2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-21 19:53:59 +08:00
linux-next/drivers/rtc/rtc-ds1305.c
John Stultz 16380c153a RTC: Convert rtc drivers to use the alarm_irq_enable method
Some rtc drivers use the ioctl method instead of the alarm_irq_enable
method for enabling alarm interupts. With the new virtualized RTC
rework, its important for drivers to use the alarm_irq_enable instead.

This patch converts the drivers that use the AIE ioctl method to
use the alarm_irq_enable method. Other ioctl cmds are left untouched.

I have not been able to test or even compile most of these drivers.
Any help to make sure this change is correct would be appreciated!

CC: Alessandro Zummo <a.zummo@towertech.it>
CC: Thomas Gleixner <tglx@linutronix.de>
CC: Marcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br>
Reported-by: Marcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br>
Tested-by: Marcelo Roberto Jimenez <mroberto@cpti.cetuc.puc-rio.br>
Signed-off-by: John Stultz <john.stultz@linaro.org>
2011-02-03 13:02:35 -08:00

831 lines
21 KiB
C

/*
* rtc-ds1305.c -- driver for DS1305 and DS1306 SPI RTC chips
*
* Copyright (C) 2008 David Brownell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/bcd.h>
#include <linux/slab.h>
#include <linux/rtc.h>
#include <linux/workqueue.h>
#include <linux/spi/spi.h>
#include <linux/spi/ds1305.h>
/*
* Registers ... mask DS1305_WRITE into register address to write,
* otherwise you're reading it. All non-bitmask values are BCD.
*/
#define DS1305_WRITE 0x80
/* RTC date/time ... the main special cases are that we:
* - Need fancy "hours" encoding in 12hour mode
* - Don't rely on the "day-of-week" field (or tm_wday)
* - Are a 21st-century clock (2000 <= year < 2100)
*/
#define DS1305_RTC_LEN 7 /* bytes for RTC regs */
#define DS1305_SEC 0x00 /* register addresses */
#define DS1305_MIN 0x01
#define DS1305_HOUR 0x02
# define DS1305_HR_12 0x40 /* set == 12 hr mode */
# define DS1305_HR_PM 0x20 /* set == PM (12hr mode) */
#define DS1305_WDAY 0x03
#define DS1305_MDAY 0x04
#define DS1305_MON 0x05
#define DS1305_YEAR 0x06
/* The two alarms have only sec/min/hour/wday fields (ALM_LEN).
* DS1305_ALM_DISABLE disables a match field (some combos are bad).
*
* NOTE that since we don't use WDAY, we limit ourselves to alarms
* only one day into the future (vs potentially up to a week).
*
* NOTE ALSO that while we could generate once-a-second IRQs (UIE), we
* don't currently support them. We'd either need to do it only when
* no alarm is pending (not the standard model), or to use the second
* alarm (implying that this is a DS1305 not DS1306, *and* that either
* it's wired up a second IRQ we know, or that INTCN is set)
*/
#define DS1305_ALM_LEN 4 /* bytes for ALM regs */
#define DS1305_ALM_DISABLE 0x80
#define DS1305_ALM0(r) (0x07 + (r)) /* register addresses */
#define DS1305_ALM1(r) (0x0b + (r))
/* three control registers */
#define DS1305_CONTROL_LEN 3 /* bytes of control regs */
#define DS1305_CONTROL 0x0f /* register addresses */
# define DS1305_nEOSC 0x80 /* low enables oscillator */
# define DS1305_WP 0x40 /* write protect */
# define DS1305_INTCN 0x04 /* clear == only int0 used */
# define DS1306_1HZ 0x04 /* enable 1Hz output */
# define DS1305_AEI1 0x02 /* enable ALM1 IRQ */
# define DS1305_AEI0 0x01 /* enable ALM0 IRQ */
#define DS1305_STATUS 0x10
/* status has just AEIx bits, mirrored as IRQFx */
#define DS1305_TRICKLE 0x11
/* trickle bits are defined in <linux/spi/ds1305.h> */
/* a bunch of NVRAM */
#define DS1305_NVRAM_LEN 96 /* bytes of NVRAM */
#define DS1305_NVRAM 0x20 /* register addresses */
struct ds1305 {
struct spi_device *spi;
struct rtc_device *rtc;
struct work_struct work;
unsigned long flags;
#define FLAG_EXITING 0
bool hr12;
u8 ctrl[DS1305_CONTROL_LEN];
};
/*----------------------------------------------------------------------*/
/*
* Utilities ... tolerate 12-hour AM/PM notation in case of non-Linux
* software (like a bootloader) which may require it.
