2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-07 21:24:00 +08:00
linux-next/drivers/misc/kgdbts.c
Christoph Hellwig fe557319aa maccess: rename probe_kernel_{read,write} to copy_{from,to}_kernel_nofault
Better describe what these functions do.

Suggested-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-06-17 10:57:41 -07:00

1181 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* kgdbts is a test suite for kgdb for the sole purpose of validating
* that key pieces of the kgdb internals are working properly such as
* HW/SW breakpoints, single stepping, and NMI.
*
* Created by: Jason Wessel <jason.wessel@windriver.com>
*
* Copyright (c) 2008 Wind River Systems, Inc.
*/
/* Information about the kgdb test suite.
* -------------------------------------
*
* The kgdb test suite is designed as a KGDB I/O module which
* simulates the communications that a debugger would have with kgdb.
* The tests are broken up in to a line by line and referenced here as
* a "get" which is kgdb requesting input and "put" which is kgdb
* sending a response.
*
* The kgdb suite can be invoked from the kernel command line
* arguments system or executed dynamically at run time. The test
* suite uses the variable "kgdbts" to obtain the information about
* which tests to run and to configure the verbosity level. The
* following are the various characters you can use with the kgdbts=
* line:
*
* When using the "kgdbts=" you only choose one of the following core
* test types:
* A = Run all the core tests silently
* V1 = Run all the core tests with minimal output
* V2 = Run all the core tests in debug mode
*
* You can also specify optional tests:
* N## = Go to sleep with interrupts of for ## seconds
* to test the HW NMI watchdog
* F## = Break at do_fork for ## iterations
* S## = Break at sys_open for ## iterations
* I## = Run the single step test ## iterations
*
* NOTE: that the do_fork and sys_open tests are mutually exclusive.
*
* To invoke the kgdb test suite from boot you use a kernel start
* argument as follows:
* kgdbts=V1 kgdbwait
* Or if you wanted to perform the NMI test for 6 seconds and do_fork
* test for 100 forks, you could use:
* kgdbts=V1N6F100 kgdbwait
*
* The test suite can also be invoked at run time with:
* echo kgdbts=V1N6F100 > /sys/module/kgdbts/parameters/kgdbts
* Or as another example:
* echo kgdbts=V2 > /sys/module/kgdbts/parameters/kgdbts
*
* When developing a new kgdb arch specific implementation or
* using these tests for the purpose of regression testing,
* several invocations are required.
*
* 1) Boot with the test suite enabled by using the kernel arguments
* "kgdbts=V1F100 kgdbwait"
* ## If kgdb arch specific implementation has NMI use
* "kgdbts=V1N6F100
*
* 2) After the system boot run the basic test.
* echo kgdbts=V1 > /sys/module/kgdbts/parameters/kgdbts
*
* 3) Run the concurrency tests. It is best to use n+1
* while loops where n is the number of cpus you have
* in your system. The example below uses only two
* loops.
*
* ## This tests break points on sys_open
* while [ 1 ] ; do find / > /dev/null 2>&1 ; done &
* while [ 1 ] ; do find / > /dev/null 2>&1 ; done &
* echo kgdbts=V1S10000 > /sys/module/kgdbts/parameters/kgdbts
* fg # and hit control-c
* fg # and hit control-c
* ## This tests break points on do_fork
* while [ 1 ] ; do date > /dev/null ; done &
* while [ 1 ] ; do date > /dev/null ; done &
* echo kgdbts=V1F1000 > /sys/module/kgdbts/parameters/kgdbts
* fg # and hit control-c
*
*/
#include <linux/kernel.h>
#include <linux/kgdb.h>
#include <linux/ctype.h>
#include <linux/uaccess.h>
#include <linux/syscalls.h>
#include <linux/nmi.h>
#include <linux/delay.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/sched/task.h>
#include <asm/sections.h>
#define v1printk(a...) do { \
if (verbose) \
printk(KERN_INFO a); \
} while (0)
#define v2printk(a...) do { \
if (verbose > 1) \
printk(KERN_INFO a); \
