2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-16 01:24:08 +08:00
linux-next/crypto/aegis.h
Ard Biesheuvel 4a34e3c2f2 crypto: aegis/generic - fix for big endian systems
Use the correct __le32 annotation and accessors to perform the
single round of AES encryption performed inside the AEGIS transform.
Otherwise, tcrypt reports:

  alg: aead: Test 1 failed on encryption for aegis128-generic
  00000000: 6c 25 25 4a 3c 10 1d 27 2b c1 d4 84 9a ef 7f 6e
  alg: aead: Test 1 failed on encryption for aegis128l-generic
  00000000: cd c6 e3 b8 a0 70 9d 8e c2 4f 6f fe 71 42 df 28
  alg: aead: Test 1 failed on encryption for aegis256-generic
  00000000: aa ed 07 b1 96 1d e9 e6 f2 ed b5 8e 1c 5f dc 1c

Fixes: f606a88e58 ("crypto: aegis - Add generic AEGIS AEAD implementations")
Cc: <stable@vger.kernel.org> # v4.18+
Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Reviewed-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-10-08 13:44:53 +08:00

79 lines
2.2 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* AEGIS common definitions
*
* Copyright (c) 2018 Ondrej Mosnacek <omosnacek@gmail.com>
* Copyright (c) 2018 Red Hat, Inc. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
#ifndef _CRYPTO_AEGIS_H
#define _CRYPTO_AEGIS_H
#include <crypto/aes.h>
#include <linux/types.h>
#define AEGIS_BLOCK_SIZE 16
union aegis_block {
__le64 words64[AEGIS_BLOCK_SIZE / sizeof(__le64)];
__le32 words32[AEGIS_BLOCK_SIZE / sizeof(__le32)];
u8 bytes[AEGIS_BLOCK_SIZE];
};
#define AEGIS_BLOCK_ALIGN (__alignof__(union aegis_block))
#define AEGIS_ALIGNED(p) IS_ALIGNED((uintptr_t)p, AEGIS_BLOCK_ALIGN)
static const union aegis_block crypto_aegis_const[2] = {
{ .words64 = {
cpu_to_le64(U64_C(0x0d08050302010100)),
cpu_to_le64(U64_C(0x6279e99059372215)),
} },
{ .words64 = {
cpu_to_le64(U64_C(0xf12fc26d55183ddb)),
cpu_to_le64(U64_C(0xdd28b57342311120)),
} },
};
static void crypto_aegis_block_xor(union aegis_block *dst,
const union aegis_block *src)
{
dst->words64[0] ^= src->words64[0];
dst->words64[1] ^= src->words64[1];
}
static void crypto_aegis_block_and(union aegis_block *dst,
const union aegis_block *src)
{
dst->words64[0] &= src->words64[0];
dst->words64[1] &= src->words64[1];
}
static void crypto_aegis_aesenc(union aegis_block *dst,
const union aegis_block *src,
const union aegis_block *key)
{
const u8 *s = src->bytes;
const u32 *t0 = crypto_ft_tab[0];
const u32 *t1 = crypto_ft_tab[1];
const u32 *t2 = crypto_ft_tab[2];
const u32 *t3 = crypto_ft_tab[3];
u32 d0, d1, d2, d3;
d0 = t0[s[ 0]] ^ t1[s[ 5]] ^ t2[s[10]] ^ t3[s[15]];
d1 = t0[s[ 4]] ^ t1[s[ 9]] ^ t2[s[14]] ^ t3[s[ 3]];
d2 = t0[s[ 8]] ^ t1[s[13]] ^ t2[s[ 2]] ^ t3[s[ 7]];
d3 = t0[s[12]] ^ t1[s[ 1]] ^ t2[s[ 6]] ^ t3[s[11]];
dst->words32[0] = cpu_to_le32(d0) ^ key->words32[0];
dst->words32[1] = cpu_to_le32(d1) ^ key->words32[1];
dst->words32[2] = cpu_to_le32(d2) ^ key->words32[2];
dst->words32[3] = cpu_to_le32(d3) ^ key->words32[3];
}
#endif /* _CRYPTO_AEGIS_H */