*/
static unsigned bcd2hour(u8 bcd)
{
if (bcd & DS1305_HR_12) {
unsigned hour = 0;
bcd &= ~DS1305_HR_12;
if (bcd & DS1305_HR_PM) {
hour = 12;
bcd &= ~DS1305_HR_PM;
}
hour += bcd2bin(bcd);
return hour - 1;
}
return bcd2bin(bcd);
}
static u8 hour2bcd(bool hr12, int hour)
{
if (hr12) {
hour++;
if (hour <= 12)
return DS1305_HR_12 | bin2bcd(hour);
hour -= 12;
return DS1305_HR_12 | DS1305_HR_PM | bin2bcd(hour);
}
return bin2bcd(hour);
}
/*----------------------------------------------------------------------*/
/*
* Interface to RTC framework
*/
static int ds1305_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct ds1305 *ds1305 = dev_get_drvdata(dev);
u8 buf[2];
long err = -EINVAL;
buf[0] = DS1305_WRITE | DS1305_CONTROL;
buf[1] = ds1305->ctrl[0];
if (enabled) {
if (ds1305->ctrl[0] & DS1305_AEI0)
goto done;
buf[1] |= DS1305_AEI0;
} else {
if (!(buf[1] & DS1305_AEI0))
goto done;
buf[1] &= ~DS1305_AEI0;
}
err = spi_write_then_read(ds1305->spi, buf, sizeof buf, NULL, 0);
if (err >= 0)
ds1305->ctrl[0] = buf[1];
done:
return err;
}
/*
* Get/set of date and time is pretty normal.
*/
static int ds1305_get_time(struct device *dev, struct rtc_time *time)
{
struct ds1305 *ds1305 = dev_get_drvdata(dev);
u8 addr = DS1305_SEC;
u8 buf[DS1305_RTC_LEN];
int status;
/* Use write-then-read to get all the date/time registers
* since dma from stack is nonportable
*/
status = spi_write_then_read(ds1305->spi, &addr, sizeof addr,
buf, sizeof buf);
if (status < 0)
return status;
dev_vdbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
"read", buf[0], buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6]);
/* Decode the registers */
time->tm_sec = bcd2bin(buf[DS1305_SEC]);
time->tm_min = bcd2bin(buf[DS1305_MIN]);
time->tm_hour = bcd2hour(buf[DS1305_HOUR]);
time->tm_wday = buf[DS1305_WDAY] - 1;
time->tm_mday = bcd2bin(buf[DS1305_MDAY]);
time->tm_mon = bcd2bin(buf[DS1305_MON]) - 1;
time->tm_year = bcd2bin(buf[DS1305_YEAR]) + 100;
dev_vdbg(dev, "%s secs=%d, mins=%d, "
"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
"read", time->tm_sec, time->tm_min,
time->tm_hour, time->tm_mday,
time->tm_mon, time->tm_year, time->tm_wday);
/* Time may not be set */
return rtc_valid_tm(time);
}
static int ds1305_set_time(struct device *dev, struct rtc_time *time)
{
struct ds1305 *ds1305 = dev_get_drvdata(dev);
u8 buf[1 + DS1305_RTC_LEN];
u8 *bp = buf;
dev_vdbg(dev, "%s secs=%d, mins=%d, "
"hours=%d, mday=%d, mon=%d, year=%d, wday=%d\n",
"write", time->tm_sec, time->tm_min,
time->tm_hour, time->tm_mday,
time->tm_mon, time->tm_year, time->tm_wday);
/* Write registers starting at the first time/date address. */
*bp++ = DS1305_WRITE | DS1305_SEC;
*bp++ = bin2bcd(time->tm_sec);
*bp++ = bin2bcd(time->tm_min);
*bp++ = hour2bcd(ds1305->hr12, time->tm_hour);
