]; /* Next Command Link Pointer */
|
|
unchar direc; /* Transfer Direction */
|
|
unchar reserved2[6]; /* SCSI Command Descriptor Block */
|
|
/* end of hardware SCB */
|
|
struct scsi_cmnd *SCpnt;/* scsi_cmnd using this SCB */
|
|
Sgb sgb[WD7000_SG]; /* Scatter/gather list for this SCB */
|
|
Adapter *host; /* host adapter */
|
|
struct scb *next; /* for lists of scbs */
|
|
} Scb;
|
|
|
|
/*
|
|
* This driver is written to allow host-only commands to be executed.
|
|
* These use a 16-byte block called an ICB. The format is extended by the
|
|
* driver to 18 bytes, to support the status returned in the ICMB and
|
|
* an execution phase code.
|
|
*
|
|
* There are other formats besides these; these are the ones I've tried
|
|
* to use. Formats for some of the defined ICB opcodes are not defined
|
|
* (notably, get/set unsolicited interrupt status) in my copy of the OEM
|
|
* manual, and others are ambiguous/hard to follow.
|
|
*/
|
|
#define ICB_OP_MASK 0x80 /* distinguishes scbs from icbs */
|
|
#define ICB_OP_OPEN_RBUF 0x80 /* open receive buffer */
|
|
#define ICB_OP_RECV_CMD 0x81 /* receive command from initiator */
|
|
#define ICB_OP_RECV_DATA 0x82 /* receive data from initiator */
|
|
#define ICB_OP_RECV_SDATA 0x83 /* receive data with status from init. */
|
|
#define ICB_OP_SEND_DATA 0x84 /* send data with status to initiator */
|
|
#define ICB_OP_SEND_STAT 0x86 /* send command status to initiator */
|
|
/* 0x87 is reserved */
|
|
#define ICB_OP_READ_INIT 0x88 /* read initialization bytes */
|
|
#define ICB_OP_READ_ID 0x89 /* read adapter's SCSI ID */
|
|
#define ICB_OP_SET_UMASK 0x8A /* set unsolicited interrupt mask */
|
|
#define ICB_OP_GET_UMASK 0x8B /* read unsolicited interrupt mask */
|
|
#define ICB_OP_GET_REVISION 0x8C /* read firmware revision level */
|
|
#define ICB_OP_DIAGNOSTICS 0x8D /* execute diagnostics */
|
|
#define ICB_OP_SET_EPARMS 0x8E /* set execution parameters */
|
|
#define ICB_OP_GET_EPARMS 0x8F /* read execution parameters */
|
|
|
|
typedef struct icbRecvCmd {
|
|
unchar op;
|
|
unchar IDlun; /* Initiator SCSI ID/lun */
|
|
unchar len[3]; /* command buffer length */
|
|
unchar ptr[3]; /* command buffer address */
|
|
unchar rsvd[7]; /* reserved */
|
|
volatile unchar vue; /* vendor-unique error code */
|
|
volatile unchar status; /* returned (icmb) status */
|
|
volatile unchar phase; /* used by interrupt handler */
|
|
} IcbRecvCmd;
|
|
|
|
typedef struct icbSendStat {
|
|
unchar op;
|
|
unchar IDlun; /* Target SCSI ID/lun */
|
|
unchar stat; /* (outgoing) completion status byte 1 */
|
|
unchar rsvd[12]; /* reserved */
|
|
volatile unchar vue; /* vendor-unique error code */
|
|
volatile unchar status; /* returned (icmb) status */
|
|
volatile unchar phase; /* used by interrupt handler */
|
|
} IcbSendStat;
|
|
|
|
typedef struct icbRevLvl {
|
|
unchar op;
|
|
volatile unchar primary; /* primary revision level (returned) */
|
|
volatile unchar secondary; /* secondary revision level (returned) */
|
|
unchar rsvd[12]; /* reserved */
|
|
volatile unchar vue; /* vendor-unique error code */
|
|
volatile unchar status; /* returned (icmb) status */
|
|
volatile unchar phase; /* used by interrupt handler */
|
|
} IcbRevLvl;
|
|
|
|
typedef struct icbUnsMask { /* I'm totally guessing here */
|
|
unchar op;
|
|
volatile unchar mask[14]; /* mask bits */
|
|
#if 0
|
|
unchar rsvd[12]; /* reserved */
|
|
#endif
|
|
volatile unchar vue; /* vendor-unique error code */
|
|
volatile unchar status; /* returned (icmb) status */
|
|
volatile unchar phase; /* used by interrupt handler */
|
|
} IcbUnsMask;
|
|
|
|
typedef struct icbDiag {
|
|
unchar op;
|
|
unchar type; /* diagnostics type code (0-3) */
|
|
unchar len[3]; /* buffer length */
|
|
unchar ptr[3]; /* buffer address */
|
|
unchar rsvd[7]; /* reserved */
|
|
volatile unchar vue; /* vendor-unique error code */
|
|
volatile unchar status; /* returned (icmb) status */
|
|
volatile unchar phase; /* used by interrupt handler */
|
|
} IcbDiag;
|
|
|
|
#define ICB_DIAG_POWERUP 0 /* Power-up diags only */
|
|
#define ICB_DIAG_WALKING 1 /* walking 1's pattern */
|
|
#define ICB_DIAG_DMA 2 /* DMA - system memory diags */
|
|
#define ICB_DIAG_FULL 3 /* do both 1 & 2 */
|
|
|
|
typedef struct icbParms {
|
|
unchar op;
|
|
unchar rsvd1; /* reserved */
|
|
unchar len[3]; /* parms buffer length */
|
|
unchar ptr[3]; /* parms buffer address */
|
|
unchar idx[2]; /* index (MSB-LSB) */
|
|
unchar rsvd2[5]; /* reserved */
|
|
volatile unchar vue; /* vendor-unique error code */
|
|
volatile unchar status; /* returned (icmb) status */
|
|
volatile unchar phase; /* used by interrupt handler */
|
|
} IcbParms;
|
|
|
|
typedef struct icbAny {
|
|
unchar op;
|
|
unchar data[14]; /* format-specific data */
|
|
volatile unchar vue; /* vendor-unique error code */
|
|
volatile unchar status; /* returned (icmb) status */
|
|
volatile unchar phase; /* used by interrupt handler */
|
|
} IcbAny;
|
|
|
|
typedef union icb {
|
|
unchar op; /* ICB opcode */
|
|
IcbRecvCmd recv_cmd; /* format for receive command */
|
|
IcbSendStat send_stat; /* format for send status */
|
|
IcbRevLvl rev_lvl; /* format for get revision level */
|
|
IcbDiag diag; /* format for execute diagnostics */
|
|
IcbParms eparms; /* format for get/set exec parms */
|
|
IcbAny icb; /* generic format */
|
|
unchar data[18];
|
|
} Icb;
|
|
|
|
#ifdef MODULE
|
|
static char *wd7000;
|
|
module_param(wd7000, charp, 0);
|
|
#endif
|
|
|
|
/*
|
|
* Driver SCB structure pool.