touch_nmi_watchdog(); \
} while (0)
#define eprintk(a...) do { \
printk(KERN_ERR a); \
WARN_ON(1); \
} while (0)
#define MAX_CONFIG_LEN 40
static struct kgdb_io kgdbts_io_ops;
static char get_buf[BUFMAX];
static int get_buf_cnt;
static char put_buf[BUFMAX];
static int put_buf_cnt;
static char scratch_buf[BUFMAX];
static int verbose;
static int repeat_test;
static int test_complete;
static int send_ack;
static int final_ack;
static int force_hwbrks;
static int hwbreaks_ok;
static int hw_break_val;
static int hw_break_val2;
static int cont_instead_of_sstep;
static unsigned long cont_thread_id;
static unsigned long sstep_thread_id;
#if defined(CONFIG_ARM) || defined(CONFIG_MIPS) || defined(CONFIG_SPARC)
static int arch_needs_sstep_emulation = 1;
#else
static int arch_needs_sstep_emulation;
#endif
static unsigned long cont_addr;
static unsigned long sstep_addr;
static int restart_from_top_after_write;
static int sstep_state;
/* Storage for the registers, in GDB format. */
static unsigned long kgdbts_gdb_regs[(NUMREGBYTES +
sizeof(unsigned long) - 1) /
sizeof(unsigned long)];
static struct pt_regs kgdbts_regs;
/* -1 = init not run yet, 0 = unconfigured, 1 = configured. */
static int configured = -1;
#ifdef CONFIG_KGDB_TESTS_BOOT_STRING
static char config[MAX_CONFIG_LEN] = CONFIG_KGDB_TESTS_BOOT_STRING;
#else
static char config[MAX_CONFIG_LEN];
#endif
static struct kparam_string kps = {
.string = config,
.maxlen = MAX_CONFIG_LEN,
};
static void fill_get_buf(char *buf);
struct test_struct {
char *get;
char *put;
void (*get_handler)(char *);
int (*put_handler)(char *, char *);
};
struct test_state {
char *name;
struct test_struct *tst;
int idx;
int (*run_test) (int, int);
int (*validate_put) (char *);
};
static struct test_state ts;
static int kgdbts_unreg_thread(void *ptr)
{
/* Wait until the tests are complete and then ungresiter the I/O
* driver.
*/
while (!final_ack)
msleep_interruptible(1500);
/* Pause for any other threads to exit after final ack. */
msleep_interruptible(1000);
if (configured)
kgdb_unregister_io_module(&kgdbts_io_ops);
configured = 0;
return 0;
}
/* This is noinline such that it can be used for a single location to
* place a breakpoint
*/
static noinline void kgdbts_break_test(void)
{
v2printk("kgdbts: breakpoint complete\n");
}
/* Lookup symbol info in the kernel */
static unsigned long lookup_addr(char *arg)
{
unsigned long addr = 0;
if (!strcmp(arg, "kgdbts_break_test"))
addr = (unsigned long)kgdbts_break_test;
else if (!strcmp(arg, "sys_open"))
addr = (unsigned long)do_sys_open;
else if (!strcmp(arg, "do_fork"))
addr = (unsigned long)_do_fork;
else if (!strcmp(arg, "hw_break_val"))
addr = (unsigned long)&hw_break_val;
addr = (unsigned long) dereference_function_descriptor((void *)addr);
return addr;
}
static void break_helper(char *bp_type, char *arg, unsigned long vaddr)
{
unsigned long addr;
if (arg)
addr = lookup_addr(arg);
else
addr = vaddr;
sprintf(scratch_buf, "%s,%lx,%i", bp_type, addr,
BREAK_INSTR_SIZE);
fill_get_buf(scratch_buf);
}
static void sw_break(char *arg)
{
break_helper(force_hwbrks ? "Z1" : "Z0", arg, 0);
}
static void sw_rem_break(char *arg)
{
break_helper(force_hwbrks ? "z1" : "z0", arg, 0);
}
static void hw_break(char *arg)
{
break_helper("Z1", arg, 0);
}
static void hw_rem_break(char *arg)
{
break_helper("z1", arg, 0);
}
static void hw_write_break(char *arg)
{
break_helper("Z2", arg, 0);
}
static void hw_rem_write_break(char *arg)
{
break_helper("z2", arg, 0);
}
static void hw_access_break(char *arg)
{
break_helper("Z4", arg, 0);
}
static void hw_rem_access_break(char *arg)
{
break_helper("z4", arg, 0);
}
static void hw_break_val_access(void)
{
hw_break_val2 = hw_break_val;
}
static void hw_break_val_write(void)
{
hw_break_val++;
}
static int get_thread_id_continue(char *put_str, char *arg)
{
char *ptr = &put_str[11];
if (put_str[1] != 'T' || put_str[2] != '0')
return 1;
