2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-19 19:14:01 +08:00
linux-next/drivers/cpufreq/cpufreq_governor.c
Rafael J. Wysocki 58919e83c8 cpufreq / sched: Pass flags to cpufreq_update_util()
It is useful to know the reason why cpufreq_update_util() has just
been called and that can be passed as flags to cpufreq_update_util()
and to the ->func() callback in struct update_util_data.  However,
doing that in addition to passing the util and max arguments they
already take would be clumsy, so avoid it.

Instead, use the observation that the schedutil governor is part
of the scheduler proper, so it can access scheduler data directly.
This allows the util and max arguments of cpufreq_update_util()
and the ->func() callback in struct update_util_data to be replaced
with a flags one, but schedutil has to be modified to follow.

Thus make the schedutil governor obtain the CFS utilization
information from the scheduler and use the "RT" and "DL" flags
instead of the special utilization value of ULONG_MAX to track
updates from the RT and DL sched classes.  Make it non-modular
too to avoid having to export scheduler variables to modules at
large.

Next, update all of the other users of cpufreq_update_util()
and the ->func() callback in struct update_util_data accordingly.

Suggested-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Acked-by: Viresh Kumar <viresh.kumar@linaro.org>
2016-08-16 22:14:55 +02:00

557 lines
16 KiB
C

/*
* drivers/cpufreq/cpufreq_governor.c
*
* CPUFREQ governors common code
*
* Copyright (C) 2001 Russell King
* (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
* (C) 2003 Jun Nakajima <jun.nakajima@intel.com>
* (C) 2009 Alexander Clouter <alex@digriz.org.uk>
* (c) 2012 Viresh Kumar <viresh.kumar@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/export.h>
#include <linux/kernel_stat.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include "cpufreq_governor.h"
static DEFINE_PER_CPU(struct cpu_dbs_info, cpu_dbs);
static DEFINE_MUTEX(gov_dbs_data_mutex);
/* Common sysfs tunables */
/**
* store_sampling_rate - update sampling rate effective immediately if needed.
*
* If new rate is smaller than the old, simply updating
* dbs.sampling_rate might not be appropriate. For example, if the
* original sampling_rate was 1 second and the requested new sampling rate is 10
* ms because the user needs immediate reaction from ondemand governor, but not
* sure if higher frequency will be required or not, then, the governor may
* change the sampling rate too late; up to 1 second later. Thus, if we are
* reducing the sampling rate, we need to make the new value effective
* immediately.
*
* This must be called with dbs_data->mutex held, otherwise traversing
* policy_dbs_list isn't safe.
*/
ssize_t store_sampling_rate(struct gov_attr_set *attr_set, const char *buf,
size_t count)
{
struct dbs_data *dbs_data = to_dbs_data(attr_set);
struct policy_dbs_info *policy_dbs;
unsigned int rate;
int ret;
ret = sscanf(buf, "%u", &rate);
if (ret != 1)
return -EINVAL;
dbs_data->sampling_rate = max(rate, dbs_data->min_sampling_rate);
/*
* We are operating under dbs_data->mutex and so the list and its
* entries can't be freed concurrently.
*/
list_for_each_entry(policy_dbs, &attr_set->policy_list, list) {
mutex_lock(&policy_dbs->timer_mutex);
/*
* On 32-bit architectures this may race with the
* sample_delay_ns read in dbs_update_util_handler(), but that
* really doesn't matter. If the read returns a value that's
* too big, the sample will be skipped, but the next invocation
* of dbs_update_util_handler() (when the update has been
* completed) will take a sample.
*
* If this runs in parallel with dbs_work_handler(), we may end
* up overwriting the sample_delay_ns value that it has just
* written, but it will be corrected next time a sample is
* taken, so it shouldn't be significant.
*/
gov_update_sample_delay(policy_dbs, 0);
mutex_unlock(&policy_dbs->timer_mutex);
}
return count;
}
EXPORT_SYMBOL_GPL(store_sampling_rate);
/**
* gov_update_cpu_data - Update CPU load data.
* @dbs_data: Top-level governor data pointer.
*
* Update CPU load data for all CPUs in the domain governed by @dbs_data
* (that may be a single policy or a bunch of them if governor tunables are
* system-wide).
*
* Call under the @dbs_data mutex.