|
|
*
|
|
* The SCBs declared here are shared by all host adapters; hence, this
|
|
* structure is not part of the Adapter structure.
|
|
*/
|
|
static Scb scbs[MAX_SCBS];
|
|
static Scb *scbfree; /* free list */
|
|
static int freescbs = MAX_SCBS; /* free list counter */
|
|
static spinlock_t scbpool_lock; /* guards the scb free list and count */
|
|
|
|
/*
|
|
* END of data/declarations - code follows.
|
|
*/
|
|
static void __init setup_error(char *mesg, int *ints)
|
|
{
|
|
if (ints[0] == 3)
|
|
printk(KERN_ERR "wd7000_setup: \"wd7000=%d,%d,0x%x\" -> %s\n", ints[1], ints[2], ints[3], mesg);
|
|
else if (ints[0] == 4)
|
|
printk(KERN_ERR "wd7000_setup: \"wd7000=%d,%d,0x%x,%d\" -> %s\n", ints[1], ints[2], ints[3], ints[4], mesg);
|
|
else
|
|
printk(KERN_ERR "wd7000_setup: \"wd7000=%d,%d,0x%x,%d,%d\" -> %s\n", ints[1], ints[2], ints[3], ints[4], ints[5], mesg);
|
|
}
|
|
|
|
|
|
/*
|
|
* Note: You can now set these options from the kernel's "command line".
|
|
* The syntax is:
|
|
*
|
|
* wd7000=<IRQ>,<DMA>,<IO>[,<BUS_ON>[,<BUS_OFF>]]
|
|
*
|
|
* , where BUS_ON and BUS_OFF are in nanoseconds. BIOS default values
|
|
* are 8000ns for BUS_ON and 1875ns for BUS_OFF.
|
|
* eg:
|
|
* wd7000=7,6,0x350
|
|
*
|
|
* will configure the driver for a WD-7000 controller
|
|
* using IRQ 15 with a DMA channel 6, at IO base address 0x350.
|
|
*/
|
|
static int __init wd7000_setup(char *str)
|
|
{
|
|
static short wd7000_card_num; /* .bss will zero this */
|
|
short i;
|
|
int ints[6];
|
|
|
|
(void) get_options(str, ARRAY_SIZE(ints), ints);
|
|
|
|
if (wd7000_card_num >= NUM_CONFIGS) {
|
|
printk(KERN_ERR "%s: Too many \"wd7000=\" configurations in " "command line!\n", __FUNCTION__);
|
|
return 0;
|
|
}
|
|
|
|
if ((ints[0] < 3) || (ints[0] > 5)) {
|
|
printk(KERN_ERR "%s: Error in command line! " "Usage: wd7000=<IRQ>,<DMA>,IO>[,<BUS_ON>" "[,<BUS_OFF>]]\n", __FUNCTION__);
|
|
} else {
|
|
for (i = 0; i < NUM_IRQS; i++)
|
|
if (ints[1] == wd7000_irq[i])
|
|
break;
|
|
|
|
if (i == NUM_IRQS) {
|
|
setup_error("invalid IRQ.", ints);
|
|
return 0;
|
|
} else
|
|
configs[wd7000_card_num].irq = ints[1];
|
|
|
|
for (i = 0; i < NUM_DMAS; i++)
|
|
if (ints[2] == wd7000_dma[i])
|
|
break;
|
|
|
|
if (i == NUM_DMAS) {
|
|
setup_error("invalid DMA channel.", ints);
|
|
return 0;
|
|
} else
|
|
configs[wd7000_card_num].dma = ints[2];
|
|
|
|
for (i = 0; i < NUM_IOPORTS; i++)
|
|
if (ints[3] == wd7000_iobase[i])
|
|
break;
|
|
|
|
if (i == NUM_IOPORTS) {
|
|
setup_error("invalid I/O base address.", ints);
|
|
return 0;
|
|
} else
|
|
configs[wd7000_card_num].iobase = ints[3];
|
|
|
|
if (ints[0] > 3) {
|
|
if ((ints[4] < 500) || (ints[4] > 31875)) {
|
|
setup_error("BUS_ON value is out of range (500" " to 31875 nanoseconds)!", ints);
|
|
configs[wd7000_card_num].bus_on = BUS_ON;
|
|
} else
|
|
configs[wd7000_card_num].bus_on = ints[4] / 125;
|
|
} else
|
|
configs[wd7000_card_num].bus_on = BUS_ON;
|
|
|
|
if (ints[0] > 4) {
|
|
if ((ints[5] < 500) || (ints[5] > 31875)) {
|
|
setup_error("BUS_OFF value is out of range (500" " to 31875 nanoseconds)!", ints);
|
|
configs[wd7000_card_num].bus_off = BUS_OFF;
|
|
} else
|
|
configs[wd7000_card_num].bus_off = ints[5] / 125;
|
|
} else
|
|
configs[wd7000_card_num].bus_off = BUS_OFF;
|
|
|
|
if (wd7000_card_num) {
|
|
for (i = 0; i < (wd7000_card_num - 1); i++) {
|
|
int j = i + 1;
|
|
|
|
for (; j < wd7000_card_num; j++)
|
|
if (configs[i].irq == configs[j].irq) {
|
|
setup_error("duplicated IRQ!", ints);
|
|
return 0;
|
|
}
|
|
if (configs[i].dma == configs[j].dma) {
|
|
setup_error("duplicated DMA " "channel!", ints);
|
|
return 0;
|
|
}
|
|
if (configs[i].iobase == configs[j].iobase) {
|
|
setup_error("duplicated I/O " "base address!", ints);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
dprintk(KERN_DEBUG "wd7000_setup: IRQ=%d, DMA=%d, I/O=0x%x, "
|
|
"BUS_ON=%dns, BUS_OFF=%dns\n", configs[wd7000_card_num].irq, configs[wd7000_card_num].dma, configs[wd7000_card_num].iobase, configs[wd7000_card_num].bus_on * 125, configs[wd7000_card_num].bus_off * 125);
|
|
|
|
wd7000_card_num++;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
__setup("wd7000=", wd7000_setup);
|
|
|
|
static inline void any2scsi(unchar * scsi, int any)
|
|
{
|
|
*scsi++ = (unsigned)any >> 16;
|
|
*scsi++ = (unsigned)any >> 8;
|
|
*scsi++ = any;
|
|
}