kgdb_hex2long(&ptr, &cont_thread_id);
return 0;
}
static int check_and_rewind_pc(char *put_str, char *arg)
{
unsigned long addr = lookup_addr(arg);
unsigned long ip;
int offset = 0;
kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
NUMREGBYTES);
gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
ip = instruction_pointer(&kgdbts_regs);
v2printk("Stopped at IP: %lx\n", ip);
#ifdef GDB_ADJUSTS_BREAK_OFFSET
/* On some arches, a breakpoint stop requires it to be decremented */
if (addr + BREAK_INSTR_SIZE == ip)
offset = -BREAK_INSTR_SIZE;
#endif
if (arch_needs_sstep_emulation && sstep_addr &&
ip + offset == sstep_addr &&
((!strcmp(arg, "sys_open") || !strcmp(arg, "do_fork")))) {
/* This is special case for emulated single step */
v2printk("Emul: rewind hit single step bp\n");
restart_from_top_after_write = 1;
} else if (strcmp(arg, "silent") && ip + offset != addr) {
eprintk("kgdbts: BP mismatch %lx expected %lx\n",
ip + offset, addr);
return 1;
}
/* Readjust the instruction pointer if needed */
ip += offset;
cont_addr = ip;
#ifdef GDB_ADJUSTS_BREAK_OFFSET
instruction_pointer_set(&kgdbts_regs, ip);
#endif
return 0;
}
static int check_single_step(char *put_str, char *arg)
{
unsigned long addr = lookup_addr(arg);
static int matched_id;
/*
* From an arch indepent point of view the instruction pointer
* should be on a different instruction
*/
kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
NUMREGBYTES);
gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
v2printk("Singlestep stopped at IP: %lx\n",
instruction_pointer(&kgdbts_regs));
if (sstep_thread_id != cont_thread_id) {
/*
* Ensure we stopped in the same thread id as before, else the
* debugger should continue until the original thread that was
* single stepped is scheduled again, emulating gdb's behavior.
*/
v2printk("ThrID does not match: %lx\n", cont_thread_id);
if (arch_needs_sstep_emulation) {
if (matched_id &&
instruction_pointer(&kgdbts_regs) != addr)
goto continue_test;
matched_id++;
ts.idx -= 2;
sstep_state = 0;
return 0;
}
cont_instead_of_sstep = 1;
ts.idx -= 4;
return 0;
}
continue_test:
matched_id = 0;
if (instruction_pointer(&kgdbts_regs) == addr) {
eprintk("kgdbts: SingleStep failed at %lx\n",
instruction_pointer(&kgdbts_regs));
return 1;
}
return 0;
}
static void write_regs(char *arg)
{
memset(scratch_buf, 0, sizeof(scratch_buf));
scratch_buf[0] = 'G';
pt_regs_to_gdb_regs(kgdbts_gdb_regs, &kgdbts_regs);
kgdb_mem2hex((char *)kgdbts_gdb_regs, &scratch_buf[1], NUMREGBYTES);
fill_get_buf(scratch_buf);
}
static void skip_back_repeat_test(char *arg)
{
int go_back = simple_strtol(arg, NULL, 10);
repeat_test--;
if (repeat_test <= 0) {
ts.idx++;
} else {
if (repeat_test % 100 == 0)
v1printk("kgdbts:RUN ... %d remaining\n", repeat_test);
ts.idx -= go_back;
}
fill_get_buf(ts.tst[ts.idx].get);
}
static int got_break(char *put_str, char *arg)
{
test_complete = 1;
if (!strncmp(put_str+1, arg, 2)) {
if (!strncmp(arg, "T0", 2))
test_complete = 2;
return 0;
}
return 1;
}
static void get_cont_catch(char *arg)
{
/* Always send detach because the test is completed at this point */
fill_get_buf("D");
}
static int put_cont_catch(char *put_str, char *arg)
{
/* This is at the end of the test and we catch any and all input */
v2printk("kgdbts: cleanup task: %lx\n", sstep_thread_id);
ts.idx--;
return 0;
}
static int emul_reset(char *put_str, char *arg)
{
if (strncmp(put_str, "$OK", 3))
return 1;
if (restart_from_top_after_write) {
restart_from_top_after_write = 0;
ts.idx = -1;
}
return 0;
}
static void emul_sstep_get(char *arg)
{
if (!arch_needs_sstep_emulation) {
if (cont_instead_of_sstep) {
cont_instead_of_sstep = 0;
fill_get_buf("c");
} else {
fill_get_buf(arg);
}
return;
}
switch (sstep_state) {
case 0:
v2printk("Emulate single step\n");
/* Start by looking at the current PC */
fill_get_buf("g");
break;
case 1:
/* set breakpoint */
break_helper("Z0", NULL, sstep_addr);
break;
case 2:
