2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-12 07:34:08 +08:00
linux-next/drivers/clk/clk-si544.c
Mike Looijmans dc59c13375 clk: clk-si544: Implement small frequency change support
The Si544 supports changing frequencies "on the fly" when the change is
less than 950 ppm from the current center frequency. The driver now
uses the small adjustment routine for implementing this.

Signed-off-by: Mike Looijmans <mike.looijmans@topic.nl>
Signed-off-by: Stephen Boyd <sboyd@kernel.org>
2019-06-27 13:45:38 -07:00

531 lines
12 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Silicon Labs Si544 Programmable Oscillator
* Copyright (C) 2018 Topic Embedded Products
* Author: Mike Looijmans <mike.looijmans@topic.nl>
*/
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/math64.h>
#include <linux/module.h>
#include <linux/i2c.h>
#include <linux/regmap.h>
#include <linux/slab.h>
/* I2C registers (decimal as in datasheet) */
#define SI544_REG_CONTROL 7
#define SI544_REG_OE_STATE 17
#define SI544_REG_HS_DIV 23
#define SI544_REG_LS_HS_DIV 24
#define SI544_REG_FBDIV0 26
#define SI544_REG_FBDIV8 27
#define SI544_REG_FBDIV16 28
#define SI544_REG_FBDIV24 29
#define SI544_REG_FBDIV32 30
#define SI544_REG_FBDIV40 31
#define SI544_REG_FCAL_OVR 69
#define SI544_REG_ADPLL_DELTA_M0 231
#define SI544_REG_ADPLL_DELTA_M8 232
#define SI544_REG_ADPLL_DELTA_M16 233
#define SI544_REG_PAGE_SELECT 255
/* Register values */
#define SI544_CONTROL_RESET BIT(7)
#define SI544_CONTROL_MS_ICAL2 BIT(3)
#define SI544_OE_STATE_ODC_OE BIT(0)
/* Max freq depends on speed grade */
#define SI544_MIN_FREQ 200000U
/* Si544 Internal oscilator runs at 55.05 MHz */
#define FXO 55050000U
/* VCO range is 10.8 .. 12.1 GHz, max depends on speed grade */
#define FVCO_MIN 10800000000ULL
#define HS_DIV_MAX 2046
#define HS_DIV_MAX_ODD 33
/* Lowest frequency synthesizeable using only the HS divider */
#define MIN_HSDIV_FREQ (FVCO_MIN / HS_DIV_MAX)
/* Range and interpretation of the adjustment value */
#define DELTA_M_MAX 8161512
#define DELTA_M_FRAC_NUM 19
#define DELTA_M_FRAC_DEN 20000
enum si544_speed_grade {
si544a,
si544b,
si544c,
};
struct clk_si544 {
struct clk_hw hw;
struct regmap *regmap;
struct i2c_client *i2c_client;
enum si544_speed_grade speed_grade;
};
#define to_clk_si544(_hw) container_of(_hw, struct clk_si544, hw)
/**
* struct clk_si544_muldiv - Multiplier/divider settings
* @fb_div_frac: integer part of feedback divider (32 bits)
* @fb_div_int: fractional part of feedback divider (11 bits)
* @hs_div: 1st divider, 5..2046, must be even when >33
* @ls_div_bits: 2nd divider, as 2^x, range 0..5
* If ls_div_bits is non-zero, hs_div must be even
* @delta_m: Frequency shift for small -950..+950 ppm changes, 24 bit
*/
struct clk_si544_muldiv {
u32 fb_div_frac;
u16 fb_div_int;
u16 hs_div;
u8 ls_div_bits;
s32 delta_m;
};
/* Enables or disables the output driver */
static int si544_enable_output(struct clk_si544 *data, bool enable)
{
return regmap_update_bits(data->regmap, SI544_REG_OE_STATE,
SI544_OE_STATE_ODC_OE, enable ? SI544_OE_STATE_ODC_OE : 0);
}
static int si544_prepare(struct clk_hw *hw)
{
struct clk_si544 *data = to_clk_si544(hw);
return si544_enable_output(data, true);
}