*/
void gov_update_cpu_data(struct dbs_data *dbs_data)
{
struct policy_dbs_info *policy_dbs;
list_for_each_entry(policy_dbs, &dbs_data->attr_set.policy_list, list) {
unsigned int j;
for_each_cpu(j, policy_dbs->policy->cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time,
dbs_data->io_is_busy);
if (dbs_data->ignore_nice_load)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
}
}
EXPORT_SYMBOL_GPL(gov_update_cpu_data);
unsigned int dbs_update(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
unsigned int ignore_nice = dbs_data->ignore_nice_load;
unsigned int max_load = 0;
unsigned int sampling_rate, io_busy, j;
/*
* Sometimes governors may use an additional multiplier to increase
* sample delays temporarily. Apply that multiplier to sampling_rate
* so as to keep the wake-up-from-idle detection logic a bit
* conservative.
*/
sampling_rate = dbs_data->sampling_rate * policy_dbs->rate_mult;
/*
* For the purpose of ondemand, waiting for disk IO is an indication
* that you're performance critical, and not that the system is actually
* idle, so do not add the iowait time to the CPU idle time then.
*/
io_busy = dbs_data->io_is_busy;
/* Get Absolute Load */
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
u64 update_time, cur_idle_time;
unsigned int idle_time, time_elapsed;
unsigned int load;
cur_idle_time = get_cpu_idle_time(j, &update_time, io_busy);
time_elapsed = update_time - j_cdbs->prev_update_time;
j_cdbs->prev_update_time = update_time;
idle_time = cur_idle_time - j_cdbs->prev_cpu_idle;
j_cdbs->prev_cpu_idle = cur_idle_time;
if (ignore_nice) {
u64 cur_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
idle_time += cputime_to_usecs(cur_nice - j_cdbs->prev_cpu_nice);
j_cdbs->prev_cpu_nice = cur_nice;
}
if (unlikely(!time_elapsed)) {
/*
* That can only happen when this function is called
* twice in a row with a very short interval between the
* calls, so the previous load value can be used then.
*/
load = j_cdbs->prev_load;
} else if (unlikely(time_elapsed > 2 * sampling_rate &&
j_cdbs->prev_load)) {
/*
* If the CPU had gone completely idle and a task has
* just woken up on this CPU now, it would be unfair to
* calculate 'load' the usual way for this elapsed
* time-window, because it would show near-zero load,
* irrespective of how CPU intensive that task actually
* was. This is undesirable for latency-sensitive bursty
* workloads.
*
* To avoid this, reuse the 'load' from the previous
* time-window and give this task a chance to start with
* a reasonably high CPU frequency. However, that
* shouldn't be over-done, lest we get stuck at a high
* load (high frequency) for too long, even when the
* current system load has actually dropped down, so
* clear prev_load to guarantee that the load will be
* computed again next time.
*
* Detecting this situation is easy: the governor's
* utilization update handler would not have run during
* CPU-idle periods. Hence, an unusually large
* 'time_elapsed' (as compared to the sampling rate)
* indicates this scenario.
*/
load = j_cdbs->prev_load;
j_cdbs->prev_load = 0;
} else {
if (time_elapsed >= idle_time) {
load = 100 * (time_elapsed - idle_time) / time_elapsed;
} else {
/*
* That can happen if idle_time is returned by
* get_cpu_idle_time_jiffy(). In that case
* idle_time is roughly equal to the difference
* between time_elapsed and "busy time" obtained
* from CPU statistics. Then, the "busy time"
* can end up being greater than time_elapsed
* (for example, if jiffies_64 and the CPU
* statistics are updated by different CPUs),
* so idle_time may in fact be negative. That
* means, though, that the CPU was busy all
* the time (on the rough average) during the
* last sampling interval and 100 can be
* returned as the load.
*/
load = (int)idle_time < 0 ? 100 : 0;
}
j_cdbs->prev_load = load;
}
if (load > max_load)
max_load = load;
}
return max_load;
}
EXPORT_SYMBOL_GPL(dbs_update);
static void dbs_work_handler(struct work_struct *work)
{
struct policy_dbs_info *policy_dbs;
struct cpufreq_policy *policy;
struct dbs_governor *gov;
policy_dbs = container_of(work, struct policy_dbs_info, work);
policy = policy_dbs->policy;
gov = dbs_governor_of(policy);
/*
* Make sure cpufreq_governor_limits() isn't evaluating load or the
* ondemand governor isn't updating the sampling rate in parallel.
*/
mutex_lock(&policy_dbs->timer_mutex);
gov_update_sample_delay(policy_dbs, gov->gov_dbs_timer(policy));
mutex_unlock(&policy_dbs->timer_mutex);
/* Allow the utilization update handler to queue up more work. */
atomic_set(&policy_dbs->work_count, 0);
/*
* If the update below is reordered with respect to the sample delay
* modification, the utilization update handler may end up using a stale
* sample delay value.