|
|
|
|
static inline int scsi2int(unchar * scsi)
|
|
{
|
|
return (scsi[0] << 16) | (scsi[1] << 8) | scsi[2];
|
|
}
|
|
|
|
static inline void wd7000_enable_intr(Adapter * host)
|
|
{
|
|
host->control |= INT_EN;
|
|
outb(host->control, host->iobase + ASC_CONTROL);
|
|
}
|
|
|
|
|
|
static inline void wd7000_enable_dma(Adapter * host)
|
|
{
|
|
unsigned long flags;
|
|
host->control |= DMA_EN;
|
|
outb(host->control, host->iobase + ASC_CONTROL);
|
|
|
|
flags = claim_dma_lock();
|
|
set_dma_mode(host->dma, DMA_MODE_CASCADE);
|
|
enable_dma(host->dma);
|
|
release_dma_lock(flags);
|
|
|
|
}
|
|
|
|
|
|
#define WAITnexttimeout 200 /* 2 seconds */
|
|
|
|
static inline short WAIT(unsigned port, unsigned mask, unsigned allof, unsigned noneof)
|
|
{
|
|
unsigned WAITbits;
|
|
unsigned long WAITtimeout = jiffies + WAITnexttimeout;
|
|
|
|
while (time_before_eq(jiffies, WAITtimeout)) {
|
|
WAITbits = inb(port) & mask;
|
|
|
|
if (((WAITbits & allof) == allof) && ((WAITbits & noneof) == 0))
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
static inline int command_out(Adapter * host, unchar * cmd, int len)
|
|
{
|
|
if (!WAIT(host->iobase + ASC_STAT, ASC_STATMASK, CMD_RDY, 0)) {
|
|
while (len--) {
|
|
do {
|
|
outb(*cmd, host->iobase + ASC_COMMAND);
|
|
WAIT(host->iobase + ASC_STAT, ASC_STATMASK, CMD_RDY, 0);
|
|
} while (inb(host->iobase + ASC_STAT) & CMD_REJ);
|
|
|
|
cmd++;
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
printk(KERN_WARNING "wd7000 command_out: WAIT failed(%d)\n", len + 1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
|
|
/*
|
|
* This version of alloc_scbs is in preparation for supporting multiple
|
|
* commands per lun and command chaining, by queueing pending commands.
|
|
* We will need to allocate Scbs in blocks since they will wait to be
|
|
* executed so there is the possibility of deadlock otherwise.
|
|
* Also, to keep larger requests from being starved by smaller requests,
|
|
* we limit access to this routine with an internal busy flag, so that
|
|
* the satisfiability of a request is not dependent on the size of the
|
|
* request.
|
|
*/
|
|
static inline Scb *alloc_scbs(struct Scsi_Host *host, int needed)
|
|
{
|
|
Scb *scb, *p = NULL;
|
|
unsigned long flags;
|
|
unsigned long timeout = jiffies + WAITnexttimeout;
|
|
unsigned long now;
|
|
int i;
|
|
|
|
if (needed <= 0)
|
|
return (NULL); /* sanity check */
|
|
|
|
spin_unlock_irq(host->host_lock);
|
|
|
|
retry:
|
|
while (freescbs < needed) {
|
|
timeout = jiffies + WAITnexttimeout;
|
|
do {
|
|
/* FIXME: can we actually just yield here ?? */
|
|
for (now = jiffies; now == jiffies;)
|
|
cpu_relax(); /* wait a jiffy */
|
|
} while (freescbs < needed && time_before_eq(jiffies, timeout));
|
|
/*
|
|
* If we get here with enough free Scbs, we can take them.
|
|
* Otherwise, we timed out and didn't get enough.
|
|
*/
|
|
if (freescbs < needed) {
|
|
printk(KERN_ERR "wd7000: can't get enough free SCBs.\n");
|
|
return (NULL);
|
|
}
|
|
}
|
|
|
|
/* Take the lock, then check we didnt get beaten, if so try again */
|
|
spin_lock_irqsave(&scbpool_lock, flags);
|
|
if (freescbs < needed) {
|
|
spin_unlock_irqrestore(&scbpool_lock, flags);
|
|
goto retry;
|
|
}
|
|
|
|
scb = scbfree;
|
|
freescbs -= needed;
|
|
for (i = 0; i < needed; i++) {
|
|
p = scbfree;
|
|
scbfree = p->next;
|
|
}
|
|
p->next = NULL;
|
|
|
|
spin_unlock_irqrestore(&scbpool_lock, flags);
|
|
|
|
spin_lock_irq(host->host_lock);
|
|
return (scb);
|
|
}
|
|
|
|
|
|
static inline void free_scb(Scb * scb)
|
|
{
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&scbpool_lock, flags);
|
|
|
|
memset(scb, 0, sizeof(Scb));
|
|
scb->next = scbfree;
|
|
scbfree = scb;
|
|
freescbs++;
|
|
|
|
spin_unlock_irqrestore(&scbpool_lock, flags);
|
|
}
|
|
|
|
|
|
static inline void init_scbs(void)
|
|
{
|
|
int i;
|
|
|
|
spin_lock_init(&scbpool_lock);
|
|
|
|
/* This is only ever called before the SCB pool is active */
|
|
|
|
scbfree = &(scbs[0]);
|
|
memset(scbs, 0, sizeof(scbs));
|
|
for (i = 0; i < MAX_SCBS - 1; i++) {
|
|
scbs[i].next = &(scbs[i + 1]);
|
|
scbs[i].SCpnt = NULL;
|
|
}
|
|
scbs[MAX_SCBS - 1].next = NULL;
|
|
scbs[MAX_SCBS - 1].SCpnt = NULL;
|
|
}
|
|
|
|
|
|
static int mail_out(Adapter * host, Scb * scbptr)
|
|
/*
|
|
* Note: this can also be used for ICBs; just cast to the parm type.