static void si544_unprepare(struct clk_hw *hw)
{
struct clk_si544 *data = to_clk_si544(hw);
si544_enable_output(data, false);
}
static int si544_is_prepared(struct clk_hw *hw)
{
struct clk_si544 *data = to_clk_si544(hw);
unsigned int val;
int err;
err = regmap_read(data->regmap, SI544_REG_OE_STATE, &val);
if (err < 0)
return err;
return !!(val & SI544_OE_STATE_ODC_OE);
}
/* Retrieve clock multiplier and dividers from hardware */
static int si544_get_muldiv(struct clk_si544 *data,
struct clk_si544_muldiv *settings)
{
int err;
u8 reg[6];
err = regmap_bulk_read(data->regmap, SI544_REG_HS_DIV, reg, 2);
if (err)
return err;
settings->ls_div_bits = (reg[1] >> 4) & 0x07;
settings->hs_div = (reg[1] & 0x07) << 8 | reg[0];
err = regmap_bulk_read(data->regmap, SI544_REG_FBDIV0, reg, 6);
if (err)
return err;
settings->fb_div_int = reg[4] | (reg[5] & 0x07) << 8;
settings->fb_div_frac = reg[0] | reg[1] << 8 | reg[2] << 16 |
reg[3] << 24;
err = regmap_bulk_read(data->regmap, SI544_REG_ADPLL_DELTA_M0, reg, 3);
if (err)
return err;
/* Interpret as 24-bit signed number */
settings->delta_m = reg[0] << 8 | reg[1] << 16 | reg[2] << 24;
settings->delta_m >>= 8;
return 0;
}
static int si544_set_delta_m(struct clk_si544 *data, s32 delta_m)
{
u8 reg[3];
reg[0] = delta_m;
reg[1] = delta_m >> 8;
reg[2] = delta_m >> 16;
return regmap_bulk_write(data->regmap, SI544_REG_ADPLL_DELTA_M0,
reg, 3);
}
static int si544_set_muldiv(struct clk_si544 *data,
struct clk_si544_muldiv *settings)
{
int err;
u8 reg[6];
reg[0] = settings->hs_div;
reg[1] = settings->hs_div >> 8 | settings->ls_div_bits << 4;
err = regmap_bulk_write(data->regmap, SI544_REG_HS_DIV, reg, 2);
if (err < 0)
return err;
reg[0] = settings->fb_div_frac;
reg[1] = settings->fb_div_frac >> 8;
reg[2] = settings->fb_div_frac >> 16;
reg[3] = settings->fb_div_frac >> 24;
reg[4] = settings->fb_div_int;
reg[5] = settings->fb_div_int >> 8;
/*
* Writing to SI544_REG_FBDIV40 triggers the clock change, so that
* must be written last
*/
return regmap_bulk_write(data->regmap, SI544_REG_FBDIV0, reg, 6);
}
static bool is_valid_frequency(const struct clk_si544 *data,
unsigned long frequency)
{
unsigned long max_freq = 0;
if (frequency < SI544_MIN_FREQ)
return false;
switch (data->speed_grade) {
case si544a:
max_freq = 1500000000;
break;
case si544b:
max_freq = 800000000;
break;
case si544c:
max_freq = 350000000;
break;
}
return frequency <= max_freq;
}
/* Calculate divider settings for a given frequency */
static int si544_calc_muldiv(struct clk_si544_muldiv *settings,
unsigned long frequency)
{
u64 vco;
u32 ls_freq;
u32 tmp;
u8 res;
/* Determine the minimum value of LS_DIV and resulting target freq. */
ls_freq = frequency;
settings->ls_div_bits = 0;
if (frequency >= MIN_HSDIV_FREQ) {
settings->ls_div_bits = 0;
} else {
res = 1;
tmp = 2 * HS_DIV_MAX;
while (tmp <= (HS_DIV_MAX * 32)) {
if (((u64)frequency * tmp) >= FVCO_MIN)
break;
++res;
tmp <<= 1;
}
settings->ls_div_bits = res;
ls_freq = frequency << res;
}
/* Determine minimum HS_DIV by rounding up */
vco = FVCO_MIN + ls_freq - 1;
do_div(vco, ls_freq);
settings->hs_div = vco;
/* round up to even number when required */
if ((settings->hs_div & 1) &&
(settings->hs_div > HS_DIV_MAX_ODD || settings->ls_div_bits))
