2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2024-12-26 22:24:09 +08:00
linux-next/arch/m68k/atari/time.c
Finn Thain 26ccd2d376 m68k: atari: Convert to clocksource API
Add a platform clocksource by adapting the existing arch_gettimeoffset
implementation.

Normally the MFP timer C interrupt flag would be used to check for
timer counter wrap-around. Unfortunately, that flag gets cleared by the
MFP itself (due to automatic End-of-Interrupt mode). This means that
mfp_timer_c_handler() and atari_read_clk() must race when accounting
for counter wrap-around.

That problem is avoided by effectively stopping the clock when it might
otherwise jump backwards (due to interrupt latency). Note that this may
affect clock accuracy.

After the timer interrupt is asserted, wait for the counter to be
reloaded so that atari_read_clk() will not see the intermediate state
as that would cause the clock to jump backwards.

Signed-off-by: Finn Thain <fthain@telegraphics.com.au>
Acked-by: Linus Walleij <linus.walleij@linaro.org>
Tested-by: Michael Schmitz <schmitzmic@gmail.com>
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
2019-03-25 10:22:24 +01:00

326 lines
8.3 KiB
C

/*
* linux/arch/m68k/atari/time.c
*
* Atari time and real time clock stuff
*
* Assembled of parts of former atari/config.c 97-12-18 by Roman Hodek
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of this archive
* for more details.
*/
#include <linux/types.h>
#include <linux/mc146818rtc.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/clocksource.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <asm/atariints.h>
DEFINE_SPINLOCK(rtc_lock);
EXPORT_SYMBOL_GPL(rtc_lock);
static u64 atari_read_clk(struct clocksource *cs);
static struct clocksource atari_clk = {
.name = "mfp",
.rating = 100,
.read = atari_read_clk,
.mask = CLOCKSOURCE_MASK(32),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
static u32 clk_total;
static u8 last_timer_count;
static irqreturn_t mfp_timer_c_handler(int irq, void *dev_id)
{
irq_handler_t timer_routine = dev_id;
unsigned long flags;
local_irq_save(flags);
do {
last_timer_count = st_mfp.tim_dt_c;
} while (last_timer_count == 1);
clk_total += INT_TICKS;
timer_routine(0, NULL);
local_irq_restore(flags);
return IRQ_HANDLED;
}
void __init
atari_sched_init(irq_handler_t timer_routine)
{
/* set Timer C data Register */
st_mfp.tim_dt_c = INT_TICKS;
/* start timer C, div = 1:100 */
st_mfp.tim_ct_cd = (st_mfp.tim_ct_cd & 15) | 0x60;
/* install interrupt service routine for MFP Timer C */
if (request_irq(IRQ_MFP_TIMC, mfp_timer_c_handler, IRQF_TIMER, "timer",
timer_routine))
pr_err("Couldn't register timer interrupt\n");
clocksource_register_hz(&atari_clk, INT_CLK);
}
/* ++andreas: gettimeoffset fixed to check for pending interrupt */
static u64 atari_read_clk(struct clocksource *cs)
{
unsigned long flags;
u8 count;
u32 ticks;
local_irq_save(flags);
/* Ensure that the count is monotonically decreasing, even though
* the result may briefly stop changing after counter wrap-around.
*/
count = min(st_mfp.tim_dt_c, last_timer_count);
last_timer_count = count;
ticks = INT_TICKS - count;
ticks += clk_total;
local_irq_restore(flags);
return ticks;
}
static void mste_read(struct MSTE_RTC *val)
{
#define COPY(v) val->v=(mste_rtc.v & 0xf)
do {
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
COPY(year_tens) ;
/* prevent from reading the clock while it changed */
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}
static void mste_write(struct MSTE_RTC *val)
{
#define COPY(v) mste_rtc.v=val->v
do {
COPY(sec_ones) ; COPY(sec_tens) ; COPY(min_ones) ;
COPY(min_tens) ; COPY(hr_ones) ; COPY(hr_tens) ;
COPY(weekday) ; COPY(day_ones) ; COPY(day_tens) ;
COPY(mon_ones) ; COPY(mon_tens) ; COPY(year_ones) ;
COPY(year_tens) ;
/* prevent from writing the clock while it changed */
} while (val->sec_ones != (mste_rtc.sec_ones & 0xf));
#undef COPY
}
#define RTC_READ(reg) \
({ unsigned char __val; \
(void) atari_writeb(reg,&tt_rtc.regsel); \
__val = tt_rtc.data; \
__val; \
})
#define RTC_WRITE(reg,val) \
do { \
atari_writeb(reg,&tt_rtc.regsel); \
tt_rtc.data = (val); \
} while(0)