*bp++ = (time->tm_wday < 7) ? (time->tm_wday + 1) : 1;
*bp++ = bin2bcd(time->tm_mday);
*bp++ = bin2bcd(time->tm_mon + 1);
*bp++ = bin2bcd(time->tm_year - 100);
dev_dbg(dev, "%s: %02x %02x %02x, %02x %02x %02x %02x\n",
"write", buf[1], buf[2], buf[3],
buf[4], buf[5], buf[6], buf[7]);
/* use write-then-read since dma from stack is nonportable */
return spi_write_then_read(ds1305->spi, buf, sizeof buf,
NULL, 0);
}
/*
* Get/set of alarm is a bit funky:
*
* - First there's the inherent raciness of getting the (partitioned)
* status of an alarm that could trigger while we're reading parts
* of that status.
*
* - Second there's its limited range (we could increase it a bit by
* relying on WDAY), which means it will easily roll over.
*
* - Third there's the choice of two alarms and alarm signals.
* Here we use ALM0 and expect that nINT0 (open drain) is used;
* that's the only real option for DS1306 runtime alarms, and is
* natural on DS1305.
*
* - Fourth, there's also ALM1, and a second interrupt signal:
* + On DS1305 ALM1 uses nINT1 (when INTCN=1) else nINT0;
* + On DS1306 ALM1 only uses INT1 (an active high pulse)
* and it won't work when VCC1 is active.
*
* So to be most general, we should probably set both alarms to the
* same value, letting ALM1 be the wakeup event source on DS1306
* and handling several wiring options on DS1305.
*
* - Fifth, we support the polled mode (as well as possible; why not?)
* even when no interrupt line is wired to an IRQ.
*/
/*
* Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
*/
static int ds1305_get_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct ds1305 *ds1305 = dev_get_drvdata(dev);
struct spi_device *spi = ds1305->spi;
u8 addr;
int status;
u8 buf[DS1305_ALM_LEN];
/* Refresh control register cache BEFORE reading ALM0 registers,
* since reading alarm registers acks any pending IRQ. That
* makes returning "pending" status a bit of a lie, but that bit
* of EFI status is at best fragile anyway (given IRQ handlers).
*/
addr = DS1305_CONTROL;
status = spi_write_then_read(spi, &addr, sizeof addr,
ds1305->ctrl, sizeof ds1305->ctrl);
if (status < 0)
return status;
alm->enabled = !!(ds1305->ctrl[0] & DS1305_AEI0);
alm->pending = !!(ds1305->ctrl[1] & DS1305_AEI0);
/* get and check ALM0 registers */
addr = DS1305_ALM0(DS1305_SEC);
status = spi_write_then_read(spi, &addr, sizeof addr,
buf, sizeof buf);
if (status < 0)
return status;
dev_vdbg(dev, "%s: %02x %02x %02x %02x\n",
"alm0 read", buf[DS1305_SEC], buf[DS1305_MIN],
buf[DS1305_HOUR], buf[DS1305_WDAY]);
if ((DS1305_ALM_DISABLE & buf[DS1305_SEC])
|| (DS1305_ALM_DISABLE & buf[DS1305_MIN])
|| (DS1305_ALM_DISABLE & buf[DS1305_HOUR]))
return -EIO;
/* Stuff these values into alm->time and let RTC framework code
* fill in the rest ... and also handle rollover to tomorrow when
* that's needed.