++settings->hs_div;
/* Calculate VCO frequency (in 10..12GHz range) */
vco = (u64)ls_freq * settings->hs_div;
/* Calculate the integer part of the feedback divider */
tmp = do_div(vco, FXO);
settings->fb_div_int = vco;
/* And the fractional bits using the remainder */
vco = (u64)tmp << 32;
vco += FXO / 2; /* Round to nearest multiple */
do_div(vco, FXO);
settings->fb_div_frac = vco;
/* Reset the frequency adjustment */
settings->delta_m = 0;
return 0;
}
/* Calculate resulting frequency given the register settings */
static unsigned long si544_calc_center_rate(
const struct clk_si544_muldiv *settings)
{
u32 d = settings->hs_div * BIT(settings->ls_div_bits);
u64 vco;
/* Calculate VCO from the fractional part */
vco = (u64)settings->fb_div_frac * FXO;
vco += (FXO / 2);
vco >>= 32;
/* Add the integer part of the VCO frequency */
vco += (u64)settings->fb_div_int * FXO;
/* Apply divider to obtain the generated frequency */
do_div(vco, d);
return vco;
}
static unsigned long si544_calc_rate(const struct clk_si544_muldiv *settings)
{
unsigned long rate = si544_calc_center_rate(settings);
s64 delta = (s64)rate * (DELTA_M_FRAC_NUM * settings->delta_m);
/*
* The clock adjustment is much smaller than 1 Hz, round to the
* nearest multiple. Apparently div64_s64 rounds towards zero, hence
* check the sign and adjust into the proper direction.
*/
if (settings->delta_m < 0)
delta -= ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2;
else
delta += ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN) / 2;
delta = div64_s64(delta, ((s64)DELTA_M_MAX * DELTA_M_FRAC_DEN));
return rate + delta;
}
static unsigned long si544_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct clk_si544 *data = to_clk_si544(hw);
struct clk_si544_muldiv settings;
int err;
err = si544_get_muldiv(data, &settings);
if (err)
return 0;
return si544_calc_rate(&settings);
}
static long si544_round_rate(struct clk_hw *hw, unsigned long rate,
unsigned long *parent_rate)
{
struct clk_si544 *data = to_clk_si544(hw);
if (!is_valid_frequency(data, rate))
return -EINVAL;
/* The accuracy is less than 1 Hz, so any rate is possible */
return rate;
}
/* Calculates the maximum "small" change, 950 * rate / 1000000 */
static unsigned long si544_max_delta(unsigned long rate)
{
u64 num = rate;
num *= DELTA_M_FRAC_NUM;
do_div(num, DELTA_M_FRAC_DEN);
return num;
}
static s32 si544_calc_delta(s32 delta, s32 max_delta)
{
s64 n = (s64)delta * DELTA_M_MAX;
return div_s64(n, max_delta);
}
static int si544_set_rate(struct clk_hw *hw, unsigned long rate,
unsigned long parent_rate)
{
struct clk_si544 *data = to_clk_si544(hw);
struct clk_si544_muldiv settings;
unsigned long center;
long max_delta;
long delta;
unsigned int old_oe_state;
int err;
if (!is_valid_frequency(data, rate))
return -EINVAL;
/* Try using the frequency adjustment feature for a <= 950ppm change */
err = si544_get_muldiv(data, &settings);
if (err)
return err;
center = si544_calc_center_rate(&settings);
max_delta = si544_max_delta(center);
delta = rate - center;
if (abs(delta) <= max_delta)
return si544_set_delta_m(data,
si544_calc_delta(delta, max_delta));
/* Too big for the delta adjustment, need to reprogram */