/* Continue */
fill_get_buf("c");
break;
case 3:
/* Clear breakpoint */
break_helper("z0", NULL, sstep_addr);
break;
default:
eprintk("kgdbts: ERROR failed sstep get emulation\n");
}
sstep_state++;
}
static int emul_sstep_put(char *put_str, char *arg)
{
if (!arch_needs_sstep_emulation) {
char *ptr = &put_str[11];
if (put_str[1] != 'T' || put_str[2] != '0')
return 1;
kgdb_hex2long(&ptr, &sstep_thread_id);
return 0;
}
switch (sstep_state) {
case 1:
/* validate the "g" packet to get the IP */
kgdb_hex2mem(&put_str[1], (char *)kgdbts_gdb_regs,
NUMREGBYTES);
gdb_regs_to_pt_regs(kgdbts_gdb_regs, &kgdbts_regs);
v2printk("Stopped at IP: %lx\n",
instruction_pointer(&kgdbts_regs));
/* Want to stop at IP + break instruction size by default */
sstep_addr = cont_addr + BREAK_INSTR_SIZE;
break;
case 2:
if (strncmp(put_str, "$OK", 3)) {
eprintk("kgdbts: failed sstep break set\n");
return 1;
}
break;
case 3:
if (strncmp(put_str, "$T0", 3)) {
eprintk("kgdbts: failed continue sstep\n");
return 1;
} else {
char *ptr = &put_str[11];
kgdb_hex2long(&ptr, &sstep_thread_id);
}
break;
case 4:
if (strncmp(put_str, "$OK", 3)) {
eprintk("kgdbts: failed sstep break unset\n");
return 1;
}
/* Single step is complete so continue on! */
sstep_state = 0;
return 0;
default:
eprintk("kgdbts: ERROR failed sstep put emulation\n");
}
/* Continue on the same test line until emulation is complete */
ts.idx--;
return 0;
}
static int final_ack_set(char *put_str, char *arg)
{
if (strncmp(put_str+1, arg, 2))
return 1;
final_ack = 1;
return 0;
}
/*
* Test to plant a breakpoint and detach, which should clear out the
* breakpoint and restore the original instruction.
*/
static struct test_struct plant_and_detach_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
{ "D", "OK" }, /* Detach */
{ "", "" },
};
/*
* Simple test to write in a software breakpoint, check for the
* correct stop location and detach.
*/
static struct test_struct sw_breakpoint_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
{ "c", "T0*", }, /* Continue */
{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
{ "write", "OK", write_regs },
{ "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */
{ "D", "OK" }, /* Detach */
{ "D", "OK", NULL, got_break }, /* On success we made it here */
{ "", "" },
};
/*
* Test a known bad memory read location to test the fault handler and
* read bytes 1-8 at the bad address
*/
static struct test_struct bad_read_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "m0,1", "E*" }, /* read 1 byte at address 1 */
{ "m0,2", "E*" }, /* read 1 byte at address 2 */
{ "m0,3", "E*" }, /* read 1 byte at address 3 */
{ "m0,4", "E*" }, /* read 1 byte at address 4 */
{ "m0,5", "E*" }, /* read 1 byte at address 5 */
{ "m0,6", "E*" }, /* read 1 byte at address 6 */
{ "m0,7", "E*" }, /* read 1 byte at address 7 */
{ "m0,8", "E*" }, /* read 1 byte at address 8 */
{ "D", "OK" }, /* Detach which removes all breakpoints and continues */
{ "", "" },
};
/*
* Test for hitting a breakpoint, remove it, single step, plant it
* again and detach.
*/
static struct test_struct singlestep_break_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
{ "c", "T0*", NULL, get_thread_id_continue }, /* Continue */
{ "kgdbts_break_test", "OK", sw_rem_break }, /*remove breakpoint */
{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
{ "write", "OK", write_regs }, /* Write registers */
{ "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
{ "g", "kgdbts_break_test", NULL, check_single_step },
{ "kgdbts_break_test", "OK", sw_break, }, /* set sw breakpoint */
{ "c", "T0*", }, /* Continue */
{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
{ "write", "OK", write_regs }, /* Write registers */
{ "D", "OK" }, /* Remove all breakpoints and continues */
{ "", "" },
};
/*
* Test for hitting a breakpoint at do_fork for what ever the number
* of iterations required by the variable repeat_test.