*/
alm->time.tm_sec = bcd2bin(buf[DS1305_SEC]);
alm->time.tm_min = bcd2bin(buf[DS1305_MIN]);
alm->time.tm_hour = bcd2hour(buf[DS1305_HOUR]);
alm->time.tm_mday = -1;
alm->time.tm_mon = -1;
alm->time.tm_year = -1;
/* next three fields are unused by Linux */
alm->time.tm_wday = -1;
alm->time.tm_mday = -1;
alm->time.tm_isdst = -1;
return 0;
}
/*
* Context: caller holds rtc->ops_lock (to protect ds1305->ctrl)
*/
static int ds1305_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct ds1305 *ds1305 = dev_get_drvdata(dev);
struct spi_device *spi = ds1305->spi;
unsigned long now, later;
struct rtc_time tm;
int status;
u8 buf[1 + DS1305_ALM_LEN];
/* convert desired alarm to time_t */
status = rtc_tm_to_time(&alm->time, &later);
if (status < 0)
return status;
/* Read current time as time_t */
status = ds1305_get_time(dev, &tm);
if (status < 0)
return status;
status = rtc_tm_to_time(&tm, &now);
if (status < 0)
return status;
/* make sure alarm fires within the next 24 hours */
if (later <= now)
return -EINVAL;
if ((later - now) > 24 * 60 * 60)
return -EDOM;
/* disable alarm if needed */
if (ds1305->ctrl[0] & DS1305_AEI0) {
ds1305->ctrl[0] &= ~DS1305_AEI0;
buf[0] = DS1305_WRITE | DS1305_CONTROL;
buf[1] = ds1305->ctrl[0];
status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
if (status < 0)
return status;
}
/* write alarm */
buf[0] = DS1305_WRITE | DS1305_ALM0(DS1305_SEC);
buf[1 + DS1305_SEC] = bin2bcd(alm->time.tm_sec);
buf[1 + DS1305_MIN] = bin2bcd(alm->time.tm_min);
buf[1 + DS1305_HOUR] = hour2bcd(ds1305->hr12, alm->time.tm_hour);
buf[1 + DS1305_WDAY] = DS1305_ALM_DISABLE;
dev_dbg(dev, "%s: %02x %02x %02x %02x\n",
"alm0 write", buf[1 + DS1305_SEC], buf[1 + DS1305_MIN],
buf[1 + DS1305_HOUR], buf[1 + DS1305_WDAY]);
status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
if (status < 0)
return status;
/* enable alarm if requested */
if (alm->enabled) {
ds1305->ctrl[0] |= DS1305_AEI0;
buf[0] = DS1305_WRITE | DS1305_CONTROL;
buf[1] = ds1305->ctrl[0];
status = spi_write_then_read(ds1305->spi, buf, 2, NULL, 0);
}
return status;
}
#ifdef CONFIG_PROC_FS
static int ds1305_proc(struct device *dev, struct seq_file *seq)
{
struct ds1305 *ds1305 = dev_get_drvdata(dev);
char *diodes = "no";
char *resistors = "";
/* ctrl[2] is treated as read-only; no locking needed */
if ((ds1305->ctrl[2] & 0xf0) == DS1305_TRICKLE_MAGIC) {
switch (ds1305->ctrl[2] & 0x0c) {
case DS1305_TRICKLE_DS2:
diodes = "2 diodes, ";
break;
case DS1305_TRICKLE_DS1:
diodes = "1 diode, ";
break;
default:
goto done;
}
switch (ds1305->ctrl[2] & 0x03) {
case DS1305_TRICKLE_2K:
resistors = "2k Ohm";
break;
case DS1305_TRICKLE_4K:
resistors = "4k Ohm";
break;
case DS1305_TRICKLE_8K:
resistors = "8k Ohm";
break;
default:
diodes = "no";
break;
}
}
done:
return seq_printf(seq,
"trickle_charge\t: %s%s\n",
diodes, resistors);
}
#else
#define ds1305_proc NULL
#endif
static const struct rtc_class_ops ds1305_ops = {
.read_time = ds1305_get_time,
.set_time = ds1305_set_time,
.read_alarm = ds1305_get_alarm,
.set_alarm = ds1305_set_alarm,
.proc = ds1305_proc,
.alarm_irq_enable = ds1305_alarm_irq_enable,
};
static void ds1305_work(struct work_struct *work)
{
struct ds1305 *ds1305 = container_of(work, struct ds1305, work);
struct mutex *lock = &ds1305->rtc->ops_lock;
struct spi_device *spi = ds1305->spi;
u8 buf[3];
int status;
/* lock to protect ds1305->ctrl */
mutex_lock(lock);
/* Disable the IRQ, and clear its status ... for now, we "know"
* that if more than one alarm is active, they're in sync.