|
|
*/
|
|
{
|
|
int i, ogmb;
|
|
unsigned long flags;
|
|
unchar start_ogmb;
|
|
Mailbox *ogmbs = host->mb.ogmb;
|
|
int *next_ogmb = &(host->next_ogmb);
|
|
|
|
dprintk("wd7000_mail_out: 0x%06lx", (long) scbptr);
|
|
|
|
/* We first look for a free outgoing mailbox */
|
|
spin_lock_irqsave(host->sh->host_lock, flags);
|
|
ogmb = *next_ogmb;
|
|
for (i = 0; i < OGMB_CNT; i++) {
|
|
if (ogmbs[ogmb].status == 0) {
|
|
dprintk(" using OGMB 0x%x", ogmb);
|
|
ogmbs[ogmb].status = 1;
|
|
any2scsi((unchar *) ogmbs[ogmb].scbptr, (int) scbptr);
|
|
|
|
*next_ogmb = (ogmb + 1) % OGMB_CNT;
|
|
break;
|
|
} else
|
|
ogmb = (ogmb + 1) % OGMB_CNT;
|
|
}
|
|
spin_unlock_irqrestore(host->sh->host_lock, flags);
|
|
|
|
dprintk(", scb is 0x%06lx", (long) scbptr);
|
|
|
|
if (i >= OGMB_CNT) {
|
|
/*
|
|
* Alternatively, we might issue the "interrupt on free OGMB",
|
|
* and sleep, but it must be ensured that it isn't the init
|
|
* task running. Instead, this version assumes that the caller
|
|
* will be persistent, and try again. Since it's the adapter
|
|
* that marks OGMB's free, waiting even with interrupts off
|
|
* should work, since they are freed very quickly in most cases.
|
|
*/
|
|
dprintk(", no free OGMBs.\n");
|
|
return (0);
|
|
}
|
|
|
|
wd7000_enable_intr(host);
|
|
|
|
start_ogmb = START_OGMB | ogmb;
|
|
command_out(host, &start_ogmb, 1);
|
|
|
|
dprintk(", awaiting interrupt.\n");
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
static int make_code(unsigned hosterr, unsigned scsierr)
|
|
{
|
|
#ifdef WD7000_DEBUG
|
|
int in_error = hosterr;
|
|
#endif
|
|
|
|
switch ((hosterr >> 8) & 0xff) {
|
|
case 0: /* Reserved */
|
|
hosterr = DID_ERROR;
|
|
break;
|
|
case 1: /* Command Complete, no errors */
|
|
hosterr = DID_OK;
|
|
break;
|
|
case 2: /* Command complete, error logged in scb status (scsierr) */
|
|
hosterr = DID_OK;
|
|
break;
|
|
case 4: /* Command failed to complete - timeout */
|
|
hosterr = DID_TIME_OUT;
|
|
break;
|
|
case 5: /* Command terminated; Bus reset by external device */
|
|
hosterr = DID_RESET;
|
|
break;
|
|
case 6: /* Unexpected Command Received w/ host as target */
|
|
hosterr = DID_BAD_TARGET;
|
|
break;
|
|
case 80: /* Unexpected Reselection */
|
|
case 81: /* Unexpected Selection */
|
|
hosterr = DID_BAD_INTR;
|
|
break;
|
|
case 82: /* Abort Command Message */
|
|
hosterr = DID_ABORT;
|
|
break;
|
|
case 83: /* SCSI Bus Software Reset */
|
|
case 84: /* SCSI Bus Hardware Reset */
|
|
hosterr = DID_RESET;
|
|
break;
|
|
default: /* Reserved */
|
|
hosterr = DID_ERROR;
|
|
}
|
|
#ifdef WD7000_DEBUG
|
|
if (scsierr || hosterr)
|
|
dprintk("\nSCSI command error: SCSI 0x%02x host 0x%04x return %d\n", scsierr, in_error, hosterr);
|
|
#endif
|
|
return (scsierr | (hosterr << 16));
|
|
}
|
|
|
|
#define wd7000_intr_ack(host) outb (0, host->iobase + ASC_INTR_ACK)
|
|
|
|
|
|
static irqreturn_t wd7000_intr(int irq, void *dev_id)
|
|
{
|
|
Adapter *host = (Adapter *) dev_id;
|
|
int flag, icmb, errstatus, icmb_status;
|
|
int host_error, scsi_error;
|
|
Scb *scb; /* for SCSI commands */
|
|
IcbAny *icb; /* for host commands */
|
|
struct scsi_cmnd *SCpnt;
|
|
Mailbox *icmbs = host->mb.icmb;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(host->sh->host_lock, flags);
|
|
host->int_counter++;
|
|
|
|
dprintk("wd7000_intr: irq = %d, host = 0x%06lx\n", irq, (long) host);
|
|
|
|
flag = inb(host->iobase + ASC_INTR_STAT);
|
|
|
|
dprintk("wd7000_intr: intr stat = 0x%02x\n", flag);
|
|
|
|
if (!(inb(host->iobase + ASC_STAT) & INT_IM)) {
|
|
/* NB: these are _very_ possible if IRQ 15 is being used, since
|
|
* it's the "garbage collector" on the 2nd 8259 PIC. Specifically,
|
|
* any interrupt signal into the 8259 which can't be identified
|
|
* comes out as 7 from the 8259, which is 15 to the host. Thus, it
|
|
* is a good thing the WD7000 has an interrupt status port, so we
|
|
* can sort these out. Otherwise, electrical noise and other such
|
|
* problems would be indistinguishable from valid interrupts...
|
|
*/
|
|
dprintk("wd7000_intr: phantom interrupt...\n");
|
|
goto ack;
|
|
}
|
|
|
|
if (!(flag & MB_INTR))
|
|
goto ack;
|
|
|
|
/* The interrupt is for a mailbox */
|
|
if (!(flag & IMB_INTR)) {
|
|
dprintk("wd7000_intr: free outgoing mailbox\n");
|
|
/*
|
|
* If sleep_on() and the "interrupt on free OGMB" command are
|
|
* used in mail_out(), wake_up() should correspondingly be called
|
|
* here. For now, we don't need to do anything special.
