2
0
mirror of https://github.com/edk2-porting/linux-next.git synced 2025-01-01 18:24:23 +08:00
linux-next/arch/ia64/kernel/machine_kexec.c
Russell King dae28018f5 kdump: arrange for paddr_vmcoreinfo_note() to return phys_addr_t
On PAE systems (eg, ARM LPAE) the vmcore note may be located above 4GB
physical on 32-bit architectures, so we need a wider type than "unsigned
long" here.  Arrange for paddr_vmcoreinfo_note() to return a
phys_addr_t, thereby allowing it to be located above 4GB.

This makes no difference for kexec-tools, as they already assume a
64-bit type when reading from this file.

Link: http://lkml.kernel.org/r/E1b8koK-0004HS-K9@rmk-PC.armlinux.org.uk
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Reviewed-by: Pratyush Anand <panand@redhat.com>
Acked-by: Baoquan He <bhe@redhat.com>
Cc: Keerthy <j-keerthy@ti.com>
Cc: Vitaly Andrianov <vitalya@ti.com>
Cc: Eric Biederman <ebiederm@xmission.com>
Cc: Dave Young <dyoung@redhat.com>
Cc: Vivek Goyal <vgoyal@redhat.com>
Cc: Simon Horman <horms@verge.net.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-08-02 19:35:27 -04:00

171 lines
4.6 KiB
C

/*
* arch/ia64/kernel/machine_kexec.c
*
* Handle transition of Linux booting another kernel
* Copyright (C) 2005 Hewlett-Packard Development Comapny, L.P.
* Copyright (C) 2005 Khalid Aziz <khalid.aziz@hp.com>
* Copyright (C) 2006 Intel Corp, Zou Nan hai <nanhai.zou@intel.com>
*
* This source code is licensed under the GNU General Public License,
* Version 2. See the file COPYING for more details.
*/
#include <linux/mm.h>
#include <linux/kexec.h>
#include <linux/cpu.h>
#include <linux/irq.h>
#include <linux/efi.h>
#include <linux/numa.h>
#include <linux/mmzone.h>
#include <asm/numa.h>
#include <asm/mmu_context.h>
#include <asm/setup.h>
#include <asm/delay.h>
#include <asm/meminit.h>
#include <asm/processor.h>
#include <asm/sal.h>
#include <asm/mca.h>
typedef void (*relocate_new_kernel_t)(
unsigned long indirection_page,
unsigned long start_address,
struct ia64_boot_param *boot_param,
unsigned long pal_addr) __noreturn;
struct kimage *ia64_kimage;
struct resource efi_memmap_res = {
.name = "EFI Memory Map",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
struct resource boot_param_res = {
.name = "Boot parameter",
.start = 0,
.end = 0,
.flags = IORESOURCE_BUSY | IORESOURCE_MEM
};
/*
* Do what every setup is needed on image and the
* reboot code buffer to allow us to avoid allocations
* later.
*/
int machine_kexec_prepare(struct kimage *image)
{
void *control_code_buffer;
const unsigned long *func;
func = (unsigned long *)&relocate_new_kernel;
/* Pre-load control code buffer to minimize work in kexec path */
control_code_buffer = page_address(image->control_code_page);
memcpy((void *)control_code_buffer, (const void *)func[0],
relocate_new_kernel_size);
flush_icache_range((unsigned long)control_code_buffer,
(unsigned long)control_code_buffer + relocate_new_kernel_size);
ia64_kimage = image;
return 0;
}
void machine_kexec_cleanup(struct kimage *image)
{
}
/*
* Do not allocate memory (or fail in any way) in machine_kexec().
* We are past the point of no return, committed to rebooting now.
*/
static void ia64_machine_kexec(struct unw_frame_info *info, void *arg)
{
struct kimage *image = arg;
relocate_new_kernel_t rnk;
void *pal_addr = efi_get_pal_addr();
unsigned long code_addr;
int ii;
u64 fp, gp;
ia64_fptr_t *init_handler = (ia64_fptr_t *)ia64_os_init_on_kdump;
BUG_ON(!image);
code_addr = (unsigned long)page_address(image->control_code_page);
if (image->type == KEXEC_TYPE_CRASH) {
crash_save_this_cpu();
current->thread.ksp = (__u64)info->sw - 16;
/* Register noop init handler */
fp = ia64_tpa(init_handler->fp);
gp = ia64_tpa(ia64_getreg(_IA64_REG_GP));
ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, fp, gp, 0, fp, gp, 0);
} else {
/* Unregister init handlers of current kernel */
ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, 0, 0, 0, 0, 0, 0);
}
/* Unregister mca handler - No more recovery on current kernel */
ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, 0, 0, 0, 0, 0, 0);
/* Interrupts aren't acceptable while we reboot */
local_irq_disable();
/* Mask CMC and Performance Monitor interrupts */
ia64_setreg(_IA64_REG_CR_PMV, 1 << 16);
ia64_setreg(_IA64_REG_CR_CMCV, 1 << 16);
/* Mask ITV and Local Redirect Registers */
ia64_set_itv(1 << 16);
ia64_set_lrr0(1 << 16);
ia64_set_lrr1(1 << 16);
/* terminate possible nested in-service interrupts */
for (ii = 0; ii < 16; ii++)
ia64_eoi();
/* unmask TPR and clear any pending interrupts */
ia64_setreg(_IA64_REG_CR_TPR, 0);
ia64_srlz_d();
while (ia64_get_ivr() != IA64_SPURIOUS_INT_VECTOR)
ia64_eoi();
platform_kernel_launch_event();
rnk = (relocate_new_kernel_t)&code_addr;
(*rnk)(image->head, image->start, ia64_boot_param,
GRANULEROUNDDOWN((unsigned long) pal_addr));
BUG();
}
void machine_kexec(struct kimage *image)
{
BUG_ON(!image);
unw_init_running(ia64_machine_kexec, image);
for(;;);
}
void arch_crash_save_vmcoreinfo(void)
{
#if defined(CONFIG_DISCONTIGMEM) || defined(CONFIG_SPARSEMEM)
VMCOREINFO_SYMBOL(pgdat_list);
VMCOREINFO_LENGTH(pgdat_list, MAX_NUMNODES);
#endif
#ifdef CONFIG_NUMA
VMCOREINFO_SYMBOL(node_memblk);
VMCOREINFO_LENGTH(node_memblk, NR_NODE_MEMBLKS);
VMCOREINFO_STRUCT_SIZE(node_memblk_s);
VMCOREINFO_OFFSET(node_memblk_s, start_paddr);
VMCOREINFO_OFFSET(node_memblk_s, size);
#endif
#if CONFIG_PGTABLE_LEVELS == 3
VMCOREINFO_CONFIG(PGTABLE_3);
#elif CONFIG_PGTABLE_LEVELS == 4
VMCOREINFO_CONFIG(PGTABLE_4);
#endif
}
phys_addr_t paddr_vmcoreinfo_note(void)
{
return ia64_tpa((unsigned long)(char *)&vmcoreinfo_note);
}