*/
static struct test_struct do_fork_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "do_fork", "OK", sw_break, }, /* set sw breakpoint */
{ "c", "T0*", NULL, get_thread_id_continue }, /* Continue */
{ "do_fork", "OK", sw_rem_break }, /*remove breakpoint */
{ "g", "do_fork", NULL, check_and_rewind_pc }, /* check location */
{ "write", "OK", write_regs, emul_reset }, /* Write registers */
{ "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
{ "g", "do_fork", NULL, check_single_step },
{ "do_fork", "OK", sw_break, }, /* set sw breakpoint */
{ "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */
{ "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */
{ "", "", get_cont_catch, put_cont_catch },
};
/* Test for hitting a breakpoint at sys_open for what ever the number
* of iterations required by the variable repeat_test.
*/
static struct test_struct sys_open_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "sys_open", "OK", sw_break, }, /* set sw breakpoint */
{ "c", "T0*", NULL, get_thread_id_continue }, /* Continue */
{ "sys_open", "OK", sw_rem_break }, /*remove breakpoint */
{ "g", "sys_open", NULL, check_and_rewind_pc }, /* check location */
{ "write", "OK", write_regs, emul_reset }, /* Write registers */
{ "s", "T0*", emul_sstep_get, emul_sstep_put }, /* Single step */
{ "g", "sys_open", NULL, check_single_step },
{ "sys_open", "OK", sw_break, }, /* set sw breakpoint */
{ "7", "T0*", skip_back_repeat_test }, /* Loop based on repeat_test */
{ "D", "OK", NULL, final_ack_set }, /* detach and unregister I/O */
{ "", "", get_cont_catch, put_cont_catch },
};
/*
* Test for hitting a simple hw breakpoint
*/
static struct test_struct hw_breakpoint_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "kgdbts_break_test", "OK", hw_break, }, /* set hw breakpoint */
{ "c", "T0*", }, /* Continue */
{ "g", "kgdbts_break_test", NULL, check_and_rewind_pc },
{ "write", "OK", write_regs },
{ "kgdbts_break_test", "OK", hw_rem_break }, /*remove breakpoint */
{ "D", "OK" }, /* Detach */
{ "D", "OK", NULL, got_break }, /* On success we made it here */
{ "", "" },
};
/*
* Test for hitting a hw write breakpoint
*/
static struct test_struct hw_write_break_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "hw_break_val", "OK", hw_write_break, }, /* set hw breakpoint */
{ "c", "T0*", NULL, got_break }, /* Continue */
{ "g", "silent", NULL, check_and_rewind_pc },
{ "write", "OK", write_regs },
{ "hw_break_val", "OK", hw_rem_write_break }, /*remove breakpoint */
{ "D", "OK" }, /* Detach */
{ "D", "OK", NULL, got_break }, /* On success we made it here */
{ "", "" },
};
/*
* Test for hitting a hw access breakpoint
*/
static struct test_struct hw_access_break_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "hw_break_val", "OK", hw_access_break, }, /* set hw breakpoint */
{ "c", "T0*", NULL, got_break }, /* Continue */
{ "g", "silent", NULL, check_and_rewind_pc },
{ "write", "OK", write_regs },
{ "hw_break_val", "OK", hw_rem_access_break }, /*remove breakpoint */
{ "D", "OK" }, /* Detach */
{ "D", "OK", NULL, got_break }, /* On success we made it here */
{ "", "" },
};
/*
* Test for hitting a hw access breakpoint
*/
static struct test_struct nmi_sleep_test[] = {
{ "?", "S0*" }, /* Clear break points */
{ "c", "T0*", NULL, got_break }, /* Continue */
{ "D", "OK" }, /* Detach */
{ "D", "OK", NULL, got_break }, /* On success we made it here */
{ "", "" },
};
static void fill_get_buf(char *buf)
{
unsigned char checksum = 0;
int count = 0;
char ch;
strcpy(get_buf, "$");
strcat(get_buf, buf);
while ((ch = buf[count])) {
checksum += ch;
count++;
}
strcat(get_buf, "#");
get_buf[count + 2] = hex_asc_hi(checksum);
get_buf[count + 3] = hex_asc_lo(checksum);
get_buf[count + 4] = '\0';
v2printk("get%i: %s\n", ts.idx, get_buf);
}
static int validate_simple_test(char *put_str)
{
char *chk_str;
if (ts.tst[ts.idx].put_handler)
return ts.tst[ts.idx].put_handler(put_str,
ts.tst[ts.idx].put);
chk_str = ts.tst[ts.idx].put;
if (*put_str == '$')
put_str++;
while (*chk_str != '\0' && *put_str != '\0') {
/* If someone does a * to match the rest of the string, allow
* it, or stop if the received string is complete.