|
|
*/
|
|
goto ack;
|
|
}
|
|
|
|
/* The interrupt is for an incoming mailbox */
|
|
icmb = flag & MB_MASK;
|
|
icmb_status = icmbs[icmb].status;
|
|
if (icmb_status & 0x80) { /* unsolicited - result in ICMB */
|
|
dprintk("wd7000_intr: unsolicited interrupt 0x%02x\n", icmb_status);
|
|
goto ack;
|
|
}
|
|
|
|
/* Aaaargh! (Zaga) */
|
|
scb = isa_bus_to_virt(scsi2int((unchar *) icmbs[icmb].scbptr));
|
|
icmbs[icmb].status = 0;
|
|
if (scb->op & ICB_OP_MASK) { /* an SCB is done */
|
|
icb = (IcbAny *) scb;
|
|
icb->status = icmb_status;
|
|
icb->phase = 0;
|
|
goto ack;
|
|
}
|
|
|
|
SCpnt = scb->SCpnt;
|
|
if (--(SCpnt->SCp.phase) <= 0) { /* all scbs are done */
|
|
host_error = scb->vue | (icmb_status << 8);
|
|
scsi_error = scb->status;
|
|
errstatus = make_code(host_error, scsi_error);
|
|
SCpnt->result = errstatus;
|
|
|
|
free_scb(scb);
|
|
|
|
SCpnt->scsi_done(SCpnt);
|
|
}
|
|
|
|
ack:
|
|
dprintk("wd7000_intr: return from interrupt handler\n");
|
|
wd7000_intr_ack(host);
|
|
|
|
spin_unlock_irqrestore(host->sh->host_lock, flags);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int wd7000_queuecommand(struct scsi_cmnd *SCpnt,
|
|
void (*done)(struct scsi_cmnd *))
|
|
{
|
|
Scb *scb;
|
|
Sgb *sgb;
|
|
unchar *cdb = (unchar *) SCpnt->cmnd;
|
|
unchar idlun;
|
|
short cdblen;
|
|
Adapter *host = (Adapter *) SCpnt->device->host->hostdata;
|
|
|
|
cdblen = SCpnt->cmd_len;
|
|
idlun = ((SCpnt->device->id << 5) & 0xe0) | (SCpnt->device->lun & 7);
|
|
SCpnt->scsi_done = done;
|
|
SCpnt->SCp.phase = 1;
|
|
scb = alloc_scbs(SCpnt->device->host, 1);
|
|
scb->idlun = idlun;
|
|
memcpy(scb->cdb, cdb, cdblen);
|
|
scb->direc = 0x40; /* Disable direction check */
|
|
|
|
scb->SCpnt = SCpnt; /* so we can find stuff later */
|
|
SCpnt->host_scribble = (unchar *) scb;
|
|
scb->host = host;
|
|
|
|
if (SCpnt->use_sg) {
|
|
struct scatterlist *sg = (struct scatterlist *) SCpnt->request_buffer;
|
|
unsigned i;
|
|
|
|
if (SCpnt->device->host->sg_tablesize == SG_NONE) {
|
|
panic("wd7000_queuecommand: scatter/gather not supported.\n");
|
|
}
|
|
dprintk("Using scatter/gather with %d elements.\n", SCpnt->use_sg);
|
|
|
|
sgb = scb->sgb;
|
|
scb->op = 1;
|
|
any2scsi(scb->dataptr, (int) sgb);
|
|
any2scsi(scb->maxlen, SCpnt->use_sg * sizeof(Sgb));
|
|
|
|
for (i = 0; i < SCpnt->use_sg; i++) {
|
|
any2scsi(sgb[i].ptr, isa_page_to_bus(sg[i].page) + sg[i].offset);
|
|
any2scsi(sgb[i].len, sg[i].length);
|
|
}
|
|
} else {
|
|
scb->op = 0;
|
|
any2scsi(scb->dataptr, isa_virt_to_bus(SCpnt->request_buffer));
|
|
any2scsi(scb->maxlen, SCpnt->request_bufflen);
|
|
}
|
|
|
|
/* FIXME: drop lock and yield here ? */
|
|
|
|
while (!mail_out(host, scb))
|
|
cpu_relax(); /* keep trying */
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int wd7000_diagnostics(Adapter * host, int code)
|
|
{
|
|
static IcbDiag icb = { ICB_OP_DIAGNOSTICS };
|
|
static unchar buf[256];
|
|
unsigned long timeout;
|
|
|
|
icb.type = code;
|
|
any2scsi(icb.len, sizeof(buf));
|
|
any2scsi(icb.ptr, (int) &buf);
|
|
icb.phase = 1;
|
|
/*
|
|
* This routine is only called at init, so there should be OGMBs
|
|
* available. I'm assuming so here. If this is going to
|
|
* fail, I can just let the timeout catch the failure.
|
|
*/
|
|
mail_out(host, (struct scb *) &icb);
|
|
timeout = jiffies + WAITnexttimeout; /* wait up to 2 seconds */
|
|
while (icb.phase && time_before(jiffies, timeout)) {
|
|
cpu_relax(); /* wait for completion */
|
|
barrier();
|
|
}
|
|
|
|
if (icb.phase) {
|
|
printk("wd7000_diagnostics: timed out.\n");
|
|
return (0);
|
|
}
|
|
if (make_code(icb.vue | (icb.status << 8), 0)) {
|
|
printk("wd7000_diagnostics: failed (0x%02x,0x%02x)\n", icb.vue, icb.status);
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
static int wd7000_adapter_reset(Adapter * host)
|
|
{
|
|
InitCmd init_cmd = {
|
|
INITIALIZATION,
|
|
7,
|
|
host->bus_on,
|
|
host->bus_off,
|
|
0,
|
|
{0, 0, 0},
|
|
OGMB_CNT,
|
|
ICMB_CNT
|
|
};
|
|
int diag;
|
|
/*
|
|
* Reset the adapter - only. The SCSI bus was initialized at power-up,
|
|
* and we need to do this just so we control the mailboxes, etc.