*/
smp_wmb();
policy_dbs->work_in_progress = false;
}
static void dbs_irq_work(struct irq_work *irq_work)
{
struct policy_dbs_info *policy_dbs;
policy_dbs = container_of(irq_work, struct policy_dbs_info, irq_work);
schedule_work_on(smp_processor_id(), &policy_dbs->work);
}
static void dbs_update_util_handler(struct update_util_data *data, u64 time,
unsigned int flags)
{
struct cpu_dbs_info *cdbs = container_of(data, struct cpu_dbs_info, update_util);
struct policy_dbs_info *policy_dbs = cdbs->policy_dbs;
u64 delta_ns, lst;
/*
* The work may not be allowed to be queued up right now.
* Possible reasons:
* - Work has already been queued up or is in progress.
* - It is too early (too little time from the previous sample).
*/
if (policy_dbs->work_in_progress)
return;
/*
* If the reads below are reordered before the check above, the value
* of sample_delay_ns used in the computation may be stale.
*/
smp_rmb();
lst = READ_ONCE(policy_dbs->last_sample_time);
delta_ns = time - lst;
if ((s64)delta_ns < policy_dbs->sample_delay_ns)
return;
/*
* If the policy is not shared, the irq_work may be queued up right away
* at this point. Otherwise, we need to ensure that only one of the
* CPUs sharing the policy will do that.
*/
if (policy_dbs->is_shared) {
if (!atomic_add_unless(&policy_dbs->work_count, 1, 1))
return;
/*
* If another CPU updated last_sample_time in the meantime, we
* shouldn't be here, so clear the work counter and bail out.
*/
if (unlikely(lst != READ_ONCE(policy_dbs->last_sample_time))) {
atomic_set(&policy_dbs->work_count, 0);
return;
}
}
policy_dbs->last_sample_time = time;
policy_dbs->work_in_progress = true;
irq_work_queue(&policy_dbs->irq_work);
}
static void gov_set_update_util(struct policy_dbs_info *policy_dbs,
unsigned int delay_us)
{
struct cpufreq_policy *policy = policy_dbs->policy;
int cpu;
gov_update_sample_delay(policy_dbs, delay_us);
policy_dbs->last_sample_time = 0;
for_each_cpu(cpu, policy->cpus) {
struct cpu_dbs_info *cdbs = &per_cpu(cpu_dbs, cpu);
cpufreq_add_update_util_hook(cpu, &cdbs->update_util,
dbs_update_util_handler);
}
}
static inline void gov_clear_update_util(struct cpufreq_policy *policy)
{
int i;
for_each_cpu(i, policy->cpus)
cpufreq_remove_update_util_hook(i);
synchronize_sched();
}
static struct policy_dbs_info *alloc_policy_dbs_info(struct cpufreq_policy *policy,
struct dbs_governor *gov)
{
struct policy_dbs_info *policy_dbs;
int j;
/* Allocate memory for per-policy governor data. */
policy_dbs = gov->alloc();
if (!policy_dbs)
return NULL;
policy_dbs->policy = policy;
mutex_init(&policy_dbs->timer_mutex);
atomic_set(&policy_dbs->work_count, 0);
init_irq_work(&policy_dbs->irq_work, dbs_irq_work);
INIT_WORK(&policy_dbs->work, dbs_work_handler);
/* Set policy_dbs for all CPUs, online+offline */
for_each_cpu(j, policy->related_cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
j_cdbs->policy_dbs = policy_dbs;
}
return policy_dbs;
}
static void free_policy_dbs_info(struct policy_dbs_info *policy_dbs,
struct dbs_governor *gov)
{
int j;
mutex_destroy(&policy_dbs->timer_mutex);
for_each_cpu(j, policy_dbs->policy->related_cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
j_cdbs->policy_dbs = NULL;
j_cdbs->update_util.func = NULL;
}
gov->free(policy_dbs);
}
int cpufreq_dbs_governor_init(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct dbs_data *dbs_data;
struct policy_dbs_info *policy_dbs;
unsigned int latency;
int ret = 0;
/* State should be equivalent to EXIT */
if (policy->governor_data)
return -EBUSY;
policy_dbs = alloc_policy_dbs_info(policy, gov);
if (!policy_dbs)
return -ENOMEM;
/* Protect gov->gdbs_data against concurrent updates. */
mutex_lock(&gov_dbs_data_mutex);
dbs_data = gov->gdbs_data;
if (dbs_data) {