* Note that reading ALM data registers also clears IRQ status.
*/
ds1305->ctrl[0] &= ~(DS1305_AEI1 | DS1305_AEI0);
ds1305->ctrl[1] = 0;
buf[0] = DS1305_WRITE | DS1305_CONTROL;
buf[1] = ds1305->ctrl[0];
buf[2] = 0;
status = spi_write_then_read(spi, buf, sizeof buf,
NULL, 0);
if (status < 0)
dev_dbg(&spi->dev, "clear irq --> %d\n", status);
mutex_unlock(lock);
if (!test_bit(FLAG_EXITING, &ds1305->flags))
enable_irq(spi->irq);
rtc_update_irq(ds1305->rtc, 1, RTC_AF | RTC_IRQF);
}
/*
* This "real" IRQ handler hands off to a workqueue mostly to allow
* mutex locking for ds1305->ctrl ... unlike I2C, we could issue async
* I/O requests in IRQ context (to clear the IRQ status).
*/
static irqreturn_t ds1305_irq(int irq, void *p)
{
struct ds1305 *ds1305 = p;
disable_irq(irq);
schedule_work(&ds1305->work);
return IRQ_HANDLED;
}
/*----------------------------------------------------------------------*/
/*
* Interface for NVRAM
*/
static void msg_init(struct spi_message *m, struct spi_transfer *x,
u8 *addr, size_t count, char *tx, char *rx)
{
spi_message_init(m);
memset(x, 0, 2 * sizeof(*x));
x->tx_buf = addr;
x->len = 1;
spi_message_add_tail(x, m);
x++;
x->tx_buf = tx;
x->rx_buf = rx;
x->len = count;
spi_message_add_tail(x, m);
}
static ssize_t
ds1305_nvram_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct spi_device *spi;
u8 addr;
struct spi_message m;
struct spi_transfer x[2];
int status;
spi = container_of(kobj, struct spi_device, dev.kobj);
if (unlikely(off >= DS1305_NVRAM_LEN))
return 0;
if (count >= DS1305_NVRAM_LEN)
count = DS1305_NVRAM_LEN;
if ((off + count) > DS1305_NVRAM_LEN)
count = DS1305_NVRAM_LEN - off;
if (unlikely(!count))
return count;
addr = DS1305_NVRAM + off;
msg_init(&m, x, &addr, count, NULL, buf);
status = spi_sync(spi, &m);
if (status < 0)
dev_err(&spi->dev, "nvram %s error %d\n", "read", status);
return (status < 0) ? status : count;
}
static ssize_t
ds1305_nvram_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct spi_device *spi;
u8 addr;
struct spi_message m;
struct spi_transfer x[2];
int status;
spi = container_of(kobj, struct spi_device, dev.kobj);
if (unlikely(off >= DS1305_NVRAM_LEN))
return -EFBIG;
if (count >= DS1305_NVRAM_LEN)
count = DS1305_NVRAM_LEN;
if ((off + count) > DS1305_NVRAM_LEN)
count = DS1305_NVRAM_LEN - off;
if (unlikely(!count))
return count;
addr = (DS1305_WRITE | DS1305_NVRAM) + off;
msg_init(&m, x, &addr, count, buf, NULL);
status = spi_sync(spi, &m);
if (status < 0)
dev_err(&spi->dev, "nvram %s error %d\n", "write", status);
return (status < 0) ? status : count;
}
static struct bin_attribute nvram = {
.attr.name = "nvram",
.attr.mode = S_IRUGO | S_IWUSR,
.read = ds1305_nvram_read,
.write = ds1305_nvram_write,
.size = DS1305_NVRAM_LEN,
};
/*----------------------------------------------------------------------*/
/*
* Interface to SPI stack
*/
static int __devinit ds1305_probe(struct spi_device *spi)
{
struct ds1305 *ds1305;
int status;
u8 addr, value;
struct ds1305_platform_data *pdata = spi->dev.platform_data;
bool write_ctrl = false;
/* Sanity check board setup data. This may be hooked up
* in 3wire mode, but we don't care. Note that unless
* there's an inverter in place, this needs SPI_CS_HIGH!