|
|
*/
|
|
outb(ASC_RES, host->iobase + ASC_CONTROL);
|
|
udelay(40); /* reset pulse: this is 40us, only need 25us */
|
|
outb(0, host->iobase + ASC_CONTROL);
|
|
host->control = 0; /* this must always shadow ASC_CONTROL */
|
|
|
|
if (WAIT(host->iobase + ASC_STAT, ASC_STATMASK, CMD_RDY, 0)) {
|
|
printk(KERN_ERR "wd7000_init: WAIT timed out.\n");
|
|
return -1; /* -1 = not ok */
|
|
}
|
|
|
|
if ((diag = inb(host->iobase + ASC_INTR_STAT)) != 1) {
|
|
printk("wd7000_init: ");
|
|
|
|
switch (diag) {
|
|
case 2:
|
|
printk(KERN_ERR "RAM failure.\n");
|
|
break;
|
|
case 3:
|
|
printk(KERN_ERR "FIFO R/W failed\n");
|
|
break;
|
|
case 4:
|
|
printk(KERN_ERR "SBIC register R/W failed\n");
|
|
break;
|
|
case 5:
|
|
printk(KERN_ERR "Initialization D-FF failed.\n");
|
|
break;
|
|
case 6:
|
|
printk(KERN_ERR "Host IRQ D-FF failed.\n");
|
|
break;
|
|
case 7:
|
|
printk(KERN_ERR "ROM checksum error.\n");
|
|
break;
|
|
default:
|
|
printk(KERN_ERR "diagnostic code 0x%02Xh received.\n", diag);
|
|
}
|
|
return -1;
|
|
}
|
|
/* Clear mailboxes */
|
|
memset(&(host->mb), 0, sizeof(host->mb));
|
|
|
|
/* Execute init command */
|
|
any2scsi((unchar *) & (init_cmd.mailboxes), (int) &(host->mb));
|
|
if (!command_out(host, (unchar *) & init_cmd, sizeof(init_cmd))) {
|
|
printk(KERN_ERR "wd7000_adapter_reset: adapter initialization failed.\n");
|
|
return -1;
|
|
}
|
|
|
|
if (WAIT(host->iobase + ASC_STAT, ASC_STATMASK, ASC_INIT, 0)) {
|
|
printk("wd7000_adapter_reset: WAIT timed out.\n");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int wd7000_init(Adapter * host)
|
|
{
|
|
if (wd7000_adapter_reset(host) == -1)
|
|
return 0;
|
|
|
|
|
|
if (request_irq(host->irq, wd7000_intr, IRQF_DISABLED, "wd7000", host)) {
|
|
printk("wd7000_init: can't get IRQ %d.\n", host->irq);
|
|
return (0);
|
|
}
|
|
if (request_dma(host->dma, "wd7000")) {
|
|
printk("wd7000_init: can't get DMA channel %d.\n", host->dma);
|
|
free_irq(host->irq, host);
|
|
return (0);
|
|
}
|
|
wd7000_enable_dma(host);
|
|
wd7000_enable_intr(host);
|
|
|
|
if (!wd7000_diagnostics(host, ICB_DIAG_FULL)) {
|
|
free_dma(host->dma);
|
|
free_irq(host->irq, NULL);
|
|
return (0);
|
|
}
|
|
|
|
return (1);
|
|
}
|
|
|
|
|
|
static void wd7000_revision(Adapter * host)
|
|
{
|
|
static IcbRevLvl icb = { ICB_OP_GET_REVISION };
|
|
|
|
icb.phase = 1;
|
|
/*
|
|
* Like diagnostics, this is only done at init time, in fact, from
|
|
* wd7000_detect, so there should be OGMBs available. If it fails,
|
|
* the only damage will be that the revision will show up as 0.0,
|
|
* which in turn means that scatter/gather will be disabled.
|
|
*/
|
|
mail_out(host, (struct scb *) &icb);
|
|
while (icb.phase) {
|
|
cpu_relax(); /* wait for completion */
|
|
barrier();
|
|
}
|
|
host->rev1 = icb.primary;
|
|
host->rev2 = icb.secondary;
|
|
}
|
|
|
|
|
|
#undef SPRINTF
|
|
#define SPRINTF(args...) { if (pos < (buffer + length)) pos += sprintf (pos, ## args); }
|
|
|
|
static int wd7000_set_info(char *buffer, int length, struct Scsi_Host *host)
|
|
{
|
|
dprintk("Buffer = <%.*s>, length = %d\n", length, buffer, length);
|
|
|
|
/*
|
|
* Currently this is a no-op
|
|
*/
|
|
dprintk("Sorry, this function is currently out of order...\n");
|
|
return (length);
|
|
}
|
|
|
|
|
|
static int wd7000_proc_info(struct Scsi_Host *host, char *buffer, char **start, off_t offset, int length, int inout)
|
|
{
|
|
Adapter *adapter = (Adapter *)host->hostdata;
|
|
unsigned long flags;
|
|
char *pos = buffer;
|
|
#ifdef WD7000_DEBUG
|
|
Mailbox *ogmbs, *icmbs;
|
|
short count;
|
|
#endif
|
|
|
|
/*
|
|
* Has data been written to the file ?
|
|
*/
|
|
if (inout)
|
|
return (wd7000_set_info(buffer, length, host));
|
|
|
|
spin_lock_irqsave(host->host_lock, flags);
|
|
SPRINTF("Host scsi%d: Western Digital WD-7000 (rev %d.%d)\n", host->host_no, adapter->rev1, adapter->rev2);
|
|
SPRINTF(" IO base: 0x%x\n", adapter->iobase);
|
|
SPRINTF(" IRQ: %d\n", adapter->irq);
|
|
SPRINTF(" DMA channel: %d\n", adapter->dma);
|
|
SPRINTF(" Interrupts: %d\n", adapter->int_counter);
|
|
SPRINTF(" BUS_ON time: %d nanoseconds\n", adapter->bus_on * 125);
|
|
SPRINTF(" BUS_OFF time: %d nanoseconds\n", adapter->bus_off * 125);
|
|
|
|
#ifdef WD7000_DEBUG
|
|
ogmbs = adapter->mb.ogmb;
|
|
icmbs = adapter->mb.icmb;
|
|
|
|
SPRINTF("\nControl port value: 0x%x\n", adapter->control);
|
|
SPRINTF("Incoming mailbox:\n");
|
|
SPRINTF(" size: %d\n", ICMB_CNT);
|
|
SPRINTF(" queued messages: ");
|
|
|
|
for (i = count = 0; i < ICMB_CNT; i++)
|
|
if (icmbs[i].status) {
|
|
count++;
|
|
SPRINTF("0x%x ", i);
|
|
}
|
|
|
|
SPRINTF(count ? "\n" : "none\n");
|
|
|
|
SPRINTF("Outgoing mailbox:\n");
|
|
SPRINTF(" size: %d\n", OGMB_CNT);
|
|
SPRINTF(" next message: 0x%x\n", adapter->next_ogmb);
|
|
SPRINTF(" queued messages: ");
|
|
|
|
for (i = count = 0; i < OGMB_CNT; i++)
|
|
if (ogmbs[i].status) {
|
|
count++;
|
|
SPRINTF("0x%x ", i);
|
|
}
|
|
|
|
SPRINTF(count ? "\n" : "none\n");
|
|
#endif
|
|
|
|
spin_unlock_irqrestore(host->host_lock, flags);
|
|
|
|
/*
|
|
* Calculate start of next buffer, and return value.