if (WARN_ON(have_governor_per_policy())) {
ret = -EINVAL;
goto free_policy_dbs_info;
}
policy_dbs->dbs_data = dbs_data;
policy->governor_data = policy_dbs;
gov_attr_set_get(&dbs_data->attr_set, &policy_dbs->list);
goto out;
}
dbs_data = kzalloc(sizeof(*dbs_data), GFP_KERNEL);
if (!dbs_data) {
ret = -ENOMEM;
goto free_policy_dbs_info;
}
gov_attr_set_init(&dbs_data->attr_set, &policy_dbs->list);
ret = gov->init(dbs_data);
if (ret)
goto free_policy_dbs_info;
/* policy latency is in ns. Convert it to us first */
latency = policy->cpuinfo.transition_latency / 1000;
if (latency == 0)
latency = 1;
/* Bring kernel and HW constraints together */
dbs_data->min_sampling_rate = max(dbs_data->min_sampling_rate,
MIN_LATENCY_MULTIPLIER * latency);
dbs_data->sampling_rate = max(dbs_data->min_sampling_rate,
LATENCY_MULTIPLIER * latency);
if (!have_governor_per_policy())
gov->gdbs_data = dbs_data;
policy_dbs->dbs_data = dbs_data;
policy->governor_data = policy_dbs;
gov->kobj_type.sysfs_ops = &governor_sysfs_ops;
ret = kobject_init_and_add(&dbs_data->attr_set.kobj, &gov->kobj_type,
get_governor_parent_kobj(policy),
"%s", gov->gov.name);
if (!ret)
goto out;
/* Failure, so roll back. */
pr_err("initialization failed (dbs_data kobject init error %d)\n", ret);
policy->governor_data = NULL;
if (!have_governor_per_policy())
gov->gdbs_data = NULL;
gov->exit(dbs_data);
kfree(dbs_data);
free_policy_dbs_info:
free_policy_dbs_info(policy_dbs, gov);
out:
mutex_unlock(&gov_dbs_data_mutex);
return ret;
}
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_init);
void cpufreq_dbs_governor_exit(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
unsigned int count;
/* Protect gov->gdbs_data against concurrent updates. */
mutex_lock(&gov_dbs_data_mutex);
count = gov_attr_set_put(&dbs_data->attr_set, &policy_dbs->list);
policy->governor_data = NULL;
if (!count) {
if (!have_governor_per_policy())
gov->gdbs_data = NULL;
gov->exit(dbs_data);
kfree(dbs_data);
}
free_policy_dbs_info(policy_dbs, gov);
mutex_unlock(&gov_dbs_data_mutex);
}
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_exit);
int cpufreq_dbs_governor_start(struct cpufreq_policy *policy)
{
struct dbs_governor *gov = dbs_governor_of(policy);
struct policy_dbs_info *policy_dbs = policy->governor_data;
struct dbs_data *dbs_data = policy_dbs->dbs_data;
unsigned int sampling_rate, ignore_nice, j;
unsigned int io_busy;
if (!policy->cur)
return -EINVAL;
policy_dbs->is_shared = policy_is_shared(policy);
policy_dbs->rate_mult = 1;
sampling_rate = dbs_data->sampling_rate;
ignore_nice = dbs_data->ignore_nice_load;
io_busy = dbs_data->io_is_busy;
for_each_cpu(j, policy->cpus) {
struct cpu_dbs_info *j_cdbs = &per_cpu(cpu_dbs, j);
j_cdbs->prev_cpu_idle = get_cpu_idle_time(j, &j_cdbs->prev_update_time, io_busy);
/*
* Make the first invocation of dbs_update() compute the load.
*/
j_cdbs->prev_load = 0;
if (ignore_nice)
j_cdbs->prev_cpu_nice = kcpustat_cpu(j).cpustat[CPUTIME_NICE];
}
gov->start(policy);
gov_set_update_util(policy_dbs, sampling_rate);
return 0;
}
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_start);
void cpufreq_dbs_governor_stop(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
gov_clear_update_util(policy_dbs->policy);
irq_work_sync(&policy_dbs->irq_work);
cancel_work_sync(&policy_dbs->work);
atomic_set(&policy_dbs->work_count, 0);
policy_dbs->work_in_progress = false;
}
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_stop);
void cpufreq_dbs_governor_limits(struct cpufreq_policy *policy)
{
struct policy_dbs_info *policy_dbs = policy->governor_data;
mutex_lock(&policy_dbs->timer_mutex);
cpufreq_policy_apply_limits(policy);
gov_update_sample_delay(policy_dbs, 0);
mutex_unlock(&policy_dbs->timer_mutex);
}
EXPORT_SYMBOL_GPL(cpufreq_dbs_governor_limits);