*/
if (*put_str == '#' || *chk_str == '*')
return 0;
if (*put_str != *chk_str)
return 1;
chk_str++;
put_str++;
}
if (*chk_str == '\0' && (*put_str == '\0' || *put_str == '#'))
return 0;
return 1;
}
static int run_simple_test(int is_get_char, int chr)
{
int ret = 0;
if (is_get_char) {
/* Send an ACK on the get if a prior put completed and set the
* send ack variable
*/
if (send_ack) {
send_ack = 0;
return '+';
}
/* On the first get char, fill the transmit buffer and then
* take from the get_string.
*/
if (get_buf_cnt == 0) {
if (ts.tst[ts.idx].get_handler)
ts.tst[ts.idx].get_handler(ts.tst[ts.idx].get);
else
fill_get_buf(ts.tst[ts.idx].get);
}
if (get_buf[get_buf_cnt] == '\0') {
eprintk("kgdbts: ERROR GET: EOB on '%s' at %i\n",
ts.name, ts.idx);
get_buf_cnt = 0;
fill_get_buf("D");
}
ret = get_buf[get_buf_cnt];
get_buf_cnt++;
return ret;
}
/* This callback is a put char which is when kgdb sends data to
* this I/O module.
*/
if (ts.tst[ts.idx].get[0] == '\0' && ts.tst[ts.idx].put[0] == '\0' &&
!ts.tst[ts.idx].get_handler) {
eprintk("kgdbts: ERROR: beyond end of test on"
" '%s' line %i\n", ts.name, ts.idx);
return 0;
}
if (put_buf_cnt >= BUFMAX) {
eprintk("kgdbts: ERROR: put buffer overflow on"
" '%s' line %i\n", ts.name, ts.idx);
put_buf_cnt = 0;
return 0;
}
/* Ignore everything until the first valid packet start '$' */
if (put_buf_cnt == 0 && chr != '$')
return 0;
put_buf[put_buf_cnt] = chr;
put_buf_cnt++;
/* End of packet == #XX so look for the '#' */
if (put_buf_cnt > 3 && put_buf[put_buf_cnt - 3] == '#') {
if (put_buf_cnt >= BUFMAX) {
eprintk("kgdbts: ERROR: put buffer overflow on"
" '%s' line %i\n", ts.name, ts.idx);
put_buf_cnt = 0;
return 0;
}
put_buf[put_buf_cnt] = '\0';
v2printk("put%i: %s\n", ts.idx, put_buf);
/* Trigger check here */
if (ts.validate_put && ts.validate_put(put_buf)) {
eprintk("kgdbts: ERROR PUT: end of test "
"buffer on '%s' line %i expected %s got %s\n",
ts.name, ts.idx, ts.tst[ts.idx].put, put_buf);
}
ts.idx++;
put_buf_cnt = 0;
get_buf_cnt = 0;
send_ack = 1;
}
return 0;
}
static void init_simple_test(void)
{
memset(&ts, 0, sizeof(ts));
ts.run_test = run_simple_test;
ts.validate_put = validate_simple_test;
}
static void run_plant_and_detach_test(int is_early)
{
char before[BREAK_INSTR_SIZE];
char after[BREAK_INSTR_SIZE];
copy_from_kernel_nofault(before, (char *)kgdbts_break_test,
BREAK_INSTR_SIZE);
init_simple_test();
ts.tst = plant_and_detach_test;
ts.name = "plant_and_detach_test";
/* Activate test with initial breakpoint */
if (!is_early)
kgdb_breakpoint();
copy_from_kernel_nofault(after, (char *)kgdbts_break_test,
BREAK_INSTR_SIZE);
if (memcmp(before, after, BREAK_INSTR_SIZE)) {
printk(KERN_CRIT "kgdbts: ERROR kgdb corrupted memory\n");
panic("kgdb memory corruption");
}
/* complete the detach test */
if (!is_early)
kgdbts_break_test();
}
static void run_breakpoint_test(int is_hw_breakpoint)
{
test_complete = 0;
init_simple_test();
if (is_hw_breakpoint) {
ts.tst = hw_breakpoint_test;
ts.name = "hw_breakpoint_test";
} else {
ts.tst = sw_breakpoint_test;
ts.name = "sw_breakpoint_test";
}
/* Activate test with initial breakpoint */
kgdb_breakpoint();
/* run code with the break point in it */
kgdbts_break_test();
kgdb_breakpoint();
if (test_complete)
return;
eprintk("kgdbts: ERROR %s test failed\n", ts.name);
if (is_hw_breakpoint)
hwbreaks_ok = 0;
}
static void run_hw_break_test(int is_write_test)
{
test_complete = 0;
init_simple_test();