|
|
*/
|
|
*start = buffer + offset;
|
|
|
|
if ((pos - buffer) < offset)
|
|
return (0);
|
|
else if ((pos - buffer - offset) < length)
|
|
return (pos - buffer - offset);
|
|
else
|
|
return (length);
|
|
}
|
|
|
|
|
|
/*
|
|
* Returns the number of adapters this driver is supporting.
|
|
*
|
|
* The source for hosts.c says to wait to call scsi_register until 100%
|
|
* sure about an adapter. We need to do it a little sooner here; we
|
|
* need the storage set up by scsi_register before wd7000_init, and
|
|
* changing the location of an Adapter structure is more trouble than
|
|
* calling scsi_unregister.
|
|
*
|
|
*/
|
|
|
|
static __init int wd7000_detect(struct scsi_host_template *tpnt)
|
|
{
|
|
short present = 0, biosaddr_ptr, sig_ptr, i, pass;
|
|
short biosptr[NUM_CONFIGS];
|
|
unsigned iobase;
|
|
Adapter *host = NULL;
|
|
struct Scsi_Host *sh;
|
|
int unit = 0;
|
|
|
|
dprintk("wd7000_detect: started\n");
|
|
|
|
#ifdef MODULE
|
|
if (wd7000)
|
|
wd7000_setup(wd7000);
|
|
#endif
|
|
|
|
for (i = 0; i < UNITS; wd7000_host[i++] = NULL);
|
|
for (i = 0; i < NUM_CONFIGS; biosptr[i++] = -1);
|
|
|
|
tpnt->proc_name = "wd7000";
|
|
tpnt->proc_info = &wd7000_proc_info;
|
|
|
|
/*
|
|
* Set up SCB free list, which is shared by all adapters
|
|
*/
|
|
init_scbs();
|
|
|
|
for (pass = 0; pass < NUM_CONFIGS; pass++) {
|
|
/*
|
|
* First, search for BIOS SIGNATURE...
|
|
*/
|
|
for (biosaddr_ptr = 0; biosaddr_ptr < NUM_ADDRS; biosaddr_ptr++)
|
|
for (sig_ptr = 0; sig_ptr < NUM_SIGNATURES; sig_ptr++) {
|
|
for (i = 0; i < pass; i++)
|
|
if (biosptr[i] == biosaddr_ptr)
|
|
break;
|
|
|
|
if (i == pass) {
|
|
void __iomem *biosaddr = ioremap(wd7000_biosaddr[biosaddr_ptr] + signatures[sig_ptr].ofs,
|
|
signatures[sig_ptr].len);
|
|
short bios_match = 1;
|
|
|
|
if (biosaddr)
|
|
bios_match = check_signature(biosaddr, signatures[sig_ptr].sig, signatures[sig_ptr].len);
|
|
|
|
iounmap(biosaddr);
|
|
|
|
if (bios_match)
|
|
goto bios_matched;
|
|
}
|
|
}
|
|
|
|
bios_matched:
|
|
/*
|
|
* BIOS SIGNATURE has been found.
|
|
*/
|
|
#ifdef WD7000_DEBUG
|
|
dprintk("wd7000_detect: pass %d\n", pass + 1);
|
|
|
|
if (biosaddr_ptr == NUM_ADDRS)
|
|
dprintk("WD-7000 SST BIOS not detected...\n");
|
|
else
|
|
dprintk("WD-7000 SST BIOS detected at 0x%lx: checking...\n", wd7000_biosaddr[biosaddr_ptr]);
|
|
#endif
|
|
|
|
if (configs[pass].irq < 0)
|
|
continue;
|
|
|
|
if (unit == UNITS)
|
|
continue;
|
|
|
|
iobase = configs[pass].iobase;
|
|
|
|
dprintk("wd7000_detect: check IO 0x%x region...\n", iobase);
|
|
|
|
if (request_region(iobase, 4, "wd7000")) {
|
|
|
|
dprintk("wd7000_detect: ASC reset (IO 0x%x) ...", iobase);
|
|
/*
|
|
* ASC reset...
|
|
*/
|
|
outb(ASC_RES, iobase + ASC_CONTROL);
|
|
msleep(10);
|
|
outb(0, iobase + ASC_CONTROL);
|
|
|
|
if (WAIT(iobase + ASC_STAT, ASC_STATMASK, CMD_RDY, 0)) {
|
|
dprintk("failed!\n");
|
|
goto err_release;
|
|
} else
|
|
dprintk("ok!\n");
|
|
|
|
if (inb(iobase + ASC_INTR_STAT) == 1) {
|
|
/*
|
|
* We register here, to get a pointer to the extra space,
|
|
* which we'll use as the Adapter structure (host) for
|
|
* this adapter. It is located just after the registered
|
|
* Scsi_Host structure (sh), and is located by the empty
|
|
* array hostdata.
|
|
*/
|
|
sh = scsi_register(tpnt, sizeof(Adapter));
|
|
if (sh == NULL)
|
|
goto err_release;
|
|
|
|
host = (Adapter *) sh->hostdata;
|
|
|
|
dprintk("wd7000_detect: adapter allocated at 0x%x\n", (int) host);
|
|
memset(host, 0, sizeof(Adapter));
|
|
|
|
host->irq = configs[pass].irq;
|
|
host->dma = configs[pass].dma;
|
|
host->iobase = iobase;
|
|
host->int_counter = 0;
|
|
host->bus_on = configs[pass].bus_on;
|
|
host->bus_off = configs[pass].bus_off;
|
|
host->sh = wd7000_host[unit] = sh;
|
|
unit++;
|
|
|
|
dprintk("wd7000_detect: Trying init WD-7000 card at IO " "0x%x, IRQ %d, DMA %d...\n", host->iobase, host->irq, host->dma);
|
|
|
|
if (!wd7000_init(host)) /* Initialization failed */
|
|
goto err_unregister;
|
|
|
|
/*
|
|
* OK from here - we'll use this adapter/configuration.