*/
if ((spi->bits_per_word && spi->bits_per_word != 8)
|| (spi->max_speed_hz > 2000000)
|| !(spi->mode & SPI_CPHA))
return -EINVAL;
/* set up driver data */
ds1305 = kzalloc(sizeof *ds1305, GFP_KERNEL);
if (!ds1305)
return -ENOMEM;
ds1305->spi = spi;
spi_set_drvdata(spi, ds1305);
/* read and cache control registers */
addr = DS1305_CONTROL;
status = spi_write_then_read(spi, &addr, sizeof addr,
ds1305->ctrl, sizeof ds1305->ctrl);
if (status < 0) {
dev_dbg(&spi->dev, "can't %s, %d\n",
"read", status);
goto fail0;
}
dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
"read", ds1305->ctrl[0],
ds1305->ctrl[1], ds1305->ctrl[2]);
/* Sanity check register values ... partially compensating for the
* fact that SPI has no device handshake. A pullup on MISO would
* make these tests fail; but not all systems will have one. If
* some register is neither 0x00 nor 0xff, a chip is likely there.
*/
if ((ds1305->ctrl[0] & 0x38) != 0 || (ds1305->ctrl[1] & 0xfc) != 0) {
dev_dbg(&spi->dev, "RTC chip is not present\n");
status = -ENODEV;
goto fail0;
}
if (ds1305->ctrl[2] == 0)
dev_dbg(&spi->dev, "chip may not be present\n");
/* enable writes if needed ... if we were paranoid it would
* make sense to enable them only when absolutely necessary.
*/
if (ds1305->ctrl[0] & DS1305_WP) {
u8 buf[2];
ds1305->ctrl[0] &= ~DS1305_WP;
buf[0] = DS1305_WRITE | DS1305_CONTROL;
buf[1] = ds1305->ctrl[0];
status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
dev_dbg(&spi->dev, "clear WP --> %d\n", status);
if (status < 0)
goto fail0;
}
/* on DS1305, maybe start oscillator; like most low power
* oscillators, it may take a second to stabilize
*/
if (ds1305->ctrl[0] & DS1305_nEOSC) {
ds1305->ctrl[0] &= ~DS1305_nEOSC;
write_ctrl = true;
dev_warn(&spi->dev, "SET TIME!\n");
}
/* ack any pending IRQs */
if (ds1305->ctrl[1]) {
ds1305->ctrl[1] = 0;
write_ctrl = true;
}
/* this may need one-time (re)init */
if (pdata) {
/* maybe enable trickle charge */
if (((ds1305->ctrl[2] & 0xf0) != DS1305_TRICKLE_MAGIC)) {
ds1305->ctrl[2] = DS1305_TRICKLE_MAGIC
| pdata->trickle;
write_ctrl = true;
}
/* on DS1306, configure 1 Hz signal */
if (pdata->is_ds1306) {
if (pdata->en_1hz) {
if (!(ds1305->ctrl[0] & DS1306_1HZ)) {
ds1305->ctrl[0] |= DS1306_1HZ;
write_ctrl = true;
}
} else {
if (ds1305->ctrl[0] & DS1306_1HZ) {
ds1305->ctrl[0] &= ~DS1306_1HZ;
write_ctrl = true;
}
}
}
}
if (write_ctrl) {
u8 buf[4];
buf[0] = DS1305_WRITE | DS1305_CONTROL;
buf[1] = ds1305->ctrl[0];
buf[2] = ds1305->ctrl[1];
buf[3] = ds1305->ctrl[2];
status = spi_write_then_read(spi, buf, sizeof buf, NULL, 0);
if (status < 0) {
