2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-04 03:33:58 +08:00
linux-next/fs/jffs2/malloc.c
Julia Lawall e1305df128 jffs2: drop null test before destroy functions
Remove unneeded NULL test.

The semantic patch that makes this change is as follows:
(http://coccinelle.lip6.fr/)

// <smpl>
@@ expression x; @@
-if (x != NULL)
  \(kmem_cache_destroy\|mempool_destroy\|dma_pool_destroy\)(x);
// </smpl>

Signed-off-by: Julia Lawall <Julia.Lawall@lip6.fr>
Signed-off-by: Brian Norris <computersforpeace@gmail.com>
2015-09-21 17:04:57 -07:00

316 lines
7.3 KiB
C

/*
* JFFS2 -- Journalling Flash File System, Version 2.
*
* Copyright © 2001-2007 Red Hat, Inc.
*
* Created by David Woodhouse <dwmw2@infradead.org>
*
* For licensing information, see the file 'LICENCE' in this directory.
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/jffs2.h>
#include "nodelist.h"
/* These are initialised to NULL in the kernel startup code.
If you're porting to other operating systems, beware */
static struct kmem_cache *full_dnode_slab;
static struct kmem_cache *raw_dirent_slab;
static struct kmem_cache *raw_inode_slab;
static struct kmem_cache *tmp_dnode_info_slab;
static struct kmem_cache *raw_node_ref_slab;
static struct kmem_cache *node_frag_slab;
static struct kmem_cache *inode_cache_slab;
#ifdef CONFIG_JFFS2_FS_XATTR
static struct kmem_cache *xattr_datum_cache;
static struct kmem_cache *xattr_ref_cache;
#endif
int __init jffs2_create_slab_caches(void)
{
full_dnode_slab = kmem_cache_create("jffs2_full_dnode",
sizeof(struct jffs2_full_dnode),
0, 0, NULL);
if (!full_dnode_slab)
goto err;
raw_dirent_slab = kmem_cache_create("jffs2_raw_dirent",
sizeof(struct jffs2_raw_dirent),
0, SLAB_HWCACHE_ALIGN, NULL);
if (!raw_dirent_slab)
goto err;
raw_inode_slab = kmem_cache_create("jffs2_raw_inode",
sizeof(struct jffs2_raw_inode),
0, SLAB_HWCACHE_ALIGN, NULL);
if (!raw_inode_slab)
goto err;
tmp_dnode_info_slab = kmem_cache_create("jffs2_tmp_dnode",
sizeof(struct jffs2_tmp_dnode_info),
0, 0, NULL);
if (!tmp_dnode_info_slab)
goto err;
raw_node_ref_slab = kmem_cache_create("jffs2_refblock",
sizeof(struct jffs2_raw_node_ref) * (REFS_PER_BLOCK + 1),
0, 0, NULL);
if (!raw_node_ref_slab)
goto err;
node_frag_slab = kmem_cache_create("jffs2_node_frag",
sizeof(struct jffs2_node_frag),
0, 0, NULL);
if (!node_frag_slab)
goto err;
inode_cache_slab = kmem_cache_create("jffs2_inode_cache",
sizeof(struct jffs2_inode_cache),
0, 0, NULL);
if (!inode_cache_slab)
goto err;
#ifdef CONFIG_JFFS2_FS_XATTR
xattr_datum_cache = kmem_cache_create("jffs2_xattr_datum",
sizeof(struct jffs2_xattr_datum),
0, 0, NULL);
if (!xattr_datum_cache)
goto err;
xattr_ref_cache = kmem_cache_create("jffs2_xattr_ref",
sizeof(struct jffs2_xattr_ref),
0, 0, NULL);
if (!xattr_ref_cache)
goto err;
#endif
return 0;
err:
jffs2_destroy_slab_caches();
return -ENOMEM;
}
void jffs2_destroy_slab_caches(void)
{
kmem_cache_destroy(full_dnode_slab);
kmem_cache_destroy(raw_dirent_slab);
kmem_cache_destroy(raw_inode_slab);
kmem_cache_destroy(tmp_dnode_info_slab);
kmem_cache_destroy(raw_node_ref_slab);
kmem_cache_destroy(node_frag_slab);
kmem_cache_destroy(inode_cache_slab);
#ifdef CONFIG_JFFS2_FS_XATTR
kmem_cache_destroy(xattr_datum_cache);
kmem_cache_destroy(xattr_ref_cache);
#endif
}
struct jffs2_full_dirent *jffs2_alloc_full_dirent(int namesize)
{
struct jffs2_full_dirent *ret;
ret = kmalloc(sizeof(struct jffs2_full_dirent) + namesize, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_full_dirent(struct jffs2_full_dirent *x)
{
dbg_memalloc("%p\n", x);
kfree(x);
}
struct jffs2_full_dnode *jffs2_alloc_full_dnode(void)
{
struct jffs2_full_dnode *ret;
ret = kmem_cache_alloc(full_dnode_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_full_dnode(struct jffs2_full_dnode *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(full_dnode_slab, x);