if (is_write_test) {
ts.tst = hw_write_break_test;
ts.name = "hw_write_break_test";
} else {
ts.tst = hw_access_break_test;
ts.name = "hw_access_break_test";
}
/* Activate test with initial breakpoint */
kgdb_breakpoint();
hw_break_val_access();
if (is_write_test) {
if (test_complete == 2) {
eprintk("kgdbts: ERROR %s broke on access\n",
ts.name);
hwbreaks_ok = 0;
}
hw_break_val_write();
}
kgdb_breakpoint();
if (test_complete == 1)
return;
eprintk("kgdbts: ERROR %s test failed\n", ts.name);
hwbreaks_ok = 0;
}
static void run_nmi_sleep_test(int nmi_sleep)
{
unsigned long flags;
init_simple_test();
ts.tst = nmi_sleep_test;
ts.name = "nmi_sleep_test";
/* Activate test with initial breakpoint */
kgdb_breakpoint();
local_irq_save(flags);
mdelay(nmi_sleep*1000);
touch_nmi_watchdog();
local_irq_restore(flags);
if (test_complete != 2)
eprintk("kgdbts: ERROR nmi_test did not hit nmi\n");
kgdb_breakpoint();
if (test_complete == 1)
return;
eprintk("kgdbts: ERROR %s test failed\n", ts.name);
}
static void run_bad_read_test(void)
{
init_simple_test();
ts.tst = bad_read_test;
ts.name = "bad_read_test";
/* Activate test with initial breakpoint */
kgdb_breakpoint();
}
static void run_do_fork_test(void)
{
init_simple_test();
ts.tst = do_fork_test;
ts.name = "do_fork_test";
/* Activate test with initial breakpoint */
kgdb_breakpoint();
}
static void run_sys_open_test(void)
{
init_simple_test();
ts.tst = sys_open_test;
ts.name = "sys_open_test";
/* Activate test with initial breakpoint */
kgdb_breakpoint();
}
static void run_singlestep_break_test(void)
{
init_simple_test();
ts.tst = singlestep_break_test;
ts.name = "singlestep_breakpoint_test";
/* Activate test with initial breakpoint */
kgdb_breakpoint();
kgdbts_break_test();
kgdbts_break_test();
}
static void kgdbts_run_tests(void)
{
char *ptr;
int fork_test = 0;
int do_sys_open_test = 0;
int sstep_test = 1000;
int nmi_sleep = 0;
int i;
verbose = 0;
if (strstr(config, "V1"))
verbose = 1;
if (strstr(config, "V2"))
verbose = 2;
ptr = strchr(config, 'F');
if (ptr)
fork_test = simple_strtol(ptr + 1, NULL, 10);
ptr = strchr(config, 'S');
if (ptr)
do_sys_open_test = simple_strtol(ptr + 1, NULL, 10);
ptr = strchr(config, 'N');
if (ptr)
nmi_sleep = simple_strtol(ptr+1, NULL, 10);
ptr = strchr(config, 'I');
if (ptr)
sstep_test = simple_strtol(ptr+1, NULL, 10);
/* All HW break point tests */
if (arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT) {
hwbreaks_ok = 1;
v1printk("kgdbts:RUN hw breakpoint test\n");
run_breakpoint_test(1);
v1printk("kgdbts:RUN hw write breakpoint test\n");
run_hw_break_test(1);
v1printk("kgdbts:RUN access write breakpoint test\n");
run_hw_break_test(0);
}
/* required internal KGDB tests */
v1printk("kgdbts:RUN plant and detach test\n");
run_plant_and_detach_test(0);
v1printk("kgdbts:RUN sw breakpoint test\n");
run_breakpoint_test(0);
v1printk("kgdbts:RUN bad memory access test\n");
run_bad_read_test();
v1printk("kgdbts:RUN singlestep test %i iterations\n", sstep_test);
for (i = 0; i < sstep_test; i++) {
run_singlestep_break_test();
if (i % 100 == 0)
v1printk("kgdbts:RUN singlestep [%i/%i]\n",
i, sstep_test);
}
/* ===Optional tests=== */
if (nmi_sleep) {
v1printk("kgdbts:RUN NMI sleep %i seconds test\n", nmi_sleep);
run_nmi_sleep_test(nmi_sleep);
}
/* If the do_fork test is run it will be the last test that is
* executed because a kernel thread will be spawned at the very
* end to unregister the debug hooks.