dev_dbg(&spi->dev, "can't %s, %d\n",
"write", status);
goto fail0;
}
dev_dbg(&spi->dev, "ctrl %s: %02x %02x %02x\n",
"write", ds1305->ctrl[0],
ds1305->ctrl[1], ds1305->ctrl[2]);
}
/* see if non-Linux software set up AM/PM mode */
addr = DS1305_HOUR;
status = spi_write_then_read(spi, &addr, sizeof addr,
&value, sizeof value);
if (status < 0) {
dev_dbg(&spi->dev, "read HOUR --> %d\n", status);
goto fail0;
}
ds1305->hr12 = (DS1305_HR_12 & value) != 0;
if (ds1305->hr12)
dev_dbg(&spi->dev, "AM/PM\n");
/* register RTC ... from here on, ds1305->ctrl needs locking */
ds1305->rtc = rtc_device_register("ds1305", &spi->dev,
&ds1305_ops, THIS_MODULE);
if (IS_ERR(ds1305->rtc)) {
status = PTR_ERR(ds1305->rtc);
dev_dbg(&spi->dev, "register rtc --> %d\n", status);
goto fail0;
}
/* Maybe set up alarm IRQ; be ready to handle it triggering right
* away. NOTE that we don't share this. The signal is active low,
* and we can't ack it before a SPI message delay. We temporarily
* disable the IRQ until it's acked, which lets us work with more
* IRQ trigger modes (not all IRQ controllers can do falling edge).
*/
if (spi->irq) {
INIT_WORK(&ds1305->work, ds1305_work);
status = request_irq(spi->irq, ds1305_irq,
0, dev_name(&ds1305->rtc->dev), ds1305);
if (status < 0) {
dev_dbg(&spi->dev, "request_irq %d --> %d\n",
spi->irq, status);
goto fail1;
}
device_set_wakeup_capable(&spi->dev, 1);
}
/* export NVRAM */
status = sysfs_create_bin_file(&spi->dev.kobj, &nvram);
if (status < 0) {
dev_dbg(&spi->dev, "register nvram --> %d\n", status);
goto fail2;
}
return 0;
fail2:
free_irq(spi->irq, ds1305);
fail1:
rtc_device_unregister(ds1305->rtc);
fail0:
kfree(ds1305);
return status;
}
static int __devexit ds1305_remove(struct spi_device *spi)
{
struct ds1305 *ds1305 = spi_get_drvdata(spi);
sysfs_remove_bin_file(&spi->dev.kobj, &nvram);
/* carefully shut down irq and workqueue, if present */
if (spi->irq) {
set_bit(FLAG_EXITING, &ds1305->flags);
free_irq(spi->irq, ds1305);
cancel_work_sync(&ds1305->work);
}
rtc_device_unregister(ds1305->rtc);
spi_set_drvdata(spi, NULL);
kfree(ds1305);
return 0;
}
static struct spi_driver ds1305_driver = {
.driver.name = "rtc-ds1305",
.driver.owner = THIS_MODULE,
.probe = ds1305_probe,
.remove = __devexit_p(ds1305_remove),
/* REVISIT add suspend/resume */
};
static int __init ds1305_init(void)
{
return spi_register_driver(&ds1305_driver);
}
module_init(ds1305_init);
static void __exit ds1305_exit(void)
{
spi_unregister_driver(&ds1305_driver);
}
module_exit(ds1305_exit);
MODULE_DESCRIPTION("RTC driver for DS1305 and DS1306 chips");
MODULE_LICENSE("GPL");
MODULE_ALIAS("spi:rtc-ds1305");