|
|
*/
|
|
wd7000_revision(host); /* important for scatter/gather */
|
|
|
|
/*
|
|
* For boards before rev 6.0, scatter/gather isn't supported.
|
|
*/
|
|
if (host->rev1 < 6)
|
|
sh->sg_tablesize = SG_NONE;
|
|
|
|
present++; /* count it */
|
|
|
|
if (biosaddr_ptr != NUM_ADDRS)
|
|
biosptr[pass] = biosaddr_ptr;
|
|
|
|
printk(KERN_INFO "Western Digital WD-7000 (rev %d.%d) ", host->rev1, host->rev2);
|
|
printk("using IO 0x%x, IRQ %d, DMA %d.\n", host->iobase, host->irq, host->dma);
|
|
printk(" BUS_ON time: %dns, BUS_OFF time: %dns\n", host->bus_on * 125, host->bus_off * 125);
|
|
}
|
|
} else
|
|
dprintk("wd7000_detect: IO 0x%x region already allocated!\n", iobase);
|
|
|
|
continue;
|
|
|
|
err_unregister:
|
|
scsi_unregister(sh);
|
|
err_release:
|
|
release_region(iobase, 4);
|
|
|
|
}
|
|
|
|
if (!present)
|
|
printk("Failed initialization of WD-7000 SCSI card!\n");
|
|
|
|
return (present);
|
|
}
|
|
|
|
static int wd7000_release(struct Scsi_Host *shost)
|
|
{
|
|
if (shost->irq)
|
|
free_irq(shost->irq, NULL);
|
|
if (shost->io_port && shost->n_io_port)
|
|
release_region(shost->io_port, shost->n_io_port);
|
|
scsi_unregister(shost);
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
/*
|
|
* I have absolutely NO idea how to do an abort with the WD7000...
|
|
*/
|
|
static int wd7000_abort(Scsi_Cmnd * SCpnt)
|
|
{
|
|
Adapter *host = (Adapter *) SCpnt->device->host->hostdata;
|
|
|
|
if (inb(host->iobase + ASC_STAT) & INT_IM) {
|
|
printk("wd7000_abort: lost interrupt\n");
|
|
wd7000_intr_handle(host->irq, NULL, NULL);
|
|
return FAILED;
|
|
}
|
|
return FAILED;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Last resort. Reinitialize the board.
|
|
*/
|
|
|
|
static int wd7000_host_reset(struct scsi_cmnd *SCpnt)
|
|
{
|
|
Adapter *host = (Adapter *) SCpnt->device->host->hostdata;
|
|
|
|
spin_unlock_irq(SCpnt->device->host->host_lock);
|
|
|
|
if (wd7000_adapter_reset(host) < 0) {
|
|
spin_unlock_irq(SCpnt->device->host->host_lock);
|
|
return FAILED;
|
|
}
|
|
|
|
wd7000_enable_intr(host);
|
|
|
|
spin_unlock_irq(SCpnt->device->host->host_lock);
|
|
return SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* This was borrowed directly from aha1542.c. (Zaga)
|
|
*/
|
|
|
|
static int wd7000_biosparam(struct scsi_device *sdev,
|
|
struct block_device *bdev, sector_t capacity, int *ip)
|
|
{
|
|
char b[BDEVNAME_SIZE];
|
|
|
|
dprintk("wd7000_biosparam: dev=%s, size=%d, ",
|
|
bdevname(bdev, b), capacity);
|
|
(void)b; /* unused var warning? */
|
|
|
|
/*
|
|
* try default translation
|
|
*/
|
|
ip[0] = 64;
|
|
ip[1] = 32;
|
|
ip[2] = capacity >> 11;
|
|
|
|
/*
|
|
* for disks >1GB do some guessing
|
|
*/
|
|
if (ip[2] >= 1024) {
|
|
int info[3];
|
|
|
|
/*
|
|
* try to figure out the geometry from the partition table
|
|
*/
|
|
if ((scsicam_bios_param(bdev, capacity, info) < 0) || !(((info[0] == 64) && (info[1] == 32)) || ((info[0] == 255) && (info[1] == 63)))) {
|
|
printk("wd7000_biosparam: unable to verify geometry for disk with >1GB.\n" " using extended translation.\n");
|
|
|
|
ip[0] = 255;
|
|
ip[1] = 63;
|
|
ip[2] = (unsigned long) capacity / (255 * 63);
|
|
} else {
|
|
ip[0] = info[0];
|
|
ip[1] = info[1];
|
|
ip[2] = info[2];
|
|
|
|
if (info[0] == 255)
|
|
printk(KERN_INFO "%s: current partition table is " "using extended translation.\n", __FUNCTION__);
|
|
}
|
|
}
|
|
|
|
dprintk("bios geometry: head=%d, sec=%d, cyl=%d\n", ip[0], ip[1], ip[2]);
|
|
dprintk("WARNING: check, if the bios geometry is correct.\n");
|
|
|
|
return (0);
|
|
}
|
|
|
|
MODULE_AUTHOR("Thomas Wuensche, John Boyd, Miroslav Zagorac");
|
|
MODULE_DESCRIPTION("Driver for the WD7000 series ISA controllers");
|
|
MODULE_LICENSE("GPL");
|
|
|
|
static struct scsi_host_template driver_template = {
|
|
.proc_name = "wd7000",
|
|
.proc_info = wd7000_proc_info,
|
|
.name = "Western Digital WD-7000",
|
|
.detect = wd7000_detect,
|
|
.release = wd7000_release,
|
|
.queuecommand = wd7000_queuecommand,
|
|
.eh_host_reset_handler = wd7000_host_reset,
|
|
.bios_param = wd7000_biosparam,
|
|
.can_queue = WD7000_Q,
|
|
.this_id = 7,
|
|
.sg_tablesize = WD7000_SG,
|
|
.cmd_per_lun = 1,
|
|
.unchecked_isa_dma = 1,
|
|
.use_clustering = ENABLE_CLUSTERING,
|
|
};
|
|
|
|
#include "scsi_module.c"
|