*/
if (fork_test) {
repeat_test = fork_test;
printk(KERN_INFO "kgdbts:RUN do_fork for %i breakpoints\n",
repeat_test);
kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg");
run_do_fork_test();
return;
}
/* If the sys_open test is run it will be the last test that is
* executed because a kernel thread will be spawned at the very
* end to unregister the debug hooks.
*/
if (do_sys_open_test) {
repeat_test = do_sys_open_test;
printk(KERN_INFO "kgdbts:RUN sys_open for %i breakpoints\n",
repeat_test);
kthread_run(kgdbts_unreg_thread, NULL, "kgdbts_unreg");
run_sys_open_test();
return;
}
/* Shutdown and unregister */
kgdb_unregister_io_module(&kgdbts_io_ops);
configured = 0;
}
static int kgdbts_option_setup(char *opt)
{
if (strlen(opt) >= MAX_CONFIG_LEN) {
printk(KERN_ERR "kgdbts: config string too long\n");
return -ENOSPC;
}
strcpy(config, opt);
return 0;
}
__setup("kgdbts=", kgdbts_option_setup);
static int configure_kgdbts(void)
{
int err = 0;
if (!strlen(config) || isspace(config[0]))
goto noconfig;
final_ack = 0;
run_plant_and_detach_test(1);
err = kgdb_register_io_module(&kgdbts_io_ops);
if (err) {
configured = 0;
return err;
}
configured = 1;
kgdbts_run_tests();
return err;
noconfig:
config[0] = 0;
configured = 0;
return err;
}
static int __init init_kgdbts(void)
{
/* Already configured? */
if (configured == 1)
return 0;
return configure_kgdbts();
}
device_initcall(init_kgdbts);
static int kgdbts_get_char(void)
{
int val = 0;
if (ts.run_test)
val = ts.run_test(1, 0);
return val;
}
static void kgdbts_put_char(u8 chr)
{
if (ts.run_test)
ts.run_test(0, chr);
}
static int param_set_kgdbts_var(const char *kmessage,
const struct kernel_param *kp)
{
size_t len = strlen(kmessage);
if (len >= MAX_CONFIG_LEN) {
printk(KERN_ERR "kgdbts: config string too long\n");
return -ENOSPC;
}
/* Only copy in the string if the init function has not run yet */
if (configured < 0) {
strcpy(config, kmessage);
return 0;
}
if (configured == 1) {
printk(KERN_ERR "kgdbts: ERROR: Already configured and running.\n");
return -EBUSY;
}
strcpy(config, kmessage);
/* Chop out \n char as a result of echo */
if (len && config[len - 1] == '\n')
config[len - 1] = '\0';
/* Go and configure with the new params. */
return configure_kgdbts();
}
static void kgdbts_pre_exp_handler(void)
{
/* Increment the module count when the debugger is active */
if (!kgdb_connected)
try_module_get(THIS_MODULE);
}
static void kgdbts_post_exp_handler(void)
{
/* decrement the module count when the debugger detaches */
if (!kgdb_connected)
module_put(THIS_MODULE);
}
static struct kgdb_io kgdbts_io_ops = {
.name = "kgdbts",
.read_char = kgdbts_get_char,
.write_char = kgdbts_put_char,
.pre_exception = kgdbts_pre_exp_handler,
.post_exception = kgdbts_post_exp_handler,
};
/*
* not really modular, but the easiest way to keep compat with existing
* bootargs behaviour is to continue using module_param here.
*/
module_param_call(kgdbts, param_set_kgdbts_var, param_get_string, &kps, 0644);
MODULE_PARM_DESC(kgdbts, "<A|V1|V2>[F#|S#][N#]");