2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 11:43:54 +08:00
linux-next/kernel/kcmp.c
Cyrill Gorcunov 0791e3644e kcmp: add KCMP_EPOLL_TFD mode to compare epoll target files
With current epoll architecture target files are addressed with
file_struct and file descriptor number, where the last is not unique.
Moreover files can be transferred from another process via unix socket,
added into queue and closed then so we won't find this descriptor in the
task fdinfo list.

Thus to checkpoint and restore such processes CRIU needs to find out
where exactly the target file is present to add it into epoll queue.
For this sake one can use kcmp call where some particular target file
from the queue is compared with arbitrary file passed as an argument.

Because epoll target files can have same file descriptor number but
different file_struct a caller should explicitly specify the offset
within.

To test if some particular file is matching entry inside epoll one have
to

 - fill kcmp_epoll_slot structure with epoll file descriptor,
   target file number and target file offset (in case if only
   one target is present then it should be 0)

 - call kcmp as kcmp(pid1, pid2, KCMP_EPOLL_TFD, fd, &kcmp_epoll_slot)
    - the kernel fetch file pointer matching file descriptor @fd of pid1
    - lookups for file struct in epoll queue of pid2 and returns traditional
      0,1,2 result for sorting purpose

Link: http://lkml.kernel.org/r/20170424154423.511592110@gmail.com
Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Andrey Vagin <avagin@openvz.org>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Pavel Emelyanov <xemul@virtuozzo.com>
Cc: Michael Kerrisk <mtk.manpages@gmail.com>
Cc: Jason Baron <jbaron@akamai.com>
Cc: Andy Lutomirski <luto@amacapital.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-07-12 16:26:01 -07:00