#define HWCLK_POLL_INTERVAL 5
int atari_mste_hwclk( int op, struct rtc_time *t )
{
int hour, year;
int hr24=0;
struct MSTE_RTC val;
mste_rtc.mode=(mste_rtc.mode | 1);
hr24=mste_rtc.mon_tens & 1;
mste_rtc.mode=(mste_rtc.mode & ~1);
if (op) {
/* write: prepare values */
val.sec_ones = t->tm_sec % 10;
val.sec_tens = t->tm_sec / 10;
val.min_ones = t->tm_min % 10;
val.min_tens = t->tm_min / 10;
hour = t->tm_hour;
if (!hr24) {
if (hour > 11)
hour += 20 - 12;
if (hour == 0 || hour == 20)
hour += 12;
}
val.hr_ones = hour % 10;
val.hr_tens = hour / 10;
val.day_ones = t->tm_mday % 10;
val.day_tens = t->tm_mday / 10;
val.mon_ones = (t->tm_mon+1) % 10;
val.mon_tens = (t->tm_mon+1) / 10;
year = t->tm_year - 80;
val.year_ones = year % 10;
val.year_tens = year / 10;
val.weekday = t->tm_wday;
mste_write(&val);
mste_rtc.mode=(mste_rtc.mode | 1);
val.year_ones = (year % 4); /* leap year register */
mste_rtc.mode=(mste_rtc.mode & ~1);
}
else {
mste_read(&val);
t->tm_sec = val.sec_ones + val.sec_tens * 10;
t->tm_min = val.min_ones + val.min_tens * 10;
hour = val.hr_ones + val.hr_tens * 10;
if (!hr24) {
if (hour == 12 || hour == 12 + 20)
hour -= 12;
if (hour >= 20)
hour += 12 - 20;
}
t->tm_hour = hour;
t->tm_mday = val.day_ones + val.day_tens * 10;
t->tm_mon = val.mon_ones + val.mon_tens * 10 - 1;
t->tm_year = val.year_ones + val.year_tens * 10 + 80;
t->tm_wday = val.weekday;
}
return 0;
}
int atari_tt_hwclk( int op, struct rtc_time *t )
{
int sec=0, min=0, hour=0, day=0, mon=0, year=0, wday=0;
unsigned long flags;
unsigned char ctrl;
int pm = 0;
ctrl = RTC_READ(RTC_CONTROL); /* control registers are
* independent from the UIP */
if (op) {
/* write: prepare values */
sec = t->tm_sec;
min = t->tm_min;
hour = t->tm_hour;
day = t->tm_mday;
mon = t->tm_mon + 1;
year = t->tm_year - atari_rtc_year_offset;
wday = t->tm_wday + (t->tm_wday >= 0);
if (!(ctrl & RTC_24H)) {
if (hour > 11) {
pm = 0x80;
if (hour != 12)
hour -= 12;
}
else if (hour == 0)
hour = 12;
}
if (!(ctrl & RTC_DM_BINARY)) {
sec = bin2bcd(sec);
min = bin2bcd(min);
hour = bin2bcd(hour);
day = bin2bcd(day);
mon = bin2bcd(mon);
year = bin2bcd(year);
if (wday >= 0)
wday = bin2bcd(wday);
}
}
/* Reading/writing the clock registers is a bit critical due to
* the regular update cycle of the RTC. While an update is in
* progress, registers 0..9 shouldn't be touched.
* The problem is solved like that: If an update is currently in
* progress (the UIP bit is set), the process sleeps for a while
* (50ms). This really should be enough, since the update cycle
* normally needs 2 ms.
* If the UIP bit reads as 0, we have at least 244 usecs until the
* update starts. This should be enough... But to be sure,
* additionally the RTC_SET bit is set to prevent an update cycle.
*/
while( RTC_READ(RTC_FREQ_SELECT) & RTC_UIP ) {
if (in_atomic() || irqs_disabled())
mdelay(1);
else
schedule_timeout_interruptible(HWCLK_POLL_INTERVAL);
}
local_irq_save(flags);
RTC_WRITE( RTC_CONTROL, ctrl | RTC_SET );
if (!op) {
sec = RTC_READ( RTC_SECONDS );
min = RTC_READ( RTC_MINUTES );
hour = RTC_READ( RTC_HOURS );
day = RTC_READ( RTC_DAY_OF_MONTH );
mon = RTC_READ( RTC_MONTH );
year = RTC_READ( RTC_YEAR );
wday = RTC_READ( RTC_DAY_OF_WEEK );
}
else {
RTC_WRITE( RTC_SECONDS, sec );
RTC_WRITE( RTC_MINUTES, min );
RTC_WRITE( RTC_HOURS, hour + pm);
RTC_WRITE( RTC_DAY_OF_MONTH, day );
RTC_WRITE( RTC_MONTH, mon );
RTC_WRITE( RTC_YEAR, year );
if (wday >= 0) RTC_WRITE( RTC_DAY_OF_WEEK, wday );
}
RTC_WRITE( RTC_CONTROL, ctrl & ~RTC_SET );
local_irq_restore(flags);
if (!op) {
/* read: adjust values */
if (hour & 0x80) {
hour &= ~0x80;
pm = 1;
}
if (!(ctrl & RTC_DM_BINARY)) {
sec = bcd2bin(sec);
min = bcd2bin(min);
hour = bcd2bin(hour);
day = bcd2bin(day);
mon = bcd2bin(mon);
year = bcd2bin(year);
wday = bcd2bin(wday);
}
if (!(ctrl & RTC_24H)) {
if (!pm && hour == 12)
hour = 0;
else if (pm && hour != 12)
hour += 12;
}
t->tm_sec = sec;
t->tm_min = min;
t->tm_hour = hour;
t->tm_mday = day;
t->tm_mon = mon - 1;
t->tm_year = year + atari_rtc_year_offset;
t->tm_wday = wday - 1;
}
return( 0 );
}
/*
* Local variables:
* c-indent-level: 4
* tab-width: 8
* End:
*/