err = si544_calc_muldiv(&settings, rate);
if (err)
return err;
err = regmap_read(data->regmap, SI544_REG_OE_STATE, &old_oe_state);
if (err)
return err;
si544_enable_output(data, false);
/* Allow FCAL for this frequency update */
err = regmap_write(data->regmap, SI544_REG_FCAL_OVR, 0);
if (err < 0)
return err;
err = si544_set_delta_m(data, settings.delta_m);
if (err < 0)
return err;
err = si544_set_muldiv(data, &settings);
if (err < 0)
return err; /* Undefined state now, best to leave disabled */
/* Trigger calibration */
err = regmap_write(data->regmap, SI544_REG_CONTROL,
SI544_CONTROL_MS_ICAL2);
if (err < 0)
return err;
/* Applying a new frequency can take up to 10ms */
usleep_range(10000, 12000);
if (old_oe_state & SI544_OE_STATE_ODC_OE)
si544_enable_output(data, true);
return err;
}
static const struct clk_ops si544_clk_ops = {
.prepare = si544_prepare,
.unprepare = si544_unprepare,
.is_prepared = si544_is_prepared,
.recalc_rate = si544_recalc_rate,
.round_rate = si544_round_rate,
.set_rate = si544_set_rate,
};
static bool si544_regmap_is_volatile(struct device *dev, unsigned int reg)
{
switch (reg) {
case SI544_REG_CONTROL:
case SI544_REG_FCAL_OVR:
return true;
default:
return false;
}
}
static const struct regmap_config si544_regmap_config = {
.reg_bits = 8,
.val_bits = 8,
.cache_type = REGCACHE_RBTREE,
.max_register = SI544_REG_PAGE_SELECT,
.volatile_reg = si544_regmap_is_volatile,
};
static int si544_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct clk_si544 *data;
struct clk_init_data init;
int err;
data = devm_kzalloc(&client->dev, sizeof(*data), GFP_KERNEL);
if (!data)
return -ENOMEM;
init.ops = &si544_clk_ops;
init.flags = 0;
init.num_parents = 0;
data->hw.init = &init;
data->i2c_client = client;
data->speed_grade = id->driver_data;
if (of_property_read_string(client->dev.of_node, "clock-output-names",
&init.name))
init.name = client->dev.of_node->name;
data->regmap = devm_regmap_init_i2c(client, &si544_regmap_config);
if (IS_ERR(data->regmap))
return PTR_ERR(data->regmap);
i2c_set_clientdata(client, data);
/* Select page 0, just to be sure, there appear to be no more */
err = regmap_write(data->regmap, SI544_REG_PAGE_SELECT, 0);
if (err < 0)
return err;
err = devm_clk_hw_register(&client->dev, &data->hw);
if (err) {
dev_err(&client->dev, "clock registration failed\n");
return err;
}
err = devm_of_clk_add_hw_provider(&client->dev, of_clk_hw_simple_get,
&data->hw);
if (err) {
dev_err(&client->dev, "unable to add clk provider\n");
return err;
}
return 0;
}
static const struct i2c_device_id si544_id[] = {
{ "si544a", si544a },
{ "si544b", si544b },
{ "si544c", si544c },
{ }
};
MODULE_DEVICE_TABLE(i2c, si544_id);
static const struct of_device_id clk_si544_of_match[] = {
{ .compatible = "silabs,si544a" },
{ .compatible = "silabs,si544b" },
{ .compatible = "silabs,si544c" },
{ },
};
MODULE_DEVICE_TABLE(of, clk_si544_of_match);
static struct i2c_driver si544_driver = {
.driver = {
.name = "si544",
.of_match_table = clk_si544_of_match,
},
.probe = si544_probe,
.id_table = si544_id,
};
module_i2c_driver(si544_driver);
MODULE_AUTHOR("Mike Looijmans <mike.looijmans@topic.nl>");
MODULE_DESCRIPTION("Si544 driver");
MODULE_LICENSE("GPL");