}
struct jffs2_raw_dirent *jffs2_alloc_raw_dirent(void)
{
struct jffs2_raw_dirent *ret;
ret = kmem_cache_alloc(raw_dirent_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_raw_dirent(struct jffs2_raw_dirent *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(raw_dirent_slab, x);
}
struct jffs2_raw_inode *jffs2_alloc_raw_inode(void)
{
struct jffs2_raw_inode *ret;
ret = kmem_cache_alloc(raw_inode_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_raw_inode(struct jffs2_raw_inode *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(raw_inode_slab, x);
}
struct jffs2_tmp_dnode_info *jffs2_alloc_tmp_dnode_info(void)
{
struct jffs2_tmp_dnode_info *ret;
ret = kmem_cache_alloc(tmp_dnode_info_slab, GFP_KERNEL);
dbg_memalloc("%p\n",
ret);
return ret;
}
void jffs2_free_tmp_dnode_info(struct jffs2_tmp_dnode_info *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(tmp_dnode_info_slab, x);
}
static struct jffs2_raw_node_ref *jffs2_alloc_refblock(void)
{
struct jffs2_raw_node_ref *ret;
ret = kmem_cache_alloc(raw_node_ref_slab, GFP_KERNEL);
if (ret) {
int i = 0;
for (i=0; i < REFS_PER_BLOCK; i++) {
ret[i].flash_offset = REF_EMPTY_NODE;
ret[i].next_in_ino = NULL;
}
ret[i].flash_offset = REF_LINK_NODE;
ret[i].next_in_ino = NULL;
}
return ret;
}
int jffs2_prealloc_raw_node_refs(struct jffs2_sb_info *c,
struct jffs2_eraseblock *jeb, int nr)
{
struct jffs2_raw_node_ref **p, *ref;
int i = nr;
dbg_memalloc("%d\n", nr);
p = &jeb->last_node;
ref = *p;
dbg_memalloc("Reserving %d refs for block @0x%08x\n", nr, jeb->offset);
/* If jeb->last_node is really a valid node then skip over it */
if (ref && ref->flash_offset != REF_EMPTY_NODE)
ref++;
while (i) {
if (!ref) {
dbg_memalloc("Allocating new refblock linked from %p\n", p);
ref = *p = jffs2_alloc_refblock();
if (!ref)
return -ENOMEM;
}
if (ref->flash_offset == REF_LINK_NODE) {
p = &ref->next_in_ino;
ref = *p;
continue;
}
i--;
ref++;
}
jeb->allocated_refs = nr;
dbg_memalloc("Reserved %d refs for block @0x%08x, last_node is %p (%08x,%p)\n",
nr, jeb->offset, jeb->last_node, jeb->last_node->flash_offset,
jeb->last_node->next_in_ino);
return 0;
}
void jffs2_free_refblock(struct jffs2_raw_node_ref *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(raw_node_ref_slab, x);
}
struct jffs2_node_frag *jffs2_alloc_node_frag(void)
{
struct jffs2_node_frag *ret;
ret = kmem_cache_alloc(node_frag_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_node_frag(struct jffs2_node_frag *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(node_frag_slab, x);
}
struct jffs2_inode_cache *jffs2_alloc_inode_cache(void)
{
struct jffs2_inode_cache *ret;
ret = kmem_cache_alloc(inode_cache_slab, GFP_KERNEL);
dbg_memalloc("%p\n", ret);
return ret;
}
void jffs2_free_inode_cache(struct jffs2_inode_cache *x)
{
dbg_memalloc("%p\n", x);
kmem_cache_free(inode_cache_slab, x);
}
#ifdef CONFIG_JFFS2_FS_XATTR
struct jffs2_xattr_datum *jffs2_alloc_xattr_datum(void)
{
struct jffs2_xattr_datum *xd;
xd = kmem_cache_zalloc(xattr_datum_cache, GFP_KERNEL);
dbg_memalloc("%p\n", xd);
if (!xd)
return NULL;
xd->class = RAWNODE_CLASS_XATTR_DATUM;
xd->node = (void *)xd;
INIT_LIST_HEAD(&xd->xindex);
return xd;
}
void jffs2_free_xattr_datum(struct jffs2_xattr_datum *xd)
{
dbg_memalloc("%p\n", xd);
kmem_cache_free(xattr_datum_cache, xd);
}
struct jffs2_xattr_ref *jffs2_alloc_xattr_ref(void)
{
struct jffs2_xattr_ref *ref;
ref = kmem_cache_zalloc(xattr_ref_cache, GFP_KERNEL);
dbg_memalloc("%p\n", ref);
if (!ref)
return NULL;
ref->class = RAWNODE_CLASS_XATTR_REF;
ref->node = (void *)ref;
return ref;
}
void jffs2_free_xattr_ref(struct jffs2_xattr_ref *ref)
{
dbg_memalloc("%p\n", ref);
kmem_cache_free(xattr_ref_cache, ref);
}
#endif