256 lines
5.7 KiB
C

#include <linux/kernel.h>
#include <linux/syscalls.h>
#include <linux/fdtable.h>
#include <linux/string.h>
#include <linux/random.h>
#include <linux/module.h>
#include <linux/ptrace.h>
#include <linux/init.h>
#include <linux/errno.h>
#include <linux/cache.h>
#include <linux/bug.h>
#include <linux/err.h>
#include <linux/kcmp.h>
#include <linux/capability.h>
#include <linux/list.h>
#include <linux/eventpoll.h>
#include <linux/file.h>
#include <asm/unistd.h>
/*
* We don't expose the real in-memory order of objects for security reasons.
* But still the comparison results should be suitable for sorting. So we
* obfuscate kernel pointers values and compare the production instead.
*
* The obfuscation is done in two steps. First we xor the kernel pointer with
* a random value, which puts pointer into a new position in a reordered space.
* Secondly we multiply the xor production with a large odd random number to
* permute its bits even more (the odd multiplier guarantees that the product
* is unique ever after the high bits are truncated, since any odd number is
* relative prime to 2^n).
*
* Note also that the obfuscation itself is invisible to userspace and if needed
* it can be changed to an alternate scheme.
*/
static unsigned long cookies[KCMP_TYPES][2] __read_mostly;
static long kptr_obfuscate(long v, int type)
{
return (v ^ cookies[type][0]) * cookies[type][1];
}
/*
* 0 - equal, i.e. v1 = v2
* 1 - less than, i.e. v1 < v2
* 2 - greater than, i.e. v1 > v2
* 3 - not equal but ordering unavailable (reserved for future)
*/
static int kcmp_ptr(void *v1, void *v2, enum kcmp_type type)
{
long t1, t2;
t1 = kptr_obfuscate((long)v1, type);
t2 = kptr_obfuscate((long)v2, type);
return (t1 < t2) | ((t1 > t2) << 1);
}
/* The caller must have pinned the task */
static struct file *
get_file_raw_ptr(struct task_struct *task, unsigned int idx)
{
struct file *file = NULL;
task_lock(task);
rcu_read_lock();
if (task->files)
file = fcheck_files(task->files, idx);
rcu_read_unlock();
task_unlock(task);
return file;
}
static void kcmp_unlock(struct mutex *m1, struct mutex *m2)
{
if (likely(m2 != m1))
mutex_unlock(m2);
mutex_unlock(m1);
}
static int kcmp_lock(struct mutex *m1, struct mutex *m2)
{
int err;
if (m2 > m1)
swap(m1, m2);
err = mutex_lock_killable(m1);
if (!err && likely(m1 != m2)) {
err = mutex_lock_killable_nested(m2, SINGLE_DEPTH_NESTING);
if (err)
mutex_unlock(m1);
}
return err;
}
#ifdef CONFIG_EPOLL
static int kcmp_epoll_target(struct task_struct *task1,
struct task_struct *task2,
unsigned long idx1,
struct kcmp_epoll_slot __user *uslot)
{
struct file *filp, *filp_epoll, *filp_tgt;
struct kcmp_epoll_slot slot;
struct files_struct *files;
if (copy_from_user(&slot, uslot, sizeof(slot)))
return -EFAULT;
filp = get_file_raw_ptr(task1, idx1);
if (!filp)
return -EBADF;
files = get_files_struct(task2);
if (!files)
return -EBADF;
spin_lock(&files->file_lock);
filp_epoll = fcheck_files(files, slot.efd);
if (filp_epoll)
get_file(filp_epoll);
else
filp_tgt = ERR_PTR(-EBADF);
spin_unlock(&files->file_lock);
put_files_struct(files);
if (filp_epoll) {
filp_tgt = get_epoll_tfile_raw_ptr(filp_epoll, slot.tfd, slot.toff);
fput(filp_epoll);
} else
if (IS_ERR(filp_tgt))
return PTR_ERR(filp_tgt);
return kcmp_ptr(filp, filp_tgt, KCMP_FILE);
}
#else
static int kcmp_epoll_target(struct task_struct *task1,
struct task_struct *task2,
unsigned long idx1,
struct kcmp_epoll_slot __user *uslot)
{
return -EOPNOTSUPP;
}
#endif
SYSCALL_DEFINE5(kcmp, pid_t, pid1, pid_t, pid2, int, type,
unsigned long, idx1, unsigned long, idx2)
{
struct task_struct *task1, *task2;
int ret;
rcu_read_lock();
/*
* Tasks are looked up in caller's PID namespace only.
*/
task1 = find_task_by_vpid(pid1);
task2 = find_task_by_vpid(pid2);
if (!task1 || !task2)
goto err_no_task;
get_task_struct(task1);
get_task_struct(task2);
rcu_read_unlock();
/*
* One should have enough rights to inspect task details.
*/
ret = kcmp_lock(&task1->signal->cred_guard_mutex,
&task2->signal->cred_guard_mutex);
if (ret)
goto err;
if (!ptrace_may_access(task1, PTRACE_MODE_READ_REALCREDS) ||
!ptrace_may_access(task2, PTRACE_MODE_READ_REALCREDS)) {
ret = -EPERM;
goto err_unlock;
}
switch (type) {
case KCMP_FILE: {
struct file *filp1, *filp2;
filp1 = get_file_raw_ptr(task1, idx1);
filp2 = get_file_raw_ptr(task2, idx2);
if (filp1 && filp2)
ret = kcmp_ptr(filp1, filp2, KCMP_FILE);
else
ret = -EBADF;
break;
}
case KCMP_VM:
ret = kcmp_ptr(task1->mm, task2->mm, KCMP_VM);
break;
case KCMP_FILES:
ret = kcmp_ptr(task1->files, task2->files, KCMP_FILES);
break;
case KCMP_FS:
ret = kcmp_ptr(task1->fs, task2->fs, KCMP_FS);
break;
case KCMP_SIGHAND:
ret = kcmp_ptr(task1->sighand, task2->sighand, KCMP_SIGHAND);
break;
case KCMP_IO:
ret = kcmp_ptr(task1->io_context, task2->io_context, KCMP_IO);
break;
case KCMP_SYSVSEM:
#ifdef CONFIG_SYSVIPC
ret = kcmp_ptr(task1->sysvsem.undo_list,
task2->sysvsem.undo_list,
KCMP_SYSVSEM);
#else
ret = -EOPNOTSUPP;
#endif
break;
case KCMP_EPOLL_TFD:
ret = kcmp_epoll_target(task1, task2, idx1, (void *)idx2);
break;
default:
ret = -EINVAL;
break;
}
err_unlock:
kcmp_unlock(&task1->signal->cred_guard_mutex,
&task2->signal->cred_guard_mutex);
err:
put_task_struct(task1);
put_task_struct(task2);
return ret;
err_no_task:
rcu_read_unlock();
return -ESRCH;
}
static __init int kcmp_cookies_init(void)
{
int i;
get_random_bytes(cookies, sizeof(cookies));
for (i = 0; i < KCMP_TYPES; i++)
cookies[i][1] |= (~(~0UL >> 1) | 1);
return 0;
}
arch_initcall(kcmp_cookies_init);