2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 17:43:56 +08:00
linux-next/Documentation/devicetree/bindings/regulator/qcom,spmi-regulator.txt
Stephen Boyd 93bfe79b03 regulator: qcom_spmi: Update mvs1/mvs2 switches on pm8941
The mvs1 and mvs2 switches are actually called 5vs1 and 5vs2 on
some datasheets. Let's rename them to match the datasheets and
also match the RPM based regulator driver which calls these by
their 5vs names (see qcom_smd-regulator.c). There aren't any
users of these regulators so far, so there aren't any concerns of
DT ABI breakage here. While we're here making updates to the
switches, also mandate usage of the OCP irq for these switches
too.

Cc: Bjorn Andersson <bjorn.andersson@linaro.org>
Fixes: e92a404741 ("regulator: Add QCOM SPMI regulator driver")
Signed-off-by: Stephen Boyd <stephen.boyd@linaro.org>
Signed-off-by: Mark Brown <broonie@kernel.org>
2016-06-26 12:24:07 +01:00

211 lines
5.6 KiB
Plaintext

Qualcomm SPMI Regulators
- compatible:
Usage: required
Value type: <string>
Definition: must be one of:
"qcom,pm8841-regulators"
"qcom,pm8916-regulators"
"qcom,pm8941-regulators"
"qcom,pm8994-regulators"
- interrupts:
Usage: optional
Value type: <prop-encoded-array>
Definition: List of OCP interrupts.
- interrupt-names:
Usage: required if 'interrupts' property present
Value type: <string-array>
Definition: List of strings defining the names of the
interrupts in the 'interrupts' property 1-to-1.
Supported values are "ocp-<regulator_name>", where
<regulator_name> corresponds to a voltage switch
type regulator.
- vdd_s1-supply:
- vdd_s2-supply:
- vdd_s3-supply:
- vdd_s4-supply:
- vdd_s5-supply:
- vdd_s6-supply:
- vdd_s7-supply:
- vdd_s8-supply:
Usage: optional (pm8841 only)
Value type: <phandle>
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
- vdd_s1-supply:
- vdd_s2-supply:
- vdd_s3-supply:
- vdd_s4-supply:
- vdd_l1_l3-supply:
- vdd_l2-supply:
- vdd_l4_l5_l6-supply:
- vdd_l7-supply:
- vdd_l8_l11_l14_l15_l16-supply:
- vdd_l9_l10_l12_l13_l17_l18-supply:
Usage: optional (pm8916 only)
Value type: <phandle>
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
- vdd_s1-supply:
- vdd_s2-supply:
- vdd_s3-supply:
- vdd_l1_l3-supply:
- vdd_l2_lvs_1_2_3-supply:
- vdd_l4_l11-supply:
- vdd_l5_l7-supply:
- vdd_l6_l12_l14_l15-supply:
- vdd_l8_l16_l18_19-supply:
- vdd_l9_l10_l17_l22-supply:
- vdd_l13_l20_l23_l24-supply:
- vdd_l21-supply:
- vin_5vs-supply:
Usage: optional (pm8941 only)
Value type: <phandle>
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
- vdd_s1-supply:
- vdd_s2-supply:
- vdd_s3-supply:
- vdd_s4-supply:
- vdd_s5-supply:
- vdd_s6-supply:
- vdd_s7-supply:
- vdd_s8-supply:
- vdd_s9-supply:
- vdd_s10-supply:
- vdd_s11-supply:
- vdd_s12-supply:
- vdd_l1-supply:
- vdd_l2_l26_l28-supply:
- vdd_l3_l11-supply:
- vdd_l4_l27_l31-supply:
- vdd_l5_l7-supply:
- vdd_l6_l12_l32-supply:
- vdd_l8_l16_l30-supply:
- vdd_l9_l10_l18_l22-supply:
- vdd_l13_l19_l23_l24-supply:
- vdd_l14_l15-supply:
- vdd_l17_l29-supply:
- vdd_l20_l21-supply:
- vdd_l25-supply:
- vdd_lvs_1_2-supply:
Usage: optional (pm8994 only)
Value type: <phandle>
Definition: Reference to regulator supplying the input pin, as
described in the data sheet.
The regulator node houses sub-nodes for each regulator within the device. Each
sub-node is identified using the node's name, with valid values listed for each
of the PMICs below.
pm8841:
s1, s2, s3, s4, s5, s6, s7, s8
pm8916:
s1, s2, s3, s4, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13,
l14, l15, l16, l17, l18
pm8941:
s1, s2, s3, s4, l1, l2, l3, l4, l5, l6, l7, l8, l9, l10, l11, l12, l13,
l14, l15, l16, l17, l18, l19, l20, l21, l22, l23, l24, lvs1, lvs2, lvs3,
5vs1, 5vs2
pm8994:
s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, l1, l2, l3, l4, l5,
l6, l7, l8, l9, l10, l11, l12, l13, l14, l15, l16, l17, l18, l19, l20,
l21, l22, l23, l24, l25, l26, l27, l28, l29, l30, l31, l32, lvs1, lvs2
The content of each sub-node is defined by the standard binding for regulators -
see regulator.txt - with additional custom properties described below:
- regulator-initial-mode:
Usage: optional
Value type: <u32>
Description: 2 = Set initial mode to auto mode (automatically select
between HPM and LPM); not available on boost type
regulators.
1 = Set initial mode to high power mode (HPM), also referred
to as NPM. HPM consumes more ground current than LPM, but
it can source significantly higher load current. HPM is not
available on boost type regulators. For voltage switch type
regulators, HPM implies that over current protection and
soft start are active all the time.
0 = Set initial mode to low power mode (LPM).
- qcom,ocp-max-retries:
Usage: optional
Value type: <u32>
Description: Maximum number of times to try toggling a voltage switch
off and back on as a result of consecutive over current
events.
- qcom,ocp-retry-delay:
Usage: optional
Value type: <u32>
Description: Time to delay in milliseconds between each voltage switch
toggle after an over current event takes place.
- qcom,pin-ctrl-enable:
Usage: optional
Value type: <u32>
Description: Bit mask specifying which hardware pins should be used to
enable the regulator, if any; supported bits are:
0 = ignore all hardware enable signals
BIT(0) = follow HW0_EN signal
BIT(1) = follow HW1_EN signal
BIT(2) = follow HW2_EN signal
BIT(3) = follow HW3_EN signal
- qcom,pin-ctrl-hpm:
Usage: optional
Value type: <u32>
Description: Bit mask specifying which hardware pins should be used to
force the regulator into high power mode, if any;
supported bits are:
0 = ignore all hardware enable signals
BIT(0) = follow HW0_EN signal
BIT(1) = follow HW1_EN signal
BIT(2) = follow HW2_EN signal
BIT(3) = follow HW3_EN signal
BIT(4) = follow PMIC awake state
- qcom,vs-soft-start-strength:
Usage: optional
Value type: <u32>
Description: This property sets the soft start strength for voltage
switch type regulators; supported values are:
0 = 0.05 uA
1 = 0.25 uA
2 = 0.55 uA
3 = 0.75 uA
Example:
regulators {
compatible = "qcom,pm8941-regulators";
vdd_l1_l3-supply = <&s1>;
s1: s1 {
regulator-min-microvolt = <1300000>;
regulator-max-microvolt = <1400000>;
};
...
l1: l1 {
regulator-min-microvolt = <1225000>;
regulator-max-microvolt = <1300000